
International Review of Management and Marketing | Vol 6 • Special Issue (S7) • 2016306

International Review of Management and
Marketing

ISSN: 2146-4405

available at http: www.econjournals.com

International Review of Management and Marketing, 2016, 6(S7) 306-311.

Special Issue for "International Soft Science Conference (ISSC 2016), 11-13 April 2016, Universiti Utara Malaysia, Malaysia"

The Role of Requirements in the Success or Failure of Software
Projects

Azham Hussain1*, Emmanuel O. C. Mkpojiogu2, Fazillah Mohmad Kamal3

1School of Computing, Universiti Utara Malaysia, Sintok 06010, Malaysia, 2School of Computing, Universiti Utara Malaysia, Sintok
06010, Malaysia, 3School of Quantitative Sciences, Universiti Utara Malaysia, Sintok 06010, Malaysia. *Email: azham.h@uum.edu.my

ABSTRACT

Requirements engineering (RE) is pivotal and central to every successful software development project. There are several reasons why software projects
fail; however, poorly elicited, documented, validated and managed requirements contribute grossly to software projects failure. Software project failures
are normally very costly and risky and these could even a times be life threatening also. Projects that overlook RE processes often suffer or are most
likely to suffer from failures, challenges and other consequent risks. The cost of project failures and overruns when estimated is quite great and grave.
In addition, software project failures or overruns portend a challenge in today’s competitive market environment. It affects negatively the image,
goodwill, profitability, and revenue drive of companies and decreases the marketability of their products, as well as, the perceived satisfaction of their
customers and clients (which also leads to poor loyalty). In this paper, RE was discussed. Its role in software projects success was elaborated. The
place of software requirements process in relation to software project failure was explored and examined. Furthermore, project success, challenge and
failure factors were also discussed with emphasis placed on requirements factors as they play a major role in software projects’ successes, challenges
and failures. The paper relied on secondary statistics to explore and examine factors responsible for the successes, challenges and failures of software
projects in large, medium and small scaled software companies.

Keywords: Requirements Engineering Process, Software Projects, Failure, Success
JEL Classifications: L86, M15

1. BACKGROUND

Requirement is a statement about a proposed system that all
stakeholders agree must be made true in order for the customers’
problems to be truly solved. It is an expression of the ideas to
be embodied in a system or an application under development.
Requirement is the statement of system service or constraint
describing the user-level properties, general systems, specific
constraints and needs of clients. However, it may also describe the
attributes and behaviour of a system (Inam, 2015). Furthermore,
Gupta and Wadhwa (2013) stated that requirement forms the
basis for the original assessment and ideas for developing and
validating any product. Krauss (2012) further stated that it is
critical to defining the purpose and process of a project and it helps
to analyse and manage a project. More so, requirement has to do
with capturing the objectives and the purpose of a system. It is the
conditions or the capability needed by users to solve problems or

meet their objectives. The accuracy and quality of requirements
immensely contribute to the success of a project/system
development (Krauss, 2012). Furthermore, quality requirements
are pivotal and key to customer/user product satisfaction (Hussain
et al., 2015; Mkpojiogu and Hashim, 2015; 2016; Hussain et al.,
2016a; 2016b; 2016c; Hussain and Mkpojiogu, 2016a; 2016b;
2016c).

Every project has some basic requirements that defines what the
end users, customers, clients, developers, suppliers or business
(i.e., stakeholders) require from it coupled with some needs of
the system for efficient functioning. Requirement is a key factor
during every software development as it describes what different
stakeholders need and how the system will satisfy these needs.
It is generally expressed in natural language so that everyone
can understand it well. It helps the analyst to better understand
which elements and functions are necessary in the development

Hussain, et al.: The Role of Requirements in the Success or Failure of Software Projects

International Review of Management and Marketing | Vol 6 • Special Issue (S7) • 2016 307

of a particular software project. More so, requirements are
considered as an input to design, implementation and validation
phase of software product development. Thus, a software project
is successful or a failure during software development because of
poor requirement elicitation as well as in requirements managing
process (Pfleeger and Atlee, 2006).

RE is one of the branches of software engineering. It is the
systematic processes and techniques for requirements elicitation,
requirement analysis, specification, verification and management
of requirements. It is the initial phase of software engineering
process in which user requirements are collected, understood,
and specified for developing quality software products. In other
words, it is a practical and systematic approach through which the
software or system engineer collects functional or non-functional
requirements from different customers/clients for the design
and development of quality software products (Swarnalatha et
al., 2014). Requirements engineering (RE) is an incremental
and iterative process, performed in parallel with other software
development activities such as design, implementation, testing
and documentation. RE process is divided into two main set of
activities; namely, requirements development and requirement
management (Hussain et al., 2016). Software requirement
development mainly covers the activities of discovering, analysing,
documenting, verification and validation of requirements whereas
software requirement management commonly includes activities
related to traceability and dynamic change management of
software requirements (Pandey and Suman, 2012; Swarnalatha
et al., 2014).

Research reveals that software project failures are mainly
due to inadequate requirements, changing requirements, poor
requirements, and impracticable expectations, etc. Nonetheless,
the application of a systematic approach will reduce the
challenges of RE process and the chances of any project failing.
It is also very crucial to gather accurate information about the
proposed system/product and analyse the organizational needs
and practices, document the requirement acquisition and ensure
completeness and consistency with stakeholder requirements
whilst effectively managing conflicting requirements (Hussain
et al., 2015; Mkpojiogu and Hashim, 2015; 2016; Hussain et al.,
2016a; Hussain and Mkpojiogu, 2016a). Requirements of software
are captured through RE which is the process of determining
requirements (Cheng and Atlee, 2009). Cheng and Atlee (2009)
mentioned that successful RE involves the discovering of the
stakeholders needs, understanding of the requirements contexts,
modelling, analysing, negotiating, validating, as well as assessing
documented requirements; and managing of the requirements
(Shah and Patel, 2014). There are many researches that identify the
need for the development of quality software that meet the needs
and objectives of the customers and give value to stakeholders
(Wiegers, 2013; Inam, 2015). Asghar and Umar (2010) pointed out
that RE is acknowledged as the first phase of software engineering
process and it is considered as one of the main phases in software
development. Furthermore, Khan et al. (2014), and Shah and Patel
(2014), asserted that, unclear requirement is the main reason of
software project failures. Khan et al. (2014) said that “RE phase is
difficult and crucial.” Also, Young (2004) stated that the neglect of

RE contributes to project failures. RE impacts productivity as well
as product quality. Thus, it can be stated that RE is an essential
phase for software development (Sankhwar et al., 2014), and
therefore RE practices should be taken into consideration in every
software development project. In this paper, RE process is defined
based on Wiegers (2003). He maintained that RE is composed of
two main activities which are: Requirements development and
requirements management.

According to Kavitha and Thomas (2011), proper comprehension
and management of requirements are the main determinants of
success in the process of development of software. In this paper,
secondary statistics from previous studies were closely examined
and used to assess and succinctly understand why software projects
succeed or fail.

In summary, there are many reasons for software project failures;
however, poorly engineered requirements process contributes
immensely to the reason why software projects fail (Inam, 2015).
Software projects failure are usually costly and risky and could
also be life threatening. Projects that undermine RE suffer or are
likely to suffer from failures, challenges and other attending risks.
The cost of project failures and overruns when estimated is very
huge. Furthermore, software project failures or overruns pose a
challenge in today’s competitive market environment. It affects
the company’s image, goodwill, profitability, and revenue drive
and decreases the marketability, and the perceived satisfaction
of customers and clients (which leads to their poor loyalty to the
company and their products) (Hussain and Mkpojiogu, 2016a;
2016b; 2016c; Hussain et al., 2016b).

The remaining part of this paper is presented as follows: Section 2:
Why software projects succeed or fail; Section 3: The role of
requirements in software projects success; and lastly, Section 4:
Conclusion.

2. WHY SOFTWARE PROJECTS SUCCEED
OR FAIL

A software project, as categorized by the Standish Group, can be
successful, challenged, or failed. A successful software project
is one that is completed on time and within allocated budget,
and which has all the originally specified features and functions.
A challenged project is one that is completed but with time and
budget overrun and also with fewer features and functions when
compared to those originally specified. A failed project is one that
is aborted or cancelled before its completion. It is also one that is
completed, but never implemented (Kamuni, 2015).

2.1. Software Projects’ Success, Challenge, and Failure
Factors
The Standish Group study of 2009 reported that only 34% of
software projects succeeded, 44% were challenged and 22%
failed (Kamuni, 2015). The 1995 Chaos report established that RE
practices contributed more than 42% of overall project success.
Likewise, inappropriate RE practices represent more than 43% of
the reasons for software project failure. In addition, many previous

Hussain, et al.: The Role of Requirements in the Success or Failure of Software Projects

International Review of Management and Marketing | Vol 6 • Special Issue (S7) • 2016308

researchers have identified that 70% of the requirements were
difficult to identify and 54% were not clear and well organized
(Gause and Weinberg, 1989; Asghar and Umar, 2010; Khan and
Mahrin, 2014; Young, 2004; Sankhwar et al., 2014; Wiegers, 2003;
Kavitha and Thomas, 2011; Kamuni, 2015). The 1995 chaos report
lists “incomplete requirements” as the leading cause of software
project failure. The Standish Group reports a low point in 1994
in which only 16% of projects were successful (Wiklund and
Pucciarelli, 2009). Gause and Weinberg (1989) also pointed out
that: (i) Requirements are difficult and challenging to describe in
natural language; (ii) requirements have many different types and
levels of details; (iii) requirements are difficult to manage if they
are not in control; (iv) most of the requirements change during
software development. Taimour (2005) identified the following:
Poor planning including missing dependencies, requirements
changed and not finalized, key requirements missed and high
turnover of top IT manager; as reasons why software projects
fail. The Standish Group chaos report (1994) show that 29% of all
projects succeeded (i.e., delivered on time, on budget, with required
features and function); 53% were challenged (i.e., delivered late,
over budget and/or with less the required features and functions);
and 18% failed (cancelled prior to completion or delivered, but
never used). Figures 1-3 display the project success, challenged,
and failure factors of the Chaos report as republished by Project
Smart. In the Figure 1, user involvement (15.90%), executive
management support (13.90%) and clear statement of requirements
(13%) are the top three factors responsible for project success.

In Figure 2, lack of user input (12.80%), incomplete requirements
and specification (12.30%), and changing requirements (11.80%)
are the top three factors responsible for challenged projects.
In Figure 3, incomplete requirements (13.10%), lack of user
involvement (12.40%), and lack of resources (10.60%) are the
top three factors causing impaired or failed projects. From these
presentations, it is very clear that requirements related issues are
the top factors for affect software project success, challenge, and
failure (impairment).

Furthermore, the 1995 Standish Group chaos report (Project
Smart, 2014) identified user involvement, executive managerial
support, clear statement of requirement, proper planning,
realistic expectation, and smaller projects milestones, etc. as
success factors and reports incomplete requirements, lack of user
involvement, lack of resources, unrealistic expectation, lack of
executive support, changing requirements and specifications,
lack of planning, etc. as problem causes. Wiklund and Pucciarelli
(2009) in their study revealed that 25% of projects fail out-right,
20-25% do not meet return on investment and up to 50% require
material rework.

In addition, from the 1995 Chaos report, the figures for failure
were equally disheartening in companies of all sizes. Only 9% of
projects in large companies were successful. At 16.2% and 28%
respectively, medium and small companies were somewhat more
successful. A whopping 61.5% of all large company projects
were challenged compared to 46.7% for medium companies and
50.4% for small companies. 37.1% of projects were impaired and
subsequently cancelled (failed) in medium companies, compared

Figure 1: Project success factors

Source: Project Smart (2014)

Figure 2: Project challenge factors

Source: Project Smart (2014)

Figure 3: Project failure factors

Source: Project Smart (2014)

to 29.5% in large companies and 21.6% in small companies
(Project Smart, 2014).

The Standish Group categorized software companies into large,
medium and small based on their annual income. A large company

Hussain, et al.: The Role of Requirements in the Success or Failure of Software Projects

International Review of Management and Marketing | Vol 6 • Special Issue (S7) • 2016 309

is one with >$500 million in annual revenue. A medium company
is one that has between $200 million and $500 million in yearly
revenue while a small company has between $100 million to
$200 million revenue per year. The Standish Group observed that
only 9% of the projects in large companies, 16.2% of projects in
medium companies and 28% of projects in small companies were
successful. Furthermore, 61% of all large company projects were
challenged. Most of the failed projects were within the medium
scale company category (37.1%) in comparison to large companies
(29.5%) and small companies (21.6%) (Kamuni, 2015). In a related
survey by the Standish Group, the success rate was 24% in large
software companies, 37.2% in medium scale companies and 48%
in small scale software companies. In addition, 69.5% of large
software company projects were very challenging, in comparison
to 52.7% and 60.4% in medium and small software companies
respectively. Also, 39.5% of projects in large software companies
were cancelled in comparison to 45.1% and 31.6% in medium
and small scale software companies, respectively (Swarnalatha et
al., 2015). As could be consistently observed, poor requirements
processes are responsible for software projects challenges and
failures. A good requirements collection and process contributes
to software projects successes.

One of the major causes of both cost and time overruns is restarts.
For every 100 projects that start, there are 94 restarts. This does
not mean that 94 of 100 will have one restart; some projects can
have several restarts (Project Smart, 2014). The most important
aspect of the research is discovering why projects fail. To do this,
The Standish Group surveyed IT executive managers for their
opinions about why projects succeed. The three major reasons
why a project will succeed are user involvement, executive
management support, and a clear statement of requirements.
There are other success criteria, but with these three elements
in place, the chances of success are much greater. Without
them, chance of failure increases dramatically. The survey
participants were also asked about the factors that cause projects
to be challenged. Opinions about why projects are impaired and
ultimately cancelled ranked incomplete requirements and lack
of user involvement at the top of the list (Project Smart, 2014)
(Figures 1-3). Another key finding of the survey is that a high
percentage of executive managers believe that there are more
project failures now than 5 and 10 years ago. This is in spite of
the fact that technology has had time to mature (Project Smart,
2014) (Figure 4).

3. THE ROLE OF REQUIREMENTS PROCESS IN
SOFTWARE PROJECT SUCCESS

RE is the important phase of software development process.
It basically aims at collecting meaningful and well defined
requirements from clients in the proper way. It is important to
develop quality software that can satisfy user’s needs without
errors. It is mandatory to apply RE practices at every stage of
software development process (Swarnalatha et al., 2014). RE
is commonly accepted to be the most important, critical and
complex process in the software development process. A well-
defined requirement is software functionality that satisfies
client’s needs (Inam, 2015). The RE process has the highest

impact on the capabilities of the emerging software product
(Swarnalatha et al., 2014). RE is important because it helps to
define the purpose of any project by defining the constraints,
specifying the process involved and documenting it. It also
ensures incremental improvement by matching the most effective
measures with the crucial problems. Furthermore, it critically
identifies what the stakeholders’ need and helps to make decisions
more efficiently, hence providing effective results. The success
or failure of a project is dependent on the accuracy and effective
management of requirements. It is crucial to determine the mix
of effective techniques to use for requirement acquisition and
properly document the process and the requirements to reduce
the challenges and chances of failure. RE should therefore be the
starting point and backbone of any project or decision because
it helps to determine and focus on the objective, match needs
of stakeholders to the product development process thereby
increasing the chances of achieving the best result. However,
it must be managed throughout the entire system or product
development life cycle for project success and the mitigation
of failures.

4. CONCLUSIONS

RE is at the foundation of every successful software project.
There are many reasons for software project failures; however,
poorly engineered requirements process contributes immensely to
the reason why software projects fail. Software project failure is
usually costly and risky and could also be life threatening. Projects
that undermine RE suffer or are likely to suffer from failures,
challenges and other attending risks. The cost of project failures
and overruns when estimated is very huge. Furthermore, software
project failures or overruns pose a challenge in today’s competitive
market environment. It affects the company’s image, goodwill,
and revenue drive and decreases the perceived satisfaction of
customers and clients. In this paper, RE was discussed. Its role in
software projects success was elaborated. The place of software
requirements process in relation to software project failure was
explored and examined. Also, project success and failure factors
were also discussed with emphasis placed on requirements factors
as they play a major role in software projects’ challenges, successes

Figure 4: Executive managers’ perceptions on project failures

Source: Project Smart (2014)

Hussain, et al.: The Role of Requirements in the Success or Failure of Software Projects

International Review of Management and Marketing | Vol 6 • Special Issue (S7) • 2016310

and failures. The paper relied on secondary statistics to explore
and examine factors responsible for the successes, challenges and
failures of software projects in large, medium and small scaled
software companies.

In conclusion, the success or failure of any given software
development project hinges on how the software requirements
process was carried out. The cost or the risks involved in
a poorly engineered requirements process are great and
sometimes irreparable. RE stands as a bedrock upon which
the success of software projects stands. Colossal wastes can
be avoided if adequate attention is given to proper RE in all
software development projects. In this paper, the connection
of requirements to project success or failure is established and
emphasized using secondary data analysis from previous studies.
As could be consistently observed, poor requirements processes
are responsible for software projects challenges and failures while
on the other hand, a good requirements collection and process
contributes to software projects successes. Thus, it behoves of
software project planners, analysts, engineers and managers to
incorporate adequate RE process in every software development
project to achieve project success and eliminate project failures
and challenges.

5. ACKNOWLEDGMENT

This study was funded by Ministry of Higher Education under
RAGS grant.

REFERENCES

Asghar, S., Umar, M. (2010), Requirement engineering challenges in
development of software applications and selection of customer-
off-the-shelf (COTS) components. International Journal of Software
Engineering, 1(1), 32-50.

Cheng, B.H.C., Atlee, J.M. (2009), Current and future research directions
in requirements engineering. Design Requirements Engineering:
A Ten-Year Perspective. Heidelberg: Springer.

Gause, D.C., Weinberg, G.M. (1989), Exploring Requirements: Quality
Before Design. New York: Dorset House.

Gupta, S., Wadhwa, M. (2013), Requirement engineering: An overview.
International Journal of Research in Engineering and Technology,
1(2), 155-160.

Hussain, A., Mkpojiogu, E.O.C. (2016a), An application of Kano method
in the elicitation of stakeholder satisfying requirements for an e-Ebola
awareness system. International Journal of Systems Applications,
Engineering and Development, 10, 169-178.

Hussain, A., Mkpojiogu, E.O.C. (2016b), Requirements model for an
e-health awareness portal, 1st International Soft Science Conference
(ISSC’16), Langkawi Island, Malaysia, 11-13 April, 2016.

Hussain, A., Mkpojiogu, E.O.C. (2016c), Predicting the perceived worth
of software products requirements with customer satisfaction.
Advanced Research in Engineering and Information Technology
International Conference (AREITIC’16), 31 May - 2 June, 2016,
Bandung, Indonesia.

Hussain, A., Mkpojiogu, E.O.C., Abdullah, I. (2016a), Investigation
of Current Requirements Engineering Practices Among Software
Developers at the Universiti Utara Malaysia Information Technology
(UUMIT) Centre. 1st International Soft Science Conference

(ISSC’16), Langkawi Island, Malaysia, 11-13 April, 2016.
Hussain, A., Mkpojiogu, E.O.C., Hassan, F. (2016b), Assessing

the influence of self-reported requirements importance on the
perceived quality of proposed software products. 2nd International
Conference on Information and Communication Technology for
Transformation (IC-ICT4T’16), 5-7 April 2016, Kota Kinabalu,
Sabah, Malaysia.

Hussain, A., Mkpojiogu, E.O.C., Husin, Z. (2016c), Requirements:
Towards an understanding on why software projects fail.
1st International Soft Science Conference (ISSC’16), 11-13 April
2016, Langkawi, Island, Malaysia.

Hussain, A., Mkpojiogu, E.O.C., Kamal, F.M. (2015), Eliciting user
satisfying requirements for an e-health awareness system using kano
model. Proceedings of the 14th WSEAS International Conference
on Computer and Computational Science (ACACOS’15), Kuala
Lumpur, Malaysia.

Inam, A. (2015), A Study of Requirements Engineering Practices Among
Software Developers at UUM Information Technology. MSc.
Dissertation Report. Malaysia: Universiti Utara Malaysia.

Kamuni, S.K. (2015), Study of Factors that Induce Software Project
Overrun Time, Mechanical and Manufacturing Engineering.
Paper, 10.

Kavitha, C.R., Thomas, S.M. (2011), Requirement gathering for small
projects using agile methods. IJCA Special Issue on Computational
Science-New Dimensions and Perspectives, 3, 122-128.

Khan, H.H., Mahrin, M. (2014), Factors generating risks during
requirement engineering process in global software development
environment. International Journal of Digital Information and
Wireless Communications (IJDIWC), 4(1), 63-78.

Krauss, E. (2012), Requirement Engineering and Project Management.
Heidelberg: Springer.

Mkpojiogu, E.O.C., Hashim, N.L. (2015), Quality-based prioritization:
An approach for prioritizing software requirements. 2015,
2nd Advancement on Information Technology International
Conference (ADVCIT’15), Krabi, Thailand, 3-5 December, 2015.

Mkpojiogu, E.O.C., Hashim, N.L. (2016), Understanding the relationship
between Kano model’s customer satisfaction scores and self-stated
requirements importance. Springerplus, 5(1), 1-22.

Pandey, D., Suman, U. (2012), An effective requirements engineering
process model for software development & requirements
management. International Conference on Advances in Recent
Technologies in Communications and Computing. p287-291.

Pfleeger, S.L., Atlee, J.M. (2006), Software Engineering: Theory and
Practice. London, UK: Pearson, India.

Project Smart. (2014), The Standish Group, 1995 Chaos Report.
Available from: https://www.projectsmart.co.uk/whitepapers/
chaos-report.pdf.

Sankhwar, S., Singh, V., Pandey, D. (2014), Requirement engineering
paradigm. Global Journal of Multidisciplinary Studies, 3(3), 1-8.

Shah, T., Patel, V.S. (2014), A review of requirement engineering
issues and challenges in various software development methods.
International Journal of Computer Applications, 99(15), 36-45.

Swarnalatha, K.S., Srinivasan, G.N., Dravid, N., Kasera, R., Sharma, K.
(2014), A survey on software requirements engineering for real time
projects based on customer requirements. International Journal of
Advanced Research in Computer and Communication Engineering,
3(1), 5045-5050.

Swarnalatha, K.S., Srinivasan, G.N., Rakesh, R., Dwivedi, V. (2015),
Software Requirements Collection Enhancement Using Sampling
Technique and Applying T-Distribution. Available from: http://
www.ijsetr.com.

Taimour, A. (2005), Why IT Projects Fail. Available from: http://www.
projectperfect.com.au.

Hussain, et al.: The Role of Requirements in the Success or Failure of Software Projects

International Review of Management and Marketing | Vol 6 • Special Issue (S7) • 2016 311

The Standish Group. (1994), 1994 Chaos Report. Available from: http://
www.standishgroup.com/services.php.

Wiegers, K. (2013), Creating a Software Engineering Culture. Reading,
MA: Addison-Wesley.

Wiegers, K.E. (2003), Software Requirements: Practical techniques for
gathering & managing requirement through the product development

cycle. USA: Microsoft Corp.
Wiklund, D., Pucciarelli, J. (2009), Improving IT Projects Outcomes

by Systematically Managing and Hedging Risk: An IDC Insight
Research Document.

Young, R.R. (2004), The Requirements Engineering Handbook. Norwood,
MA: Artech House.

