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Abstract: The main purpose of this study is to define geometrically exponentially convex
functions, which are a more general version, by expanding geometrically convex functions and to
create the relevant lemmas. Some properties of geometrically exponentially convex functions are
proven using definitions and lemmas. While obtaining the main findings, in addition to basic
analysis information, Young and Hoélder inequalities, well known in the literature, were also used
for the powers of some functions. In the new theorems obtained, some special results were
obtained for a = 0.

Geometrik Eksponansiyel Konveks Fonksiyonlar icin Koordinatlarda Baz1 Yeni Integral

Esitsizlikler

Anahtar
Kelimeler
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Oz: Bu caligmanin temel amaci geometrik konveks fonksiyonlar1 genisleterek daha genel bir
versiyonu olan geometrik eksponansiyel konveks fonksiyonlari tanimlamak ve ilgili lemmalar1
olusturmaktir. Geometrik eksponansiyel konveks fonksiyonlarin bazi 6zellikleri tanim ve lemmalar
kullanilarak ispatlanmigtir. Ana bulgular1 elde ederken temel analiz bilgilerinin yani sira bazi
fonksiyonlarmn kuvvetleri igin literatiirde iyi bilinen Young ve Holder esitsizliklerinden
yararlanilmistir. Elde edilen yeni teoremlerde a = 0 igin baz1 6zel sonuglar elde edilmistir.

1. INTRODUCTION

holds for all £z, 1, € Aand @ € [0,1] (Peajcariaac et

In the 21st century, we see that inequalities are not only
limited to mathematics, but also have an important place
in many different sciences, especially engineering. For
this reason, it has attracted the attention of many
researchers and has been examined from different
perspectives. The concept of convexity, which has an
important place in inequality theory, is widely used by
many researchers working in the field of inequality
theory. We begin this study by giving the definition of
the concept of convexity [2].

Definition 1. LetA c R. Then Y : A—R is said to
be convex, if

Y@, + (@), < o)+ 1-a@) () @)

al. [2]).

The main goal of studies on different types of convexity
is to optimize the bounds and generalize some known
classical inequalities. Based on this basic purpose, an
important class of convex functions whose definition is
given is exponentially convex functions and whose
definition reference [1] is given as follows.

Definition 2. A function Y : Ac R — R is said to be
exponential convex function, if
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- Y(u,)

ap
e

for all 1,42, € Aa €R and @ € [0,1](Awan et al.
[1])-

The definition of the concept of geometrically convex
functions, which is well known in the literature and used
by many researchers in their studies, is given as follows
in reference [3].

Y((1-@)y +au,)<(1-@) 2(511) + )

Definition 3. A function Y: AcC (O,oo)—)
said to be a geometrically convex function, if

Y 1 ") < X)X )] 0
forall s, 1, € A and @ €[0,1]

( ,oo) is

There are many studies in the literature about
geometrically convex functions. Some of these are
available in reference [4-10].

Aslan and Akdemir gave the definition of exponentially
convex functions on the coordinates, which is a more
general version of convex functions on coordinates, as
follows in reference [11].

Definition 4. Let us consider the bidimensional interval
A= [9,,9,]x[95,9,] in R? with 9, < 9, and 95 < 9.
The mapping Y : A — R is exponentially convex on
the co-ordinates on A, if the following inequality holds,
(@, + (- o)y, ou, +(L-@)u,)
Y (1, Y (4, 4

< (2 ,uz)+(1_w_) (13, 144) (4)

a(m+uy) a(ug+uy)

e e
forall (24, 14,), (45, 1,) €A, € Rand @ € [0,1]
(Aslan et al. [11]).
Aslan and Akdemir gave another definition of
coordinates equivalent to the exponentially convex
function definition as follows:

Definition 5. A function Y:A —R is exponentially

convex function on the co-ordinates on A , if the
following inequality holds,
Y(wul (- )ity s + (1—w)u4)

e H ﬂ3 e /11 Hy (5)
+ (1_w)w Y(IuZ’IHS) ( )(1 0)) (#27#4)

efx(ﬂz +1113) a(y2+,u4)

for all (ﬂlvﬂs)!(!‘1’!‘4)’(#2:/‘3)1(#2'/14)6A’aGR
and @, € [0,1] (Aslan et al. [11]).

With the definition of convex functions on coordinates,
it brought to mind the question that the Hermite-
Hadamard inequality could also be extended to
coordinates. We see the answer to this enormous

question in Dragomir's article [12]. We see the
equivalent of the Hermite-Hadamard inequality in
coordinates in the theorem below.

Theoreml. (Dragomir [12]) Lets assume that
YA =[gy, p, 1% 15, 1,1 > R is convex on the co-

ordinates on A . Then one has the
Y(ul + M +#4j

inequalit

2 2

= ul)(m iy b L YOy

< V(e p45) + Y(ps, ,U4) + Y(ﬂznus) +Y(4, 1) .

4
The above inequalities are sharp.

(6)

Theorem2. (Aslan et al. [11]) Let

A=, p, 1% [, 11, ] >R be partial
differentiable mapping on A = [z, tt,]1x[ 145, 14,1
and Y e L(A), aeR. If Y is exponentially convex

function on the co-ordinates on A, then the following
inequality holds;

1 Ho (Hy
Y(x, y)dxdy
( —ﬂl)(m—ﬂg)j”ljﬂs
V(e 1) Y)Yy tt)  Y(uyop,) ()
< ea(ﬂlﬂtg) ea(u1+u4) ea(ﬂzwa) ea(/12+ﬂ4)

4

Many studies have been carried out in the literature on
exponentially convex functions and exponentially
convex functions on coordinates. Some of these are
given in reference [13-21].

Anderson et al. gave the following definition in
(Anderson et al. [22])

Definition 6. A function M: R* x R* - R is called a

Mean function if

(1) M(e4, 4,)= M (115, ),

(2) M4, 14)= 141,

(3) 14 <M (4, 1,) < t, whenever 11, <

(4) M(agy,au,)=aM (g, ) forall a>0 .

Let us recall special means (See [22,23,24])

1. Arithmetic Mean:

M(ﬂvﬂz): A(:ul’ﬂz):

/ul"'/uz.
2

2. Geometric Mean:
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M(/"l’ﬂz):G(ﬂllﬂz): m

3. Harmonic Mean:

M (4, 1) = H(M,ﬂz)ﬂ/{i,LJ -

M H
4. Logarithmic Mean:
M(/J’.UIHZ): L(M’ﬂz):(/“i_,uz)/(loglﬁ_log ﬂz)
for g4 # p, and L(g4, 14) = 14 .

5. Identric Mean:

L /( - )
M (14, 12,) = Ve, 11, ) = (Ue uf“/uézy e
for 1y # g1, and 1 (s, 1) = 4.

Now we are in a position to put in order as:

H (24, £6,) < Gaay, 14, ) < Laty,s 12,)
< 1 (et 40,) < Alp, 16,) < K (s, 12,).

In [22], authors also gave a definition which is called
MN-convexity as the following:

Definition 7. Let Y: |1 — (0, oo) be continuous, where
| is subinterval of (0, oo). Let M and N be any two
Mean functions. We say Y is MN -convex (concave) if

Y(M (s, 1)) <IN (Y (1) Y(22,)) ®
forall 1, 1, 1.

2. MAIN RESULTS

Definition 8. Let us consider the bidimensional interval
A=y, 1, 1% [, 11,] in R® with g1y < gz, and
My < pt,. The mapping YA — R™ is geometrically-

exponentially convex on the co-ordinates on A, if the
following inequality holds,

@ (t-a)
Y(,Llw (1_”),yfy(l"”))< Y (/ul’/uz) Y (/13,/14) )

1 /3 4 - ea(yiﬂlz) ea(/l3+/44)
forall (14, 14, ), (15, p2,) € A, €R and @ € [01]

A second definition of geometrically exponentially
convex functions on coordinates equivalent to the above
definition can be made as follows:

Definition 9. A function Y:A — R" is geometrically
exponentially convex on the co-ordinates on A, if the
following inequality holds,

Y a2, g 1)

7o) Y o ) Y ) P )

etz(ulﬂ%J ea(ler,uA) ea{y2+p3) ea(p2+y4)
for all
(et 1), (et 12 ), (pt 105) (1150 11, ) € A, € R and
@,0e[01]

Lemma 1. A function Y:A—>R" will be called
geometrically exponentially convex on the co-ordinates

on A, if the partial mappings sz 4, 1] >R,
Y, W=e"2fup,) and Y, [ m]1>R,
Ypl (V) =e”1f(p,V) are geometrically

exponentially convex on the co-ordinates on A, where
defined for all p, €[4, 14,] and p, €[4, 14,1

Proof. From the definition of partial mapping Ypl we

can write
Y, (vl‘” Vi) ) =e” 1Y(,01 Vo) )
= e r{pf ol vt

<e™ |: e (pv Vl) Y(l_W)(IO1 Vo )}

ea(pl+vl) ea(pl+v2)

- e (pl’vl) Y(lim)(pv Vz)

e™ e™?
@ (lfm)
— Ypl (Vl) Ypl (VZ) (11)
e g™
Similarly, one can easily see that
7 () Y5 (u,)
@, (l-a) Py N1 P 2
T, (ul u; )s o o (12)

The proof is completed.

Proposition 1. If Y,®:A — R are two geometrically
exponentially convex functions on the co-ordinates on
A, then Y® is geometrically exponentially convex

functions on the co-ordinates on A.

Proof.

g ) g i el i, g )

< YM(:”U ,Ua) YE(M)(M: ,U4) yiek (/Uz ' ﬂa) Y(lim)(lw)(ﬂzu ,U4)
S ea[;ll+y3) ea(yl+y4) ea(,u2+,u3) ea(ﬂ2+y4)
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O e ) O ) Oty 1) Oy )

_ () (1) (0 a1,
ea(yl-v-ys) ea(y1+y4)
(00f o ) (0 )
y Hyr My s Hy
ea(y2+,u3) ea(,u2+/14)

Therefore Y is geometrically exponentially convex
functions on the co-ordinates on A.

Theorem 3. Let YA = [z, 44, 1% [ 45, 22,1 > R be
partial differentiable mapping on

A=y, 1,]1% (15, 14,] and YeL(A), aeR If

Y is geometrically exponentially convex function on
the co-ordinates on A, then the following inequality
holds;

1 J‘”z J‘”4 Y(p,. p,)
(In Hp—In M)(In Hy—In ﬂs) s PP,
< L(Y(M 1 H3 )' Y(M 1My )) + L(Y(ﬂz ' H3 )Y(ﬂz Hy ))

- 262a(;11+p3+y1+,u4)

where p, €[4, 41,] and p, € [aty, p1,] dir

dpydp,

(14)

Proof. Using inequality (10), the following expression is
written

Y a2, i i)

0 ) Y o ) Y ) YR ”)(ﬂz )
- ea(ulu@) ea(y1+;14J ea(y2+;z3) ea{y2+y4

(15)

By integrating both sides of inequality (15) with respect
to @, @ on [0,1] %, we have
H 17 1), 1 = Moo

_”(Y (ﬂl,ﬂg)Y( TN

alum+ug) e alm+py)

X

Y (qu 1 ,us) Y(l_w)(l_w)(ﬂz My )Jd odw

ea(,u2+,u3) ea(,u2+,u4)

1
e2a(,tﬁ_+y3+;ﬁ_+,u4)

] 1
< L[ O0 (s 22070 (2t 22, YO
x (ptp, 15X (11, 1, )

_ 1
- eZa Hytpig+ i+ iy

X '[1 Yw(ﬂl’ My )Y(l_w)<ﬂ1! :”4)_ Yw(:”z 1 )Y(l_w)(ﬂz ! ,u4)
*In Yw(ﬂl’ Hy )Y(l_w)(ﬂl! ,u4)— In Y (ﬂz 1M )Y(M)(/’z 1Hy

_ 1
- eZa gty iy

1
X '[UL(Y” (ﬂv Hy )Y(H)) (/‘1’ Hy )! r° (:uz 11y )Y(H))(:uz 1y ))da)

If the p

)da)

(16)

=171y " p, = i ” variable s
changed and the L(a, b) < A(a, b) feature is taken into

account, the following result is obtained.

" JwA Y(pl’ £e ) do,dp,
y

1 J
(In M, —In M)(In Hy—In ,us) s PP,
1
S e2a iyt g+ iy X

A a1 Yt ) Y st Yt 1

1
= X
20 gty

e
rYw(:uwus P a0, )+ Y (1t 1 )Y(l"”)(ﬂz,m)d ;
0 2

= L0ty 1) oty )+ LOC et 1 Y (11, 11)
2e Za(yl+y3+y1+u4)

proof is completed.

(17)

Corollary 1. If we choose & =0 in Theorem 2.1, the
result agrees geometrically with convexity on the
coordinates.

1 J‘”Z Ha Y(pll pZ)d,Old,Dz

(In gy =10 22, XN g1, = p1) Y s o,
o L0 1) e 1)) L0ty 1 )Vt 1))
i 2

where o) €[4, 44,] and p, €[ 145, 11,] dir.

Theorem 4. Let YA =[py, a1, %[ 45, 1,1 > R”
be partial differentiable mapping on
A=y, g, 1 %[5, 12,] and YeL(A), aeR. If

|Y| is geometrically exponentially convex function on

the co-ordinates on A, p>1 then the following

inequality holds;
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pl’pz dpldpz

| T
|(In H,—In :ul)(ln Hy—In :Us “3

PP
< 1 v
~ ?Peliataarigtay)
1
st st
2

where  p, €[4, 14,1 0, €l ] and
p+q =1 dir

Proof. Using inequality (10), the following expression is
written

Y a2, i 1)

0 ) Y oy ) Y ) YR “)(ﬂz )
= ea(;ﬁu@) ea(yl+;z4J ea(u2+;z3) ea{y2+y4

(20)

If the absolute value of both sides of inequality (20) is
taken and integrated with respect to @, @ on [0,1] %,
we can write

o e g )dwdw‘

r (/111 :U3) Ywa_w)(ﬂli Hy )

B

o " e (,uz 1 M3 ) el (ﬂz 1 Hy )

ea(ﬂz +/Jg) e“(/"z +/44)

dadw (21)

In inequality (21), apply Holder's inequality to the right

side of the inequality and
= 17 157, p, = 44 variable is changed , we
get
4 'u4 ,0 ap
| L, = dede,
‘(In H,—In lui)(ln Hy—In /Us s PPy

1
(J'I 2palp +ug+iy+uy) dwda)j

[ :u1’1u3 |Y ﬂ11ﬂ4]m(1—w)q ’

U, M)'(l—w)(l—m)q )d odo

o

><|Y,uz,,u3

(eZ pa /11+y3+/11+y4 j

(ﬂLQY o) ¥

1
p

1

(ﬂznﬂsWY(ﬂz’ﬂJ(lw]q}m)q

1-o)q

Because of the L(a, b)< A(a, b) property, we can
write

| J'ﬂz J‘”4
H3

[y M)('” =N 11;)

1
1 p
<
eZ pak;ﬁ+y3+;ﬁ_+y4J

At ot

_( 2pa /.11+;43+/.11+,u4 j

JlYM ) Pl ) \Yﬂz,mX e ) )qdw]

,01 pz dp,
PP

dp,

1

ﬂa] ‘Y ,Uzl,UJ )q}jw)q

1
4

1
_ 1 p
- eZpa(;Ll+/43+,ul+/44)

X[LQY(uyﬂsXqY(ﬂpqu)+ L ) Z'Mq)} (22

R

2
Proof is completed.
Corollary 2. If we choose ¢ =0 in Theorem 4, the

result agrees geometrically with convexity on the
coordinates.

| 1 Iﬂz H4Y(pl'p2)dpldpz

(0, =0 2, )In g1, =In 1) Y5 pyp,

< Lo ) LQY(ﬂz'ﬂsXqY(ﬂZ'Mq)}: (23)
2

where

pr+g

pr el 1] p; €lpg, 1] and

=1 dir.

Theorem 5. Let Y @A =[gy, 16, 1x[1ts, 14,1 > R”
be partial differentiable mapping on
A=y, 1% [1g, 2,] and YeL(A), aeR. If
|Y| is geometrically exponentially convex function on

the co-ordinates on A, P >1 then the following

inequality holds;

w2 (s Yy, py)
dp,d
|(|n,u ~In ,ul)(ln w,—In ;) L@I 00, 0P,
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1
S peZpa /11+,u3+/11+/44
(24)
. LQY(ﬂpﬂalq\Y(ﬂlmq)+ LQY(ﬂz,ﬂslq\Y(ﬂz,ﬂJq)
2q
where  p, €[4, 41,] po €lps 1] and
pt+q =1 dir

Proof. Using inequality (10), the following expression is
written

{7 157, 405 )
Y ) Y 1) Y ) YR (ﬂz )

- ea(#ﬁ/@) e“(IﬁWJ e“(ﬂz“’s) e“(l‘zw

(25)

If the absolute value of both sides of inequality (20) is
taken and integrated with respect to @, @ on [0,1] °
we can write

f w7 1), s )dfvdw‘

re (lul’ /‘3) o) (ﬂla Hy )

alu 1) alu+uy)

< .E.Ll Z—w)a} e (o)1) dadao (26)
Iy, 1) Yy 1)

ea(,u2+,u3) ea(,u2+,u4)
In inequality (26), apply Young's inequality to the right
side of the inequality and
o= 11 7, p, = iy variable is changed , we
get
| 1 J.”Z 4 Y(pl’pz)dpldpz
|(In 2, ~In 24, YIn ,u4 ~In ) s pup,

(I ‘[0 Zpa ”1*”3+ﬂl+/l4) d dej
.[.[Q 'uluus

K Pty 1)t 1) Bt
1

2 pa[;ll+/.t3+,ul+,u4)

|Y Hyy Hy lwu_w)q

pe

+:U:LQY(M’”3XMY(F‘l'ﬂ41(l_w)q’

Y(ﬂz,m]mY(ﬂm](l_w)q)dw) (27)

Because of the L(a,b)< A(a,b) property, we can
write

| Ho PpPz d
[(In 2z, ~In ﬂl)(ln 11N 1) I I ppr

dp,

1

2 pa(;zl+y3+,ul+p4)

_pe

ﬂa]wq ‘Y(,uz ) ﬂAX(l_W)q }ja))

ot s
1

2pa(;11+/43+;bl+,u4)

_pe

[f AR

+‘Yﬂz’ﬂ31 ‘YIUZ'IUAX )qda)
2

_ 1
pe2pa Hyt pig+ b iy

LQY(ﬂl,ﬂ31q\Y(u1,ﬂ41q)+ LQY(ﬂz,ﬂJq\Y(ﬂz,ﬂJq)
2q

(28)

+

proof is completed.

Corollary 3. If we choose ¢ =0 in Theorem 5, the
result agrees geometrically with convexity on the co-
ordinates.

| 1 J'”Z w (P )
[0 42, =1 g1, Y0 2, =10 p1) Y s pyp,
L, Uit P L )

p 2
where  py € [a4, 5]
p+q =1 dir.

dodp,

(29)

po €lpy 1yl and
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