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Abstract: The main purpose of this study is to define geometrically exponentially convex 

functions, which are a more general version, by expanding geometrically convex functions and to 

create the relevant lemmas. Some properties of geometrically exponentially convex functions are 

proven using definitions and lemmas. While obtaining the main findings, in addition to basic 

analysis information, Young and Hölder inequalities, well known in the literature, were also used 

for the powers of some functions. In the new theorems obtained, some special results were 

obtained for 𝛼 = 0. 
 

 

 

Geometrik Eksponansiyel Konveks Fonksiyonlar için Koordinatlarda Bazı Yeni İntegral 

Eşitsizlikler 
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Öz: Bu çalışmanın temel amacı geometrik konveks fonksiyonları genişleterek daha genel bir 

versiyonu olan geometrik eksponansiyel konveks fonksiyonları tanımlamak ve ilgili lemmaları 

oluşturmaktır. Geometrik eksponansiyel konveks fonksiyonların bazı özellikleri tanım ve lemmalar 

kullanılarak ispatlanmıştır. Ana bulguları elde ederken temel analiz bilgilerinin yanı sıra bazı 

fonksiyonların kuvvetleri için literatürde iyi bilinen Young ve Hölder eşitsizliklerinden 

yararlanılmıştır. Elde edilen yeni teoremlerde 𝛼 = 0 için bazı özel sonuçlar elde edilmiştir. 

 

 

1. INTRODUCTION 

 

In the 21st century, we see that inequalities are not only 

limited to mathematics, but also have an important place 

in many different sciences, especially engineering. For 

this reason, it has attracted the attention of many 

researchers and has been examined from different 

perspectives. The concept of convexity, which has an 

important place in inequality theory, is widely used by 

many researchers working in the field of inequality 

theory. We begin this study by giving the definition of 

the concept of convexity [2]. 

Definition 1.  Let 𝐴 ⊂ 𝑅. Then R→ A:  is said to 

be convex, if  

( )( ) ( ) ( ) ( )2121 11  −+−+     (1) 

 

holds for all A21 ,  and  0,1 (Peajcariaac et 

al. [2]). 

The main goal of studies on different types of convexity 

is to optimize the bounds and generalize some known 

classical inequalities. Based on this basic purpose, an 

important class of convex functions whose definition is 

given is exponentially convex functions and whose 

definition reference [1] is given as follows. 

Definition 2. A function RR→ A:  is said to be 

exponential convex function, if  
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for all R  ,, 21 A  and  0,1 (Awan et al. 

[1]). 

The definition of the concept of geometrically convex 

functions, which is well known in the literature and used 

by many researchers in their studies, is given as follows 

in reference [3]. 

Definition 3.  A function ( ) ( )→ 0,,0: A  is 

said to be a geometrically convex function, if  

     
−− 

1

21

1

21 )()()( (3)                                       

for all A21 ,  and  .0,1  

There are many studies in the literature about 

geometrically convex functions. Some of these are 

available in reference [4-10]. 

Aslan and Akdemir gave the definition of exponentially 

convex functions on the coordinates, which is a more 

general version of convex functions on coordinates, as 

follows in reference [11]. 

Definition 4. Let us consider the bidimensional interval 

∆= [𝜗1, 𝜗2]𝑥[𝜗3, 𝜗4] in 
2R  with   𝜗1 < 𝜗2 and 𝜗3 < 𝜗4. 

The mapping R→ :  is exponentially convex on 

the co-ordinates on  , if the following inequality  holds, 

( ) ( )( )

)
43
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for all R  ,),(),,( 4321 and  0,1

(Aslan et al. [11]). 

Aslan and Akdemir gave another definition of 

coordinates equivalent to the exponentially convex 

function definition as follows: 

Definition 5. A function R→ :  is exponentially 

convex function on the co-ordinates on  , if the 

following inequality holds, 

( ) ( )( )4321 1,1  −+−+
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for all ( ) ( ) ( ) ( ) R  ,,,,,,,, 42324131   

and  0,1,   (Aslan et al. [11]). 

With the definition of convex functions on coordinates, 

it brought to mind the question that the Hermite-

Hadamard inequality could also be extended to 

coordinates. We see the answer to this enormous 

question in Dragomir's article [12]. We see the 

equivalent of the Hermite-Hadamard inequality in 

coordinates in the theorem below. 

Theorem1. (Dragomir [12]) Lets assume that

R→ ],[],[=: 4321   is convex on the co-

ordinates on  . Then one has the inequalit

dxdyyx ),(
))((
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2
,
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3

2

13412
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.
4

),(),(),(),( 42324131  +++
    (6) 

The above inequalities are sharp. 

Theorem2. (Aslan et al. [11]) Let 

R→ ],[],[=: 4321   be partial 

differentiable mapping on ],[],[= 4321    

and ),( L  .R  If   is exponentially convex 

function on the co-ordinates on ,  then the following 

inequality holds;  
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 (7)  

Many studies have been carried out in the literature on 

exponentially convex functions and exponentially 

convex functions on coordinates. Some of these are 

given in reference [13-21]. 

Anderson et al. gave the following definition in 

(Anderson et al. [22]) 

Definition 6.  A function 𝑀: 𝑅+ × 𝑅+ → 𝑅+ is called a 

Mean function if  

( )1  ( ) ( )1221 ,=,  MM , 

( )2  ( ) 111 =, M , 

( )3  ( ) 2211 <,<  M , whenever 21 <  , 

( )4  ( ) ( )2121 ,=,  aMaaM  for all 0>a  . 

Let us recall special means (See [22,23,24]) 

1. Arithmetic Mean:  

( ) ( )
2

=,=, 21
2121




+
AM . 

2. Geometric Mean:   
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( ) ( ) 212121 =,=,  GM . 

3. Harmonic Mean:  

( ) ( ) 








21

2121

1
,

1
1/=,=,


 AHM . 

4. Logarithmic Mean:  

( ) ( ) ( ) ( )21212121 loglog/=,=,  −−LM  

for 
21    and 

111 =),( L . 

5. Identric Mean: 

( ) ( ) ( )( ) ( )
21

1/
2

2
1

12121 /1/=,=,



−

eIM   

for 
21    and 

111 =),( I . 

Now we are in a position to put in order as:  

( ) ( ) ( )

( ) ( ) ( ).,,,

,,,

212121

212121





KAI

LGH




  

In [22], authors also gave a definition which is called 

MN-convexity as the following: 

Definition 7. Let ( )→ 0,: I  be continuous, where 

I  is subinterval of ( ).0,  Let M  and N  be any two 

Mean functions. We say   is MN -convex (concave) if  

( )( ) ( ) ( ) ( )( )2121 ,,   NM                     (8) 

for all ., 21 I  

2. MAIN RESULTS 

Definition 8. Let us consider the bidimensional interval 

],[],[= 4321    in 
2R  with 21 <   and 

43 <  . The mapping 
+→ R:  is geometrically-

exponentially convex on the co-ordinates on  , if the 

following inequality holds,  
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for all ( ) ( ) R  ,,,, 4321  and  .0,1   

A second definition of geometrically exponentially 

convex functions on coordinates equivalent to the above 

definition can be made as follows: 

Definition 9. A function +→ R:  is geometrically 

exponentially convex on the co-ordinates on ,  if the 

following inequality holds,  
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for all 

( ) ( ) ( ) ( ) R  ,,,,,,,, 42324131   and 

 .0,1,    

Lemma 1. A function 
+→ R:  will be called 

geometrically exponentially convex on the co-ordinates 

on ,  if the partial mappings ,],[: 21
2

R→   

),(=)( 2
2

2




 ufeu  and ,],[: 43
1

R→   

( ) ),(= 1
1

1
vfev 



  are geometrically 

exponentially convex on the co-ordinates on ,  where 

defined for all ],[ 432     and ],[ 211    

Proof. From the definition of partial mapping 
1
  we 

can write  
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Similarly, one can easily see that      

( )( )
( ) ( )( )

.
2

2

1

2

1

1
21

21
2 uu

e

u

e

u
uu















−

−


                   (12) 

The proof is completed.  

Proposition 1. If R→ :,  are two geometrically 

exponentially convex functions on the co-ordinates on 

,  then   is geometrically exponentially convex 

functions on the co-ordinates on .   

Proof. 
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Therefore   is geometrically exponentially convex 

functions on the co-ordinates on  .  

Theorem 3. Let 
+→ R],[],[=: 4321   be 

partial differentiable mapping on 

],[],[= 4321    and ),( L  .R  If 

  is geometrically exponentially convex function on 

the co-ordinates on ,  then the following inequality 

holds;  
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where ],[ 211    and ],[ 432    dir.  

Proof. Using inequality (10), the following expression is 

written 
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By integrating both sides of inequality (15) with respect 

to  ,  on ,[0,1] 2
 we have  
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If the 
  −− 1

432

1

211 =,=  variable is 

changed and the ( ) ( )baAbaL ,<,  feature is taken into 

account, the following result is obtained.  

( )( )
( )

21

21

214

3

2

13412

,

lnlnlnln

1















dd



−− 

( )

( ) ( )( ) ( ) ( )( )( )  



dA

e

42

1

3241

1

31

1

0

4131
2

,,,,,

1

−−

+++







               

( )

( ) ( ) ( ) ( ) ( ) ( )


 



d

e

2

,,,,

1
=

42

1

3241

1

31
1

0

4131
2

−−

+++

+




( ) ( )( ) ( ) ( )( )

( )
4131

2

42324131

2

,,,,,
=




+++

+

e

LL
  (17) 

proof is completed. 

Corollary 1. If we choose 0=  in Theorem 2.1, the 

result agrees geometrically with convexity on the 

coordinates.  
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where ],[ 211    and ],[ 432    dir.  

Theorem 4. Let 
+→ R],[],[=: 4321   

be partial differentiable mapping on 

],[],[= 4321    and ),( L  .R  If 

  is geometrically exponentially convex function on 

the co-ordinates on ,  1>p  then the following 

inequality holds;  
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where ],[ 211   , ],[ 432    and 

1=11 −− + qp  dir. 

Proof. Using inequality (10), the following expression is 

written 
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If the absolute value of both sides of inequality (20) is 

taken and integrated with respect to  ,  on 
2[0,1] , 

we can write 
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In inequality (21), apply Hölder's inequality to the right 

side of the inequality and 
  −− 1

432

1

211 =,=  variable is changed , we 

get  
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Proof is completed.  

Corollary 2. If we choose 0=  in Theorem 4, the 

result agrees geometrically with convexity on the 

coordinates.  
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where ],[ 211   , ],[ 432    and 

1=11 −− + qp  dir.  

Theorem 5. Let 
+→ R],[],[=: 4321   

be partial differentiable mapping on 

],[],[= 4321    and ),( L  .R  If 

  is geometrically exponentially convex function on 

the co-ordinates on ,  1>p  then the following 

inequality holds;  

( )( )
( )

21

21

214

3

2

13412

,

lnlnlnln

1















dd



−− 

 



 

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 96-102, 2024 
 

 

101 

( )

( ) ( )( ) ( ) ( )( )
q

LL

pe

qqqq

p

2

,,,,

1

42324131

4131
2





+
+


+++

 (24)          
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Proof. Using inequality (10), the following expression is 
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If the absolute value of both sides of inequality (20) is 

taken and integrated with respect to  ,  on 
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In inequality (26), apply Young's inequality to the right 

side of the inequality and 
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proof is completed.  

Corollary 3. If we choose 0=  in Theorem 5, the 

result agrees geometrically with convexity on the co-

ordinates.  
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where ],[ 211   , ],[ 432    and 

1=11 −− + qp  dir.  
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