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Abstract

In the study done here regarding the theory of summability, we introduce some new concepts
in fuzzy normed spaces. First, at the beginning of the original part of our study, we define the
lacunary invariant statistical convergence. Then, we examine some characteristic features
like uniqueness, linearity of this new notion and give its important relation with pre-given
concepts.

1. Introduction and Definitions

First, we note some basic information available in the literature for a better understanding of our work and to use for the definitions of new
concepts that we will give in the original chapter. The convergence of sequences in real numbers was generalized to statistical convergence
by Schoenberg [1] and Fast [2]. Several features have been studied like being subspace of bounded sequence space by Salat [3], statistical
Cauchy sequence by Fridy [4], statistical convergence and its equivalence of strong p-Cesaro summability for bounded sequences by
Connor [5] and so on.
Lacunary convergence with the relation to strong Cesàro summability was studied by Freedman et al. [6]. Also Das and Patel [7] investigated
this issue comprehensively. Fridy and Orhan [8, 9] contributed to the literature about lacunary statistical convergence. Additionally, Ulusu
and Nuray have been studied on this issue [10–12].
Banach limit was first introduced by Banach [13]. In case all Banach limits are equal for a given bounded sequence, Lorentz [14] called
that almost convergence. Later, as a generalization of Banach limit and almost convergence, the notions of invariant mean and invariant
convergence were presented by Raimi et al. [15,16]. Also, it has been studied by several authors [17–21]. Especially, Savaş and Nuray [22,23]
proved important theorems in their studies.
The definitions of concepts such as statistical convergence, Banach limit, invariant mean, invariant convergence, lacunary sequence and
lacunary convergence are not given here, and the references are based on the studies mentioned above.
Zadeh [24] proposed fuzzy set as a new concept to study on imprecise phenomena. A fuzzy set having certain properties was described as a
fuzzy number [25, 26]. The literature includes studies on concepts such as fuzzy topological spaces [27–29], fuzzy metric [30, 31], fuzzy
norm [32, 33].
Now, based on these studies, the definition of a fuzzy number, arithmetic operations on fuzzy numbers, convergence on fuzzy numbers
sequence, and fuzzy norm introduced by Felbin [32] will be given.
A fuzzy number u is a fuzzy set provided that
(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1;
(ii) u is fuzzy convex, i.e., u(λx+(1−λ )y)≥min{u(x),u(y)} for x,y ∈ R and 0≤ λ ≤ 1;
(iii) u is upper semi-continuous;
(iv) cl{x ∈ R : u(x)> 0} is a compact set.
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We will denote all fuzzy numbers by the set L (R). Every r ∈R is also a fuzzy number denoted by r̃ = r̃(t) and its value is 1 when t = r and
0 otherwise. So, R is included by L (R).
The α-level sets, partial ordering, arithmetic equations and supremum metric on L (R) are very important in fuzzy numbers and will be used
in the operations performed in our study. Now let’s give the definitions and features of these concepts.
The α-level set of u ∈L (R) is given by

[u]
α
=

{
{x ∈ R : u(x)≥ α}, if α ∈ (0,1]

cl {x ∈ R : u(x)> α} , if α = 0.

and is written as a non-empty interval [u]α = [u−α ,u
+
α ] which is also bounded and closed for every α ∈ [0,1]. Here, [−∞,∞] is admissible.

When u(x) = 0 for all x < 0, u ∈L (R) is a non-negative fuzzy number. We will denote all non-negative fuzzy numbers by the set L ∗(R).
It is clearly understood that 0̃ ∈L ∗(R).
For u,v ∈L (R) and all α ∈ [0,1], the partial ordering � in L (R) is given as following

u� v iff u−α ≤ v−α & u+α ≤ v+α .

On L (R), arithmetic equations are defined as follows
(i) (u⊕ v)(t) = sups∈R {u(s)∧ v(t− s)} ,
(ii) (u� v)(t) = sups∈Rs 6=0 {u(s)∧ v(t/s)} ,
(iii) ru(t) = u(t/r) for r ∈ R+ and 0u(t) = 0̃,
for u,v ∈L (R) and t ∈ R.
Using α-level sets, arithmetic equations are given as follows
(i) [u⊕ v]

α
=
[
u−α + v−α ,u

+
α + v+α

]
, for u,v ∈L (R),

(ii) [u� v]
α
=
[
u−α .v

−
α ,u

+
α .v

+
α

]
, for u,v ∈L ∗(R),

(iii) For u ∈L (R),

[ru]α = r[u]α =

{
[ru−α ,ru+α ], if r ≥ 0,
[ru+α ,ru−α ], if r < 0.

On L (R), it is described that a metric known as supremum metric;

D (u,v) = sup
0≤α≤1

max
{∣∣u−α − v−α

∣∣ , ∣∣u+α − v+α
∣∣} ,

for u,v ∈L (R). Obviously,

D
(
u, 0̃
)
= sup

0≤α≤1
max

{∣∣u−α ∣∣ , ∣∣u+α ∣∣}= max
{∣∣u−0 ∣∣ , ∣∣u+0 ∣∣}

and for u ∈L ∗(R), we obtain D
(
u, 0̃
)
= u+0 .

In L (R), the sequence (un) is convergent to u ∈L (R) if lim
n→∞

D(un,u) = 0. This convergence is denoted by D− lim
n→∞

un = u.

Now let’s give the definition and features of fuzzy normed space.
For a vector space X over R, consider ‖.‖ : X →L ∗ (R) . For the symmetric and non-decreasing mappings L,R : [0,1]× [0,1]→ [0,1] ,
let the conditions L(0,0) = 0 and R(1,1) = 1 be satisfied.
If the followings
(i) ‖x‖= 0̃ iff x is zero vector.
(ii) ‖rx‖= |r|�‖x‖ for r ∈ R, x ∈X .
(iii) For all x,y ∈X ,
(a) ‖x+ y‖(s+ t)≥ L(‖x‖(s) ,‖y‖(t)) , if s≤ ‖x‖−1 , t ≤ ‖y‖−1 & s+ t ≤ ‖x+ y‖−1 ,
(b) ‖x+ y‖(s+ t)≤ R(‖x‖(s) ,‖y‖(t)) , if s≥ ‖x‖−1 , t ≥ ‖y‖−1 & s+ t ≥ ‖x+ y‖−1
hold, then ‖.‖ is named fuzzy norm and the quadruple (X ,‖.‖ ,L,R) is fuzzy normed space (FNS).
We substitute min and max for L and R in (iii), then we have

‖x+ y‖−α ≤ ‖x‖−α +‖y‖−α & ‖x+ y‖+α ≤ ‖x‖+α +‖y‖+α ,

for x,y ∈X and all α ∈ (0,1]. Also, ‖.‖−α and ‖.‖+α satisfy the other norm conditions.
From now on, in our study, we take (X ,‖.‖) as a FNS.
Let’s take X as a topological structure. For any ε > 0 and all α ∈ [0,1], the ε(α)−neighborhood of x ∈X is the set

N x
ε(α) = {y ∈X : ‖x− y‖+α < ε}.

Recently, several convergence types have been studied on fuzzy normed spaces by a lot of authors [34–39].
If for each ε > 0, an n0 ∈ N exists and satisfy

D
(
‖xn− x0‖ , 0̃

)
= sup

α∈[0,1]
‖xn− x0‖+α = ‖xn− x0‖+0 < ε

for all n > n0, then the sequence (xn)⊂X is convergent to x0 ∈X and we write xn
FN→ x0. In other words, in terms of neighborhoods, it

can be said this way: for all ε > 0, an n0 ∈ N exists such that xn ∈N x0
ε(0), for n > n0.

The lacunary sequence, which has been studied in many different spaces in the theory of summability in recent years, is well known in the
literature, and its convergence types rather than its basic definition will be noted here.
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Then after this, A lacunary sequence will be taken as θ = {kr}. For the sequence (xn)⊂X , if there is an ` ∈X such that

lim
r→∞

1
hr

(
∑
k∈Ir

D
(
‖xk− `‖, 0̃

))
= 0

holds, then it is lacunary summable to `.
If for every ε > 0, lim

r→∞

1
hr

∣∣{k ∈ Ir : D
(
‖xk− `‖ , 0̃

)
≥ ε
}∣∣ = 0 holds then the sequence (xn) ⊂X is lacunary st-convergent to `, briefly

xn
FSθ−→ `.

The concepts of invariant mean and invariant convergence types are studied in many different spaces in summability theory and are
well-known in the literature. Here, rather than its basic definition, some types of convergence, especially in fuzzy normed spaces, will be
noted.
Now, let

tmn =
xσ(n)+ xσ 2(n)+ · · ·+ xσ m(n)

m
.

The bounded sequence (xn)⊂X is invariant convergent to the ` iff lim
m→∞

tmn = ` uniformly in n, namely (D)− lim
m→∞

‖tmn−`‖= 0̃, uniformly

in n, that is, there exists an m0 ∈ N for every ε > 0 such that

D(‖tmn− `‖, 0̃) = sup
α∈[0,1]

‖tmn− `‖+α = ‖tmn− `‖+0 < ε,

for all m > m0 and every n ∈ N, in other words, in terms of neighborhoods, it can be said this way: There exists an m0 ∈ N for every ε > 0
such that tmn ∈N `

ε(0) for all m > m0 and every n ∈ N. For this convergence, we write xn
σ−FN−→ `.

If for every ε > 0, lim
m→∞

1
m

∣∣∣{k ≤ m : ‖xσ k(n)− `‖+0 ≥ ε

}∣∣∣= 0, uniformly in n, then the sequence (xn)⊂X is invariant statistical convergent

to ` and we write xn
Sσ FN−→ `. The set of sequences that have this convergence is denoted by Sσ FN.

Any (xn)⊂ X is lacunary invariant convergent to ` and denoted by xn
σ−FNθ−→ ` iff

lim
r→∞

D

(∥∥∥∥∥ 1
hr

∑
k∈Ir

xσ k(n)− `

∥∥∥∥∥ , 0̃
)

= lim
r→∞

∥∥∥∥∥ 1
hr

∑
k∈Ir

xσ k(n)− `

∥∥∥∥∥
+

0

= 0,

uniformly in n. By σ −FNθ , we show the set of sequences have this convergence.

Any (xn)⊂X is strongly lacunary invariant convergent to ` and denoted by xn
[σ−FN]θ−→ ` iff

lim
r→∞

1
hr

∑
k∈Ir

D
(∥∥∥xσ k(n)− `

∥∥∥ , 0̃)= lim
r→∞

1
hr

∑
k∈Ir

∥∥∥xσ k(n)− `
∥∥∥+

0
= 0,

uniformly in n. By [σ −FN]θ , we show the set of sequences have this convergence.

2. Main Results

First, in the beginning of the original part of our study, we want to give Sσθ FN-convergence and Sσ FNθ -convergence, which have not been
defined in the literature before.

Definition 2.1. For a sequence (xn)⊂X , if for every ε > 0 and uniformly in n,

lim
r→∞

1
hr

∣∣∣{k ∈ Ir : D
(∥∥∥xσ k(n)− `

∥∥∥ , 0̃)≥ ε

}∣∣∣= lim
r→∞

1
hr

∣∣∣∣{k ∈ Ir :
∥∥∥xσ k(n)− `

∥∥∥+
0
≥ ε

}∣∣∣∣= 0,

then the sequence (xn)⊂X is lacunary invariant statistically convergent to ` and we write xn
Sσθ FN−→ `. The set of sequences that have this

convergence is denoted by Sσθ FN.

Definition 2.2. Let

trn =
1
hr

∑
k∈Ir

xσ k(n).

For a sequence (xn)⊂X , if for every ε > 0 and uniformly in n,

lim
m→∞

1
m

∣∣{r ≤ m : D
(
‖trn− `‖ , 0̃

)
≥ ε
}∣∣= lim

m→∞

1
m

∣∣{r ≤ m : ‖trn− `‖+0 ≥ ε
}∣∣= 0,

therefore, the sequence (xn)⊂X is statistically lacunary invariant convergent to ` and we write xn
Sσ FNθ−→ `. The set of sequences that have

this convergence is denoted by Sσ FNθ .

Now we will give the theorem examining the relations between [σ −FN]θ and Sσθ FN with its proof.

Theorem 2.3. For 0 < q < ∞ and a sequence (xn)⊂X , the followings hold:

(i) If xn
[σ−FN]θ−→ `, then xn

Sσθ FN−→ `.

(ii) If (xn) is bounded sequence and xn
Sσθ FN−→ `, then xn

[σ−FN]θ−→ `.
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Proof. (i) According to our assumption, uniformly in n, we get

lim
r→∞

1
hr

∑
k∈Ir

∥∥∥xσ k(n)− `
∥∥∥+

0
= 0.

For every ε > 0 and n, from the following inequality

1
hr

∑
k∈Ir

∥∥∥xσ k(n)− `
∥∥∥+

0
≥ 1

hr
∑
k∈Ir

‖x
σk (n)−`‖

+
0 ≥ε

∥∥∥xσ k(n)− `
∥∥∥+

0

≥ 1
hr

ε

∣∣∣∣{k ∈ Ir :
∥∥∥xσ k(n)− `

∥∥∥+
0
> ε

}∣∣∣∣ ,
we obtain

lim
r→∞

1
hr

∣∣∣∣{k ∈ Ir :
∥∥∥xσ k(n)− `

∥∥∥+
0
> ε

}∣∣∣∣= 0,

uniformly in n. Thus, (xn) is lacunary invariant statistically convergent to `.
(ii) Let’s presume that the bounded sequence (xn)⊂X is lacunary invariant statistically convergent to `. So, an M > 0 exists such that

‖xσ k(n)− `‖+0 < M

for every k ∈ N and all n ∈ N. Also we have for every ε > 0,

lim
r→∞

1
hr

∣∣∣∣{k ∈ Ir :
∥∥∥xσ k(n)− `

∥∥∥+
0
> ε

}∣∣∣∣= 0,

uniformly in n. We know

1
hr

∑
k∈Ir

∥∥∥xσ k(n)− `
∥∥∥+

0
=

1
hr

∑
k∈Ir

‖x
σk (n)−`‖

+
0 ≥ε

∥∥∥xσ k(n)− `
∥∥∥+

0
+

1
hr

∑
k∈Ir

‖x
σk (n)−`‖

+
0 <ε

∥∥∥xσ k(n)− `
∥∥∥+

0

≤ 1
hr

M
∣∣∣∣{k ∈ Ir :

∥∥∥xσ k(n)− `
∥∥∥+

0
> ε

}∣∣∣∣+ ε,

for every n. Therefore, we have

lim
r→∞

1
hr

∑
k∈Ir

∥∥∥xσ k(n)− `
∥∥∥+

0
= 0,

uniformly in n. Hence, (xn) is strongly lacunary invariant convergent to `.

Now, we will prove the theorem about the uniqueness of the limit.We will now prove the theorem about the uniqueness of the limit, which
has an important place in summability theory.

Theorem 2.4. Let (xn)⊂X be a sequence. If xn
Sσθ FN−→ `, in this case ` is unique.

Proof. Let’s presume that xn
Sσθ FN−→ `1, xn

Sσθ FN−→ `2 and `1 6= `2. Then for any given ε > 0,

lim
r→∞

1
hr

∣∣∣∣{k ∈ Ir :
∥∥∥xσ k(n)− `1

∥∥∥+
0
>

ε

2

}∣∣∣∣= 0

and

lim
r→∞

1
hr

∣∣∣∣{k ∈ Ir :
∥∥∥xσ k(n)− `2

∥∥∥+
0
>

ε

2

}∣∣∣∣= 0,

uniformly in n. Put

Nr
1 =

{
k ∈ Ir :

∥∥∥xσ k(n)− `1

∥∥∥+
0
<

ε

2

}
and Nr

2 =

{
k ∈ Ir :

∥∥∥xσ k(n)− `2

∥∥∥+
0
<

ε

2

}
.

We know as r→ ∞,∣∣Nr
1 ∩ Ir

∣∣
hr

→ 1 and

∣∣Nr
2 ∩ Ir

∣∣
hr

→ 1. (2.1)

Since `1 6= `2, ‖`1− `2‖+0 ≥ ε for some ε > 0.
Obviously,

Nr
1 ∩Nr

2 = /0 and Nr
1 ∪Nr

2 ⊆ Ir. (2.2)
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We can write

(Nr
1 ∩ Ir)∪ (Nr

2 ∩ Ir) = (Nr
1 ∪Nr

2)∩ Ir ⊆ Ir

and ∣∣Nr
1 ∩ Ir

∣∣
hr

+

∣∣Nr
2 ∩ Ir

∣∣
hr

≤ |Ir|
hr

, from (2.2).

Because of (2.1) we obtain

1+1≤ 1 as r→ ∞

which is the contradiction. Therefore, `1 = `2.

Now we will give the theorems examining the linearity properties of lacunary invariant statistical convergence and their proofs. We will give
these properties in two parts in the following theorem.

Theorem 2.5. Let x = (xn), y = (yn) be sequences in X and assume that xn
Sσθ FN−→ `1 and yn

Sσθ FN−→ `2. In this case, we obtain the following
hypotheses:

(i) xn + yn
Sσθ FN−→ `1 + `2,

(ii) (cxn)
Sσθ FN−→ c`1 where c is a scaler.

Proof. (i) Let’s presume that xn
Sσθ FN−→ `1 and yn

Sσθ FN−→ `2. Then, we have

lim
r→∞

1
hr

∣∣∣∣{k ∈ Ir :
∥∥∥xσ k(n)− `1

∥∥∥+
0
>

ε

2

}∣∣∣∣= 0

and

lim
r→∞

1
hr

∣∣∣∣{k ∈ Ir :
∥∥∥yσ k(n)− `2

∥∥∥+
0
>

ε

2

}∣∣∣∣= 0,

uniformly in n. From the triangle inequality,∥∥∥(xσ k(n)+ yσ k(n)

)
− (`1 + `2)

∥∥∥+
0
≤
∥∥∥xσ k(n)− `1

∥∥∥+
0
+
∥∥∥yσ k(n)− `2

∥∥∥+
0
,

for any given ε > 0, we have

1
hr

∣∣∣∣{k ∈ Ir :
∥∥(xσ k(n)+ yσ k(n)

)
−
(
`1 + `2

)∥∥+
0 >

ε

2

}∣∣∣∣
≤ 1

hr

∣∣∣∣{k ∈ Ir :
∥∥xσ k(n)− `1

∥∥+
0 +

∥∥yσ k(n)− `2
∥∥+

0 >
ε

2

}∣∣∣∣
≤ 1

hr

∣∣∣∣{k ∈ Ir :
∥∥xσ k(n)− `1

∥∥+
0 >

ε

2

}∣∣∣∣+ 1
hr

∣∣∣∣{k ∈ Ir :
∥∥yσ k(n)− `2

∥∥+
0 >

ε

2

}∣∣∣∣.
So, we concluded that

lim
r→∞

1
hr

∣∣∣∣{k ∈ Ir :
∥∥(xσ k(n)+ yσ k(n)

)
−
(
`1 + `2

)∥∥+
0 >

ε

2

}∣∣∣∣= 0,

that is,

xn + yn
Sσθ FN−→ `1 + `2.

(ii) Let c be a scaler. From the inequality

1
hr

∣∣∣∣{k ∈ Ir :
∥∥∥cxσ k(n)− c`1

∥∥∥+
0
> ε

}∣∣∣∣≤ 1
hr

∣∣∣∣{k ∈ Ir :
∥∥∥xσ k(n)− `1

∥∥∥+
0
>

ε

|c|

}∣∣∣∣ ,
we obtain

(cxn)
Sσθ FN−→ cL.

We give the following lemma without the proof. It can be proved like in [23].

Lemma 2.6. Let (xn)⊂X be a sequence. Presume for given ε1 > 0 and for all ε > 0, n0 and m0 exist such that for all n≥ n0 and m≥m0,

1
m

∣∣∣{k ≤ m : ‖xσ k(n)− `‖+0 ≥ ε

}∣∣∣< ε1,

then (xn) is invariant statistical convergent to `.
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Finally, we will show the relation between invariant statistical convergence and lacunary invariant statistical convergence with the following
theorem.

Theorem 2.7. Sσθ FN = Sσ FN for every lacunary sequence θ .

Proof. Let the sequence (xn) ∈ Sσθ FN. According to definition, for all ε > 0 and for any ε1 > 0, r0 and ` exist such that

1
hr

∣∣∣∣{0 < k ≤ hr :
∥∥∥xσ k(n)− `

∥∥∥+
0
≥ ε

}∣∣∣∣< ε1,

for r ≥ r0 and n = σ kr−1(n
′
) and n

′ ≥ 0. Let m≥ hr, write m = thr + s where 0≤ s≤ hr and t is a integer. Since m≥ hr, t ≥ 1. Now

1
m

∣∣{0 < k ≤ m : ‖xσ k(n)− `‖+0 ≥ ε
}∣∣

≤ 1
m

∣∣{0 < k ≤ (t +1)hr : ‖xσ k(n)− `‖+0 ≥ ε
}∣∣

≤ 1
m

t

∑
i=1

∣∣{ihr < k ≤ (i+1)hr : ‖xσ k(n)− `‖+0 ≥ ε
}∣∣

≤ 1
m
(t +1)hrε1

≤ 2thrε1

m
, (t ≥ 1)

for hr
m ≤ 1 and since thr

m ≤ 1,

1
m

∣∣∣{0 < k ≤ m : ‖xσ k(n)− `‖+0 ≥ ε

}∣∣∣≤ 2ε1.

Then by Lemma, Sσθ FN ⊆ Sσ FN. Also, obviously Sσ FN ⊆ Sσθ FN. We concluded that Sσθ FN = Sσ FN.

3. Conclusion

In the Fuzzy normed spaces, using the lacunary sequence, we introduce some new concepts in summability. In this sense, firstly, we define
the lacunary invariant statistical convergence. Then, we examine some characteristic features like uniqueness, linearity of this new notion
and give its important relation with pre-given concepts. In the future, these studies are also debatable in terms of regularly convergence for
double sequences.
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[38] Ş. Yalvaç, E. Dündar, Invariant convergence in fuzzy normed spaces, Honam Math. J., 43(3) (2021), 433-440.
[39] Ş. Yalvaç, E. Dündar, Lacunary strongly invariant convergence in fuzzy normed spaces, Math. Sci. Appl. E-Notes, 11(2) (2023), 89-96.


	Introduction and Definitions
	Main Results
	Conclusion

