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Abstract: In this study, firstly, basic concepts in 3-dimensional Euclidean space and basic 

information about curves are given and some special curves are examined. Then, basic information 

about Lie algebra and Lie group basic concepts and curves are given and special curves such as 

helix, involute-evolute, Bertrand, Mannheim, Smarandache, are defined. Secondly, inspired by these 

special curves examined in the Lie group, the definitions of the parallel curve in the vector direction, 

the parallel curve in the direction of the vector 𝐵 and the parallel curve in the direction of the linear 

combination of the vectors 𝐵  and 𝑁  of a curve according to the Frenet frame are given and 

characterized. Some theorems and results are obtained by finding the Frenet apparatus of these 

characterized curves. Finally, the findings are examined in more specific circumstances and new 

results are found. 

 

 

3-Boyutlu Lie Grup 𝑮 de Paralel Eğriler Üzerine Yorumlar 
 

 

Anahtar 

Kelimeler 

Lie grup, 

Paralel eğri, 

Bazı özel 

eğriler 

Öz: Bu çalışmada ilk olarak, 3-boyutlu Öklid uzayındaki temel kavramlar ve eğriler ile ilgili temel 

bilgiler verilmiş ve bazı özel eğriler incelenmiştir. Sonrasında Lie cebiri ve Lie gruplarındaki temel 

kavramlar ve eğriler ile ilgili temel bilgiler verilmiş helis, involüt-evolüt, Bertrand, Mannheim, 

Smarandache gibi özel eğrilere ait temel tanım ve teoremler verilmiştir. İkinci olarak, Lie 

gruplarında incelenen bu özel eğrilerden esinlenerek Lie gruplarında Frenet çatısına göre bir eğrinin 

𝑁 ve 𝐵 vektörlerinin lineer birleşimi olan vektör yönündeki paralel eğri ve 𝐵 vektörü yönündeki 

paralel eğri tanımları verilip karakterize edilmiştir. Karakterize edilen bu eğrilere ait Frenet 

elemanları bulunarak bazı teoremler ve sonuçlar elde edilmiştir. Son olarak, elde edilen bulgular 

daha özel hallerde incelenmiş ve yeni sonuçlar bulunmuştur. 

 

 

1. INTRODUCTION 

 

One of the predominant topics in differential geometry is 

the theory of curves. In studies related to the theory of 

curves, researchers often explore various curves such as 

general helices, slant helices, Salkowski curves, Bertrand 

curves, and more. While examining these curves, the 

relations between the curvatures and the Frenet 

apparatus are used. Consider the curve 𝛼: 𝛪 ⊆ 𝑅 → 𝐸3 

with arc-length parameterized 𝑠  in three-dimensional 

Euclidean space. Let {𝑇, 𝑁, 𝐵} be the Frenet vectors of 

the curve 𝛼. The Frenet formulas are given by: 

𝛵′(𝑠) = 𝜅(𝑠)𝛮(𝑠), 

𝛮′(𝑠) = −𝜅(𝑠)𝛵(𝑠) + 𝜏(𝑠)𝛣(𝑠),      (1) 

𝛣′(𝑠) = −𝜏(𝑠)𝛮(𝑠), 

where 𝜅 > 0 , 𝜏 ≠ 0 are the curvature and torsion of the 

curve 𝛼, and can be calculated by following: 

𝜅 =
‖𝛼′ ∧ 𝛼″‖

‖𝛼′‖3
, 

𝜏 =  
< 𝛼′ ∧ 𝛼″, 𝛼‴ >

‖𝛼′ ∧ 𝛼″‖2
, 

where 𝛼′, 𝛼″, 𝛼‴  are the first, second, and third-order 

derivations of the curve 𝛼, respectively [1]. 

 

Offset or parallel curves are defined as curves with 

points at a constant distance along the normal direction 

from a given curve in plane [2]. In the literature, the 

definition of a parallel curve in 3-dimensional Euclidean 

space appears as different definitions. The first of these 

is as follows: 

Let a curve 𝛾 = 𝛾(𝑠∗) with unit-speed be given, where 

𝜏 ≠ 0. Let the 𝛽 curve be the parallel curve at a distance 
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𝑟 from the curve 𝛾. Let the Frenet frames of the curves 𝛾 

and 𝛽  be given as {𝑇, 𝑁, 𝐵} , {𝑇𝛽 , 𝑁𝛽 , 𝐵𝛽}  respectively. 

So, we can write the following equations: 
⟨𝛽(𝑠) − 𝛾, 𝛽(𝑠) − 𝛾⟩ = 𝑟2,     (2) 

⟨𝑇𝛽(𝑠), 𝛽(𝑠) − 𝛾⟩ = 0,      (3) 

⟨(𝑇𝛽
′(𝑠), 𝛽(𝑠) − 𝛾)⟩ + ⟨(𝑇𝛽(𝑠), 𝑇𝛽(𝑠))⟩ = 0.   (4) 

The Frenet formulas can be obtained by using the 

equations (1) at the point 𝛽 depending on the parameter 

𝑠 for a curve 𝛽(𝑠) with unit speed where 𝜏 > 0. Thus, 

from the equations (2), (3) and (4) we have 

𝛽(𝑠) − 𝛾 = 𝑚2𝑁𝛽 + 𝑚3𝐵𝛽 ,     (5) 

where 𝑚2, 𝑚3 are the appropriate coefficients and 𝛽′ =
𝑇𝛽 [3]. Another definition is as follows: 

The parallel curve to a unit-speed curve 𝛼(𝑠) is given by 

�̄� = 𝛼(𝑠) + 𝑟𝐵(𝑠).      (6) 

Here, 𝑟 ≠ 0 is a real constant, 𝑠 = 𝑠(�̄�) is the arc-length 

of 𝛼(𝑠) and �̄� is the arc-length of the parallel curve �̄�. 𝐵 

is the binormal vector of the curve 𝛼(𝑠) [4]. 

 

In mathematics, a Lie group is a group that is also a 

differentiable manifold, characterized by the smoothness 

of group operations. Lie groups take their name from the 

Norwegian mathematician Sophus Lie, who laid the 

foundations of the theory of continuous transformation 

groups. Essentially, a Lie group is a continuous group, 

with its elements defined by several real parameters. 

Many studies have been done on the differential 

geometry of curves in Lie Groups [5, 6, 7, 8, 9, 10, 11]. 

 

In the present study, we discuss using the definitions of 

parallel curves in the literature in 3-dimensional Lie 

groups. It also contains theorems and results that give the 

relations between parallel curve pairs and special curve 

pairs. 

 

2. MATERIAL AND METHOD 

 

2.1. Fundamental Concepts in Lie Groups 

 

Definition 2.1.1. Let 𝐺  be a group and 𝑀∗  is a 

differentiable manifold, 

𝐿1:  Every element of 𝐺  coincicides with the points of 

𝑀∗, 

𝐿2:  𝑀
∗ × 𝑀∗ → 𝑀∗, (𝑝, 𝑞) → 𝑝𝑞−1 is differentiable. 

In such a way that the axioms are satisfied, the 

fundamental manifold of the Lie group is obtained as  

𝑀∗, the fundamental group of the Lie group as 𝐺,  and 

the pair  (𝑀∗, 𝐺) is obtained as the Lie group [12]. 

 

Definition 2.1.2. Let 𝐺  be a Lie group and ⟨, ⟩  be an 

invariant metric on 𝐺. If the Lie algebra of the Lie group 

𝐺 is given by 𝑔 and the unit element of the Lie group 𝐺 

is given by 𝑒,  the Lie algebra is 𝑔 and the Lie algebra 

structure 𝑇𝑔(𝑒)  is isomorphic. Let ⟨, ⟩  be an invariant 

metric on 𝐺, and let 𝐺 be the Levi-Civita connection of 

the Lie group �̄�. Here, ∀𝐾, 𝐿,𝑀 ∈ 𝑔 is given by: 
⟨𝐾, [𝐿,𝑀]⟩ = ⟨[𝐾, 𝐿],𝑀⟩ 
and 

�̄�𝐾𝐿 =
1

2
[𝐾, 𝐿]. 

Assume that 𝛼: 𝐼 ⊂ 𝑅 → 𝐺  is a curve parameterized by 

arc-length, and {𝑉1, 𝑉2, … , 𝑉𝑛} is an orthonormal base of 

𝑔. In this case, two vector fields along the curve can be 

written as 𝑊 = ∑ 𝑤𝑖𝑋𝑖
𝑛
𝑖=1  and 𝑍 = ∑ 𝑧𝑖𝑋𝑖

𝑛
𝑖=1 , where 𝑤𝑖

: 𝐼 → ℝ and 𝑧𝑖: 𝐼 → ℝ  are smooth functions. Lie product 

of two vector fields 𝑊 and 𝑍: 

[𝑊, 𝑍] = ∑ 𝑤𝑖𝑧𝑗[𝑋İ, 𝑋𝑗]
𝑛
𝑖=1 , 

and the covariant derivative of the vector field 𝑊 along 

the curve 𝛼 is 

𝐷𝛼′𝑊 = 𝑊
.

+
1

2
[𝛵,𝑊].      (7) 

Here 𝑇 = 𝛼′, �̇� = ∑ 𝑤
.

𝑖𝑋𝑖
𝑛
𝑖=1 = ∑

𝑑𝑤𝑖

𝑑𝑡
𝑋𝑖

𝑛
𝑖=1 . If the left 

invariant vector field restricted to 𝛼 is 𝑊, �̇� = 0  [9]. 

 

Proposition 2.1.1. Assume that 𝛼(𝑠) is a curve in the 

Lie group 𝐺, with arc-length parameter 𝑠  and 

(𝑇, 𝑁, 𝐵, 𝜅, 𝜏)  is the Frenet apparatus of 𝛼(𝑠) . In this 

case, we write 

{
[𝑇, 𝑁] = ⟨[𝑇, 𝑁], 𝐵⟩𝐵 = 2𝜏𝐺𝐵

[𝑇, 𝐵] = ⟨[𝑇, 𝐵], 𝑁⟩𝑁 = −2𝜏𝐺𝑁.
    (8) 

In this case, considering that 𝛼(𝑠) is a curve in  𝐺 and 𝑠 

is the arc-length parameter of 𝛼(𝑠), from the equations 

(7) and (8), Frenet formulae are found as follows: 

(

  
 

𝑑𝑇

𝑑𝑠
𝑑𝑁

𝑑𝑠
𝑑𝐵

𝑑𝑠 )

  
 

= (
0
−𝜅
0

         𝜅                 0
         0             𝜏 − 𝜏𝐺

−(𝜏 − 𝜏𝐺)         0
) (

𝑇
𝑁
𝐵

). 

Here (𝑇, 𝑁, 𝐵, 𝜅, 𝜏)  is Frenet apparatus of 𝛼(𝑠)  in 𝐺 , 

𝜏𝐺 =
1

2
⟨[𝑇, 𝑁], 𝐵⟩ [8]. 

 

Definition 2.1.3. Let 𝛼: 𝐼 ⊆ ℝ → 𝐺 be a curve with arc-

length parameters in the 3-dimensional Lie group 𝐺 and 

Frenet apparatus are {𝑇, 𝑁, 𝐵, 𝜅, 𝜏} . The function ℎ  

expressed by the equation 

ℎ =
𝜏−𝜏𝐺

𝜅
       (9) 

is the harmonic curvature of the curve 𝛼 [8]. 

 

2.2. Special Curves in 3-Dimensional Lie Groups 

 

Definition 2.2.1. Let 𝛼: 𝐼 ⊆ ℝ → 𝐺  be considered as a 

curve with arc-length parameterized in the three-

dimensional Lie group and the unit left invariant vector 

field 𝑋 ∈ 𝐺. If  𝑋 and the curve 𝛼 make a constant angle 

at all points of the curve 𝛼, that is the unit tangent vector 

field 𝑇 at point 𝛼(𝑠) on curve 𝛼 is a left invariant vector 

field 𝑋 and 𝜗 ≠
𝜋

2
 if it makes a constant angle, namely 

⟨𝑇(𝑠), 𝑋⟩ = 𝑐𝑜𝑠 𝜗 , 𝑠 ∈ 𝐼. 
The curve 𝛼 is the general helix in the Lie group. Here, 

𝑋 ∈ 𝑔 and unit, 𝑇 is tangent vector field of the curve 𝛼, 

the angle 𝜗 ≠
𝜋

2
 is the fixed angle between 𝑋 and 𝑇 [6]. 

 

Theorem 2.2.1. Let 𝛼: 𝐼 ⊆ ℝ → 𝐺  be considered as a 

curve with arc-length parameterized in 𝐺. The curve 𝛼 is 

general helix if and only if 𝜏 = 𝑐𝜅 + 𝜏𝐺 , 𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

such that {𝑇, 𝑁, 𝐵, 𝜅, 𝜏} is Frenet apparatus of 𝛼 [6]. 

 

Definition 2.2.2. Let 𝐺 be a three-dimensional Lie group 

with a bi-invariant metric and the curves 𝛼 , 𝛽  be two 

curves in 𝐺. If the principal normal vector field of the 
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curve 𝛼 and the binormal vector field of the curve 𝛽 are 

linearly dependent at corresponding points of 𝛼 and 𝛽, 𝛼 

is called a Mannheim curve, the curve 𝛽  is called the 

Mannheim curve corresponding to 𝛼, and the pair {𝛼, 𝛽} 
is referred to as a Mannheim curve pair [13]. 

 

Definition 2.2.3. Let’s consider the unit speed curves 

𝛾: 𝐼 ⊂ ℝ → 𝐺  and 𝛽: 𝐼 ⊂ ℝ → 𝐺  in 𝐺  with the left-

invariant metric. Let 𝑠 and �̄� be the arc-length parameters 

and {𝑇, 𝑁, 𝐵, 𝑘0, 𝜘0, 𝛼} , {�̄�, �̄�, �̄�, �̄�0, �̄�0, �̄�}  be Frenet 

apparatus of  𝛾 and 𝛽 respectively. If the tangent vectors 

at corresponding points of the  𝛾  and 𝛽  curves are 

perpendicular to each other, that is ⟨�̄�, 𝑇⟩ = 0, then the 

curve 𝛽  is called the involute of  𝛾  and the curve 𝛾  is 

called the evolute of  𝛽 [14]. 

 

Definition 2.2.4. Let’s consider the Lie group 𝐺 defined 

by a bi-invariant metric. If, at corresponding points of  𝛼 

and 𝛽 , the principal normal vector field of 𝛼  and the 

principal normal vector field of 𝛽 are linearly dependent, 

then 𝛼 is called a Bertrand curve. In this case, 𝛽 is the 

Bertrand curve corresponding to 𝛼, and the pair {𝛼, 𝛽} is 

referred to as a Bertrand curve pair [13]. 

 

Definition 2.2.5. Let 𝛼: 𝐼 ⊆ ℝ → 𝐺 be a unit speed curve 

in three-dimensional Lie group and {𝑇, 𝑁, 𝐵, 𝜅, 𝜏} be the 

Frenet apparatus of the curve 𝛼. In this case, the 𝑇𝑁 -

Smarandache curve is 𝜓(𝑠𝜓) =
1

√2
(𝑇(𝑠) + 𝑁(𝑠)) [15]. 

 

3. RESULTS  

 

In this section, starting with the consideration of parallel 

curve definitions in 3-dimensional Euclidean space, we 

will first discuss the definition of a parallel curve in 𝐺. 

Specifically, we will delve into the concept of a parallel 

curve in the direction of the vectors  𝑁  and 𝐵  in Lie 

group, and then a parallel curve in the direction of the 

binormal vector 𝐵 of a curve will be given. 

 

Afterwards, Frenet elements {𝑇, 𝑁, 𝐵, 𝜅, 𝜏}  will be 

obtained for the parallel curves of all two cases. In 

addition, some theorems and results characterizing these 

curves will be obtained. 

 

3.1. Parallel Curve in the Direction of 𝑵𝑩  in 3- 

Dimensional Lie Groups 

 

 Definition 3.1.1. Let 𝛼: 𝐼 ⊆ ℝ → 𝐺 be considered as a 

unit speed curve in the three-dimensional Lie group  𝐺 

and {𝑇, 𝑁, 𝐵, 𝜅, 𝜏} as the Frenet apparatus of the curve 𝛼. 

The parallel curve of the curve 𝛼 in 𝐺 is 

𝜌(𝑠𝜌) = 𝛼(𝑠) + 𝑟1𝑁(𝑠) + 𝑟2𝐵(𝑠).   (10) 

Here, 𝑟1 ≠ 0, 𝑟2 ≠ 0 are real constants. 

The Frenet frame {𝑇𝜌, 𝑁𝜌, 𝐵𝜌} of the parallel curve 𝜌(𝑠𝜌) 

are 

𝑇𝜌(𝑠𝜌) =
(1−𝑟1𝜅)𝑇(𝑠)+𝑟2𝜅ℎ𝑁(𝑠)−𝑟1𝜅ℎ𝐵(𝑠)

√(1−𝑟1𝜅)2+(𝑟2𝜅ℎ)2+(𝑟1𝜅ℎ)2
,  (11) 

for 

𝑃𝜌 =

[
 
 
 
 

((1 − 𝑟1𝜅)2 + (𝑟2𝜅ℎ)2

+(𝑟1𝜅ℎ)2)(−𝑟1𝜅
′ + 𝑟2𝜅

2ℎ)

−(1 − 𝑟1𝜅)(−𝑟1𝜅
′ + 𝑟1

2𝜅𝜅′)

−(1 − 𝑟1𝜅)(𝑟1
2 + 𝑟2

2)(𝜅𝜅′ℎ2 + 𝜅2ℎℎ′)]
 
 
 
 

, 

𝑅𝜌 =

[
 
 
 
 
 

((1 − 𝑟1𝜅)2 + (𝑟2𝜅ℎ)2

+(𝑟1𝜅ℎ)2)

(𝜅 − 𝑟1𝜅
2 + 𝑟2𝜅

′ℎ + 𝑟2𝜅ℎ′ + 𝑟1𝜅
2ℎ2)

−(𝑟2𝜅ℎ)(−𝑟1𝜅
′ + 𝑟2𝜅𝜅′)

−(𝑟2𝜅ℎ)(𝑟1
2 + 𝑟2

2)(𝜅𝜅′ℎ2 + 𝜅2ℎℎ′) ]
 
 
 
 
 

, 

𝑆𝜌 =

[
 
 
 
 

((1 − 𝑟1𝜅)2 + (𝑟2𝜅ℎ)2

+(𝑟1𝜅ℎ)2)(−𝑟2𝜅
2ℎ2 − 𝑟1𝜅

′ℎ − 𝑟1𝜅ℎ′)

+(𝑟1𝜅ℎ)(−𝑟1𝜅
′ + 𝑟1

2𝜅𝜅′)

+𝑟1𝜅ℎ(𝑟1
2 + 𝑟2

2)(𝜅𝜅′ℎ2 + 𝜅2ℎℎ′) ]
 
 
 
 

, 

 

𝑁𝜌(𝑠𝜌) =
1

√𝑃𝜌
2+𝑅𝜌

2+𝑆𝜌
2
(𝑃𝜌𝑇(𝑠) + 𝑅𝜌𝑁(𝑠) + 𝑆𝜌𝐵(𝑠))(12) 

and for 𝑝 = √(1 − 𝑟1𝜅)2 + (𝑟2𝜅ℎ)2 + (𝑟1𝜅ℎ)2  and 𝑞 =

√𝑃𝜌
2 + 𝑅𝜌

2 + 𝑆𝜌
2, 

𝐵𝜌(𝑠𝜌) =
1

𝑝𝑞
(

(𝑟2𝜅ℎ𝑆𝜌 + 𝑟1𝜅ℎ𝑅𝜌)𝑇(𝑠)

+(−𝑟1𝜅ℎ𝑃𝜌 − (1 − 𝑟1𝜅)𝑆𝜌)𝑁(𝑠)

+ ((1 − 𝑟1𝜅)𝑅𝜌 − 𝑟2𝜅ℎ𝑃𝜌) 𝐵(𝑠)

). (13) 

The curvature and torsion of the curve 𝜌(𝑠𝜌) are given 

by 

𝜅𝜌 = ‖�̇�‖ =
√𝑃𝜌

2+𝑅𝜌
2+𝑆𝜌

2

((1−𝑟1𝜅)2+(𝑟2𝜅ℎ)2+(𝑟1𝜅ℎ)2)2
  (14) 

and 

𝜏𝜌 =

(𝑟1𝜅2ℎ−𝑟1
2𝜅3ℎ+(𝑟1

2+𝑟2
2)𝜅3ℎ3)ℓ

+(2𝑟1𝑟2𝜅3ℎ2+𝑟1𝜅′ℎ+𝑟1𝜅ℎ′−𝑟2𝜅2ℎ2−𝑟1
2𝜅2ℎ′)𝑚

+(𝜅−2𝑟1𝜅2+𝑟2𝜅′ℎ+𝑟2𝜅ℎ′+𝑟1𝜅2ℎ2+𝑟1
2𝜅3

−𝑟1𝑟2𝜅2ℎ′−𝑟1
2𝜅3ℎ2+𝑟2

2𝜅3ℎ2)𝑛

(𝑟1𝜅2ℎ−𝑟1
2𝜅3ℎ+(𝑟1

2+𝑟2
2)𝜅3ℎ3)2

+(2𝑟1𝑟2𝜅3ℎ2+𝑟1𝜅′ℎ+𝑟1𝜅ℎ′−𝑟2𝜅2ℎ2−𝑟1
2𝜅2ℎ′)2

+(𝜅−2𝑟1𝜅2+𝑟2𝜅′ℎ+𝑟2𝜅ℎ′+𝑟1𝜅2ℎ2+𝑟1
2𝜅3

−𝑟1𝑟2𝜅2ℎ′−𝑟1
2𝜅3ℎ2+𝑟2

2𝜅3ℎ2)2

, (15) 

where 

ℓ = (
−𝑟1𝜅

″ − 3𝑟2𝜅𝜅′ℎ − 2𝑟2𝜅
2ℎ′

+𝑟1𝜅
3 − 𝑟1𝜅

3ℎ2 − 𝜅2 ),  

𝑚 = (
𝜅′ − 3𝑟1𝜅𝜅′ + 𝑟2𝜅

″ℎ + 2𝑟2𝜅
′ℎ′ + 𝑟2𝜅ℎ″

+3𝑟1𝜅
2ℎℎ′ + 3𝑟1𝜅𝜅′ℎ2 + 𝑟2𝜅

3ℎ − 𝑟1𝜅
3ℎ3), 

𝑛 = (
𝜅2ℎ − 𝑟1𝜅

3ℎ + 3𝑟2𝜅𝜅′ℎ2 + 3𝑟2𝜅
2ℎℎ′

+𝑟1𝜅
3ℎ3 − 2𝑟1𝜅

′ℎ′ − 𝑟1𝜅ℎ″ ). 

 

Theorem 3.1.1. Let the curves 𝛼, 𝜌: 𝐼 ⊆ ℝ → 𝐺  be 

considered as Frenet vector fields {𝑇, 𝑁, 𝐵}  and 

{𝑇𝜌, 𝑁𝜌, 𝐵𝜌} respectively. The parallel curve pair (𝛼, 𝜌) is 

involute-evolute curve pair if and only if  𝜅 =
1

𝑟1
. 

 

Proof. Let the parallel curve pair (𝛼, 𝜌)  be involute-

evolute curve pair. In this case, ⟨𝑇, 𝑇𝜌⟩ = 0.  From the 

equation (11), we get 

 ⟨𝑇, 𝑇𝜌⟩ =
(1−𝑟1𝜅)

√(1−𝑟1𝜅)2+(𝑟2𝜅ℎ)2+(𝑟1𝜅ℎ)2
𝑇(𝑠) = 0 

which is achieved by 𝜅 =
1

𝑟1
 

On the contrary, let’s 𝜅 =
1

𝑟1
. If both sides of the 

equation (11) are made scalar product by 𝑇 and 𝜅 =
1

𝑟1
 is 

written, we have ⟨𝑇, 𝑇𝜌⟩ = 0.  
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Hence, the proof is completed. 

 

Theorem 3.1.2. Let the curve pair (𝛼, 𝜌) be a parallel 

curve pair with the Frenet vectors {𝑇, 𝑁, 𝐵}  and 

{𝑇𝜌, 𝑁𝜌, 𝐵𝜌}  respectively. If (𝛼, 𝜌)  is a Bertrand curve 

pair, −𝑟1𝜅ℎ𝑃𝜌 − (1 − 𝑟1𝜅)𝑆𝜌 = 0. 

 

Proof. Let the curves 𝛼 and 𝜌 be a Bertrand curve pair, 

where the principal normal vector field of the curve 𝛼 is 

𝑁 and the principal normal vector field of the curve 𝜌 is 

𝑁𝜌. In this case, 𝑁 and 𝑁𝜌 are linearly dependent. Now, 

if we multiply both sides of equation (13) by 𝑁𝜌  and 

consider that 𝑁 and 𝑁𝜌 are linearly dependent, we obtain 

(−𝑟1𝜅ℎ𝑃𝜌 − (1 − 𝑟1𝜅)𝑆𝜌)

𝑝𝑞
= 0. 

If the necessary adjustments are made in the last 

equation, we have  

(−𝑟1𝜅ℎ𝑃𝜌 − (1 − 𝑟1𝜅)𝑆𝜌) =

(

  
 

−𝑟1𝜅ℎ

(

 
 

(
(1 − 𝑟1𝜅)2 + (𝑟2𝜅ℎ)2

+(𝑟1𝜅ℎ)2 ) (−𝑟1𝜅
′ + 𝑟2𝜅

2ℎ)

−(1 − 𝑟1𝜅)(−𝑟1𝜅
′ + 𝑟1

2𝜅𝜅′)

−(1 − 𝑟1𝜅)(𝑟1
2 + 𝑟2

2)(𝜅𝜅′ℎ2 + 𝜅2ℎℎ′) )

 
 

)

  
 

  

−

(

 
 
 

(1 − 𝑟1𝜅)

(

 
 

((1 − 𝑟1𝜅)2 + (𝑟2𝜅ℎ)2

+(𝑟1𝜅ℎ)2)(−𝑟2𝜅
2ℎ2 − 𝑟1𝜅

′ℎ − 𝑟1𝜅ℎ′)

+(𝑟1𝜅ℎ)(−𝑟1𝜅
′ + 𝑟1

2𝜅𝜅′)

+𝑟1𝜅ℎ(𝑟1
2 + 𝑟2

2)(𝜅𝜅′ℎ2 + 𝜅2ℎℎ′) )

 
 

)

 
 
 

= 0. 

Specifically, when 𝜅 =
1

2𝑟1
 and ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , the 

following equation is satisfied: 

 

(−𝑟1𝜅ℎ𝑃𝜌 − (1 − 𝑟1𝜅)𝑆𝜌) = 𝑟1(𝜅
′ℎ + 𝜅ℎ′ − 𝑟1𝜅

2ℎ′) 

+𝑟2(𝜅
2ℎ2 − 2𝑟1𝜅

3ℎ2) = 0.  
 

Corollary 3.1.1. It can be easily seen from Theorem 

3.1.2 that if the curvature of the curve 𝛼(𝑠) is 𝜅 and its 

torsion is 𝜏  and 𝜅 =
1

2𝑟1
 and ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , the curve 

𝛼(𝑠) is also a helix curve. 

 

3.2. Parallel Curve in the Direction of 𝑩  in 3- 

Dimensional Lie Groups 

 

Definition 3.2.1. Let 𝛼: 𝐼 ⊆ ℝ → 𝐺  be a unit-speed 

curve in three-dimensional Lie group 𝐺  and 
{𝑇, 𝑁, 𝐵, 𝜅, 𝜏} be the Frenet apparatus of the curve 𝛼. The 

parallel curve of the curve 𝛼  in the direction of 𝐵  is 

defined by 

℘(𝑠℘) = 𝛼(𝑠) + 𝑟𝐵(𝑠)    (16) 

where 𝑟 ≠ 0 is a real constant. 

The Frenet frame {𝑇℘, 𝑁℘, 𝐵℘}  of the parallel curve 

℘(𝑠℘) are 

𝑇℘(𝑠℘) =
(𝑇(𝑠)−𝑟𝜅ℎ𝑁(𝑠)

√(1+(𝑟𝜅ℎ)2
,    (17) 

for 

𝑃℘ = [𝑟𝜅2ℎ(1 + (𝑟𝜅ℎ)2) − 𝑟𝜅′ℎ − 𝑟𝜅ℎ′)], 

𝑅℘ = [𝜅(1 + (𝑟𝜅ℎ)2) − 𝑟𝜅′ℎ − 𝑟𝜅ℎ′)],  (18) 

𝑆℘ = [−𝑟𝜅2ℎ2(1 + (𝑟𝜅ℎ)2)], 

𝑁℘(𝑠℘) =
√(1+(𝑟𝜅ℎ)2)

√𝑃℘
2+𝑅℘

2+𝑆℘
2
(

𝑃℘𝑇(𝑠)

+𝑅℘𝑁(𝑠) + 𝑆℘𝐵(𝑠)
)            (19) 

and 

𝐵℘(𝑠℘) =
1

𝑝
(

(−𝑟𝜅ℎ𝑆℘)𝑇(𝑠)

+(−𝑆℘)𝑁(𝑠) + (𝑅℘ + 𝑟𝜅ℎ𝑃℘)𝐵(𝑠)
), (20) 

where 𝑝 = √𝑃℘
2 + 𝑅℘

2 + 𝑆℘
2 . The curvature and torsion of 

𝜌(𝑠℘) are given by 

𝜅℘ = ‖�̇�‖ =
√𝑃℘

2+𝑅℘
2+𝑆℘

2

(1+(𝑟𝜅ℎ)2)2
    (21) 

and 

𝜏℘ =
(𝑟2𝜅3ℎ3)ℓ+(𝑟𝜅2ℎ2)𝑚+(𝜅−𝑟𝜅′ℎ−𝑟𝜅ℎ′+𝑟2𝜅3ℎ2)𝑛

(𝑟2𝜅3ℎ3)2+(𝑟𝜅2ℎ2)2+(𝜅−𝑟𝜅′ℎ−𝑟𝜅ℎ′+𝑟2𝜅3ℎ2)2
, (22) 

where 

ℓ = (−𝜅2 + 3𝑟𝜅𝜅′ℎ + 2𝑟𝜅2ℎ′),  
𝑚 = (𝑟𝜅3ℎ + 𝜅′ − 𝑟𝜅″ℎ − 2𝑟𝜅′ℎ′ − 𝑟𝜅ℎ″ + 𝑟𝜅3ℎ3),   

𝑛 = (𝜅2ℎ − 3𝑟𝜅𝜅′ℎ2 − 3𝑟𝜅2ℎℎ′). 
 

Corollary 3.2.1. Let the curve pair (𝛼,℘) be a parallel 

curve pair with the Frenet vectors {𝑇, 𝑁, 𝐵}  and 

{𝑇℘, 𝑁℘, 𝐵℘} respectively, where ℘ is the parallel curve 

to 𝛼 in the direction of 𝐵. The parallel curve pair (𝛼,℘) 

is not a Bertrand curve pair under no circumstances. 

 

Proof. Suppose that (𝛼,℘) is a Bertrand curve pair. In 

this case, 𝑁 and 𝑁℘ are linearly dependent. Considering 

the equation (20), we multiply both sides of equation 

(20) by 𝑁℘. Since 𝑆℘ = 𝑟𝜅2ℎ2(1 + (𝑟𝜅ℎ)2) ≠ 0, (𝛼,℘) 

is not a Bertrand curve pair. 

 

Corollary 3.2.2. Let the curve pair (𝛼,℘) be a parallel 

curve pair with the Frenet vectors {𝑇, 𝑁, 𝐵}  and 

{𝑇℘, 𝑁℘, 𝐵℘} respectively, where ℘ is the parallel curve 

to 𝛼 in the direction of 𝐵. The parallel curve pair (𝛼,℘) 

is not an involute-evolute curve pair under no 

circumstances. 

 

Proof. Suppose that (𝛼,℘) is an involute-evolute curve 

pair. In this case, 𝑇 ⊥ 𝑇℘. Considering the equation (17), 

we multiply both sides of equation (17) by 𝑇 . Since 

⟨𝑇, 𝑇℘⟩ =
1

√1+(𝑟𝜅ℎ)2
, 𝑇 ⊥ 𝑇℘ .  Hence, (𝛼,℘)  is not an 

involute-evolute curve pair. 

 

Theorem 3.2.1. Let the curve pair (𝛼,℘) be a parallel 

curve pair with the Frenet frames {𝑇, 𝑁, 𝐵}  and 

{𝑇℘, 𝑁℘, 𝐵℘}  respectively. If the parallel curve pair 

(𝛼,℘) is a Mannheim curve pair, 𝑅℘ = 0. 

 

Proof. Suppose that the parallel curve pair (𝛼,℘) is a 

Mannheim curve pair. In this case, 𝑁 and 𝐵℘ are linearly 

dependent. Considering the equation (19), if we multiply 

both sides of equation (19) by 𝐵℘, we obtain 

√(1+(𝑟𝜅ℎ)2)

√𝑃℘
2+𝑅℘

2+𝑆℘
2
𝑅℘ = 0. Since √(1 + (𝑟𝜅ℎ)2) ≠ 0, we have 

𝑅℘ = (1 + (𝑟𝜅ℎ)2)𝜅 − 𝑟𝜅′ℎ − 𝑟𝜅ℎ′ = 0. 

Hence, proof is completed. 

In the special case, let 𝜏 − 𝜏𝐺 = −
1

𝑟
. In this case, we 

have 
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ℎ =
𝜏−𝜏𝐺

𝜅
⇒ ℎ = −

1

𝑟𝜅
.     (23) 

Considering the equation (23), we get the equations (18) 

the following as: 

𝑃℘ = −2𝜅, 𝑅℘ = 2𝜅, 𝑆℘ = 2𝜅ℎ = −
2

𝑟
 

These equations are substituted in the equation (21), we 

obtain 

𝜅℘ =
√1+2𝑟2𝜅2

2𝑟
 .    (24) 

The equation (24) gives us the relationship between 

curvatures of the curve pair (𝛼,℘) . In addition to 

equation (24), it can be expressed in the following 

theorem and result. 

 

Theorem 3.2.2. Let the curve pair (𝛼,℘) be a parallel 

curve pair with the Frenet frames {𝑇, 𝑁, 𝐵}  and 

{𝑇℘, 𝑁℘, 𝐵℘} respectively. If 𝜏 − 𝜏𝐺 = −
1

𝑟
, the equation 

(17) is  𝑇𝑁 -Smarandache curve. 

 

 Proof. Substituting the equation 𝜏 − 𝜏𝐺 = −
1

𝑟
 into 

equation (9), we get 

ℎ =
𝜏 − 𝜏𝐺

𝜅
⇒ ℎ = −

1

𝑟𝜅
. 

If we substitute ℎ = −
1

𝑟𝜅
 in equation (17) and we make 

the necessary simplifications, we have 

𝑇℘ =
𝑇 + 𝑁

√2
. 

Considering Definition 2.2.5. it is seen that the last 

equation is 𝑇𝑁 -Smarandache curve.  

 

Corollary 3.2.3. Let consider unit-speed curve 𝛼  with 

constant curvature 𝜅  and its parallel curve ℘  with the 

curvature 𝜅℘ . Since 𝜏 − 𝜏𝐺 = −
1

𝑟
,  the curve 𝛼  is a 

circular helix. In this case, 𝜅℘ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   and the 

curve ℘ is a circular helix in the abelian case. 

 

Proof. Considering equation (23), above the equations 

𝑙, 𝑚, 𝑛 

ℓ = −𝜅2, 𝑚 = −(
𝑟2𝜅2+1

𝑟2 ) , 𝑛 = 𝜅2ℎ  (25) 

is obtained as in (25). By using equations (25) into 

equation (22) and if we make the necessary adjustments, 

we have 

𝜏℘ =
𝜅3ℎ − 𝜅ℎ(−𝜅2 − 𝜅2ℎ2) + 2𝜅3ℎ

(𝜅ℎ)2 + (𝜅ℎ)2 + (2𝜅)2
 

Since both 𝜅 and ℎ are constants, 𝜏℘ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Since 

𝜏𝐺℘
= 0 in the abelian case (see [6]), 

𝜏℘

𝜅℘
 is constant. So, 

the curve ℘ is obtained as a circular helix. 

Finally, the following theorem can be written by taking 

the special case of 𝜅 =
1

𝑟
 

 

Theorem 3.2.3. Let the curve pair (𝛼,℘) be a parallel 

curve pair with the Frenet frames {𝑇, 𝑁, 𝐵}  and 

{𝑇℘, 𝑁℘, 𝐵℘}  respectively. Let (𝛼,℘)  be Mannheim 

curve pair, for 𝜅 =
1

𝑟
. In this case, ℎ = 𝑡𝑎𝑛 (

𝑠

𝑟
+ 𝑐). 

 

Proof. Let 𝜅 =
1

𝑟
 and the parallel curve pair (𝛼,℘) be a 

Mannheim curve pair. In this case 𝑁 and 𝐵℘ are linearly 

dependent. Then if both sides of equation (19) are 

multiplied by 𝐵℘ 

𝑅℘ = (1 + ℎ2)
1

𝑟
− ℎ′ = 0 ⇒ ℎ′ −

(1+ℎ2)

𝑟
= 0. (26) 

From the solution of differential equation (26), we have 

𝑟ℎ′ = ℎ2 + 1 

𝑎𝑟𝑐𝑡𝑎𝑛( ℎ) =
𝑠

𝑟
+ 𝑐 ⇒ ℎ = 𝑡𝑎𝑛 (

𝑠

𝑟
+ 𝑐). 

This completes the proof. 

 

4. DISCUSSION AND CONCLUSION 

 

In this study, we investigated parallel curves in the 3-

dimensional Lie group, based on the definitions of 

parallel curves in 3-dimensional Euclidean space. We 

calculated Frenet apparatus of these curves. We provided 

the theorems and results that reveal the relationships of 

the obtained parallel curves and special curves.  

Finally, we examined the parallel curve pairs by adding 

some special cases and found interesting theorems and 

results. 
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