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ABSTRACT. In this short note is on the equivalence between non-Newtonian metric (particularly multiplicative
metric) and metric. We present a different proof the fact that the notion of a non-Newtonian metric space is not
more general than that of a metric space. Also, we emphasize that a lot of fixed point results in the non-Newtonian
metric setting can be directly obtained from their metric counterparts.
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1. INTRODUCTION AND PRELIMINARIES

Arithmetic is any system that satisfies the whole of the ordered field axioms whose domain is a subset of R. There
are infinitely many types of arithmetic, all of which are isomorphic, that is, structurally equivalent.

In non-Newtonian calculus, a generator « is a one-to-one function whose domain is all real numbers and whose
range is a subset of real numbers. Each generator generates exactly one arithmetic, and conversely each arithmetic is
generated by exactly one generator. By a-arithmetic, we mean the arithmetic whose operations and whose order are
defined as

a-addition x+y = aa'@)+a'O)

a-subtraction xty = afe'(x)-a'(y)
a-multiplication xxy = afa”'(x)xa™'(y))

a-division x/y = ae'@a')} (@) #0)
a-order x<y o a'<a'y)

for all x and y in the range R, of @. In the special cases the identity function / and the exponential function exp generate
the classical and geometric arithmetics, respectively.

1% a-addition a-subtraction a-multiplication «a-division — a-order
1 xX+y xX—y Xy x/y x<y
exp Xy x/y xiny (y'“x) x/y Inx<lIny

For further information about a-arithmetics, we refer to [6].
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Now, we give the definitions of non-Newtonian metric [4] and multiplicative metric [12] with new notations.

Definition 1.1. Let X be a non-empty set and let R, be an ordered field generated by a generator @ on R. The map
d* : X x X — R, is said to be a non-Newtonian metric if it satisfies the following properties:

(em1) 0 = a(0) < d°(x, y) and d*(x,y) = 0ox= Y,

(am2) d*(x,y) = d*(y, x)

(@m3) d*(x,y) £ d*(x,2) + d*(z,y)
for all x,y,z € X. Also the pair (X, d®) is said to be a non-Newtonian metric space.

When « = exp, the non-Newtonian metric 4°*? is called multiplicative metric. Then, Reyxp, = R, and 0=1.

Definition 1.2. Let X be a non-empty set. The map d**P : X x X — R, is said to be a multiplicative metric if it satisfies
the following properties:

(mml) 1 < dP(x,y) and d*P(x,y) =1 © x =y,

(mm?2) dP(x, y) = d**(y, x)

(mm3) d™P(x,y) < d*™*P(x,2).d"P(z,y)
for all x,y,z € X. Also the pair (X, d*P) is said to be a multiplicative metric space.

In the present work we show that some topological results of non-Newtonian metric can be obtained in an easier
way. Therefore, a lot of fixed point and common fixed point results from the metric setting can be proved in the
non-Newtonian metric (particularly the multiplicative metric) setting.

2. MaIN REsuLTS

Let a be a generator on R and R, = {a(u) : u € R}. By the injectivity of @ we have

au+v) = a)+ alv) alx+y) = a'@+al)
au-v) = a) - a®) a'x-y) = a'w-a'(y)
auxv) = a) Xalv) and o '(x % y) = a (X)) x a™! »)
aw/v) = aw/av) v=#0) a'x]y) = o' /a(y)

u<v e al<a®) x<y o a'<ally

for all x,y € R, with u,v € R, x = a(u), y = a(v). Therefore, a and a’! preserve basic operations and order.

Remark 2.1. Since the generator @ and o' are order preserving, for any two elements x and y in R,, x £ y if and only
ifx <y.

Let (X, d”) be a non-Newtonian metric space. For any & > 0 and any x € X the set
By(x,8) ={ye X :d*(x,y) < &}

is called an a-open ball of center x and radius €. A topology on X is obtained easily by defining open sets as in the
classical metric spaces.
Now, let us emphasize that former topology is obtained by real-valued metric and vice versa.

Theorem 2.2. For any generator a on R and for any non-empty set X
(1) If d* is a non-Newtonian metric on X, then d = a ' od” is a metric on X,
(2) If d is a metric on X, then d* = « o d is a non-Newtonian metric on X.

Proof. It is obvious that @ and a~! are one-to-one and order preserving. O

Corollary 2.3. For any generator a on R and, let d* and d be a non-Newtonian metric and a metric on a non-empty
set X, respectively, as in Theorem 2.2. If 1, and T are metric topologies induced by d* and d, respectively, then T, = T.

Proof. Since 6, = a”'(¢) > 0and g5 = a(8) > 0 for all ¢ > 0,6 > 0, we have

Bo(x,85) = {yeX:d"(x,y)<e&st={yeX:a(dxy) <ald))}
= {yeX:d(xy) <06} =B(x,0;)

forall x € X,e 3 0,6 > 0. Therefore, 7, = 7. ]
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Corollary 2.4. Under the hypothesis of Corollary 2.3, the topological properties of (X, d) and (X, d*) are equivalent.
In particular, for a sequence (x,) in X and for an element x € X

(1) x, 4 x if and only x, 4 X,
(2) (xp) is d*-Cauchy if and only if (x,) is d-Cauchy, and
(3) (X,d") is complete if and only if (X, d) is complete.

3. CONCLUSION

The topological results obtained by non-Newtonian metrics (particularly multiplicative metrics) as in [1-5, 7-13]
are equivalent the ones obtained by metrics. In [1, 2,5, 7-9, 11-13] some results of the multiplicative metric and
in [3] some results of the non-Newtonian metric have been obtained for the fixed point theory. Those results are direct
consequences of Theorem 2.2 and Corollary 2.4 since any type of contraction mapping for the non-Newtonian metric
space is also a contraction mapping for the metric space and vice versa. For example, the non-Newtonian contraction
T : X — X as in [3] is the classical Banach contraction since

d*(T(x), T() < kxd®(x,y) © d(T(x),T()) < Ad(x,y) 3.1

for all x,y € X where k € [a(0), a(1)) is constant, d = a@~' 0 d” and A = o' (k). In particular, by Remark 2.1 and by
(3.1), the multiplicative contraction 7 : X — X as in [4] is the classical Banach contraction since

d¥(T(x), T(y)) < d™P(x,y)! & d™P(T(x),T(y) £ d™P(x,y)' = kxd*P(x,y)
& d(T(x), T(y) < Ad(x,y)

for all x,y € X where 4 € [0, 1) is constant, d = Inod**? and 4 = Ink. In this way we can obtain most of the
non-Newtonian metric results and most of the multiplicative metric results applying corresponding properties from the
metric setting.
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