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Abstract: In the present study we handle a regular unit speed curve by means of the position vector 

given by the vectorial equation γ (s) = 𝑚0 𝑡(𝑠) + 𝑚1𝑛𝑞(𝑠) + 𝑚2𝑏𝑞(𝑠) where 𝑏𝑞(𝑠),  𝑛𝑞(𝑠) and 𝑡(𝑠) 

are quasi frame vectors. Firstly, we analysis these curves and investigate to being constant ratio curve. 

Then, we give the parameterizations of T-constant and N- constant curve in accordance with quasi 

frame. Further, we get the conditions for a regular curve to correspond to be a W- curve in 𝔼3. 

 

 

𝔼𝟑  Uzayında Quasi Çatısına Göre Sabit Oranlı Eğriler 
 

 

Anahtar 

Kelimeler 

Sabit oranlı 

eğri, 

Pozisyon 

vektörü, 

Quasi çatısı  

Öz: Bu çalışmada, 𝑏𝑞(𝑠),  𝑛𝑞(𝑠) ve 𝑡(𝑠) quasi çatı vektörleri olmak üzere pozisyon vektörü γ (s) =

𝑚0 𝑡(𝑠) + 𝑚1𝑛𝑞(𝑠) + 𝑚2𝑏𝑞(𝑠) vektörel denklemi ile verilen birim hızlı eğriyi ele aldık.  İlk olarak  

eğriyi inceleyerek sabit oranlı olma durumunu araştırdık. Sonrasında T-sabit ve N-sabit eğrilerin 

parametrizasyonlarını verdik. Ayrıca, bir regüler eğrinin W-eğrisine karşılık gelme koşulunu elde 

ettik. 

 

 

1. INTRODUCTION 

 

In 3 − dimensional Euclidean space, the rectifying 

curves that located on rectifying plane are defined by B. 

Y. Chen [3]. The binormal vector field and tangent 

vector field spans the related plane. Chen also presents a 

simple classification in this paper. In study [5], the 

connection between centrodes (that is of great 

importance in kinematics, mechanics) and rectifying 

curves is mentioned. Moreover, in 3 − dimensional 

Minkowski space, the rectifying curves are examined in 

[8, 11, 12, 14]. 

In Euclidean 3 − space, the rectifying curves can be 

written as 

                       γ(s) = λ(s)t(s) + μ(s)b(s),                     (1) 

where λ (s) and µ (s) are curvature functions [13]. 

 

 

Non − degenerate and continuously 3 − times 

differentiable curves can be considered for creating the 

Frenet frame. Namely, there is a possibility that second 

derivative vanishes. In this station, instead of this, the 

new frame is needed. 

Quasi frame is more useful than Frenet frame, Bishop 

frame, etc. For example, the quasi frame can also be 

defined on a straight line. The structure of the q − frame 

is the same whether the curve unit speed or not, and the 

q − frame can be easily determined [7]. 

For a regular curve given by a position vector, the sum 

of its normal and tangent component can be considered 

as 

                                  γ = γT + γN                                 (2) 
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(see, [1]). If  
‖𝛾𝑇‖

‖𝛾𝑁‖
  is equal to a constant, such curves are 

called as curves of constant ratio [1]. Here ‖𝛾𝑁‖  and 

‖𝛾𝑇‖,  are the norms or the lengths of 𝛾𝑁  and 𝛾𝑇 , 

respectively. As can be seen from here, the constancy of 

the ratio  
‖𝛾𝑇‖

‖γ‖
   also corresponds to the same definition  

[2].  

In particular, since the expression ∥ grad (∥ γ ∥) ∥ is 

equal to the related ratio, satisfying the condition 

∥ grad (∥ γ ∥) ∥= c (3) 

on the curve means that it has a constant ratio. In 

addition to these explanations, a W- curve is known as a 

curve which has constant principle curvatures and was 

named by F. Klein and S. Lie in study [15]. It is also 

called as a helix or a screw line in 𝔼𝑛. 

Here, we consider a curve in Euclidean 3−space as a 

linear combination of the q−frame as 

     𝛾(𝑠) = 𝑚0𝑡(𝑠) + 𝑚₁(𝑠)𝑛𝑞(𝑠) + 𝑚2(𝑠)𝑏𝑞(𝑠).       (4) 

In this equation, 𝑚0, 𝑚₁, and 𝑚₂ are curvature functions. 

Based on the curvature functions, we investigate whether 

a unit−speed curve is of constant ratio, T−constant, 

N−constant or a W−curve in 𝔼3. 

2. BASIC CONCEPTS 

 

Suppose the unit speed regular curve is denoted by 𝛾 ∶
𝐼 ⊂ ℝ → 𝔼3.The tangent unit vector is known as γ′(s) =

𝑡(𝑠) also 𝜅₁ = ‖𝛾 ′′(𝑠)‖ is the first Frenet curvature. In 

the case 𝜅₁ ≠ 0 ,the unit normal vector field satisfies 

𝑛′(𝑠) + 𝜅₁(𝑠)𝑡(𝑠) = 𝜅₂(𝑠)𝑏(𝑠). Here, b is the binormal 

vector field (the second principle normal) and the second 

Frenet curvature is indicated by κ2  given by 𝑏′(𝑠) =
−𝜅₂(𝑠)𝑛(𝑠). Hence, the Serret − Frenet formulae is 

𝑡 ′(𝑠) = 𝜅₁(𝑠)𝑛(𝑠) 

                    𝑛′(𝑠) = −𝜅₁(𝑠)𝑡(𝑠) + 𝜅₂(𝑠)𝑏(𝑠)             (5) 

𝑏′(𝑠) = −𝜅₂(𝑠)𝑛(𝑠) 

(see, [9]) 

Moreover, a new frame Quasi is an alternative to Frenet 

frame consists by a projection vector l, the tangent vector 

t(s), quasi-normal 𝑛𝑞(𝑠) , and quasi-binormal 𝑏𝑞(𝑠) . 

Then, the quasi frame vectors are given by 

𝑡(𝑠) = 𝛾 ′(𝑠) 

𝑛𝑞(𝑠) =
𝑡(𝑠) × 𝑙

‖𝑡(𝑠) × 𝑙‖
  

  𝑏𝑞(𝑠) = 𝑡(𝑠) × 𝑛𝑞(𝑠) 

 

where the projection vector l is chosen as l = (1, 0, 0) 

(can also be chosen as (0, 1, 0), (0, 0, 1). Hence, the 

transition from Frenet frame vectors to Quasi frame 

vectors is 

[

𝑡
𝑛𝑞

𝑏𝑞

] = [
1 0 0
0 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼
0 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

] [
𝑡
𝑛
𝑏

]                    (7)  

where 𝛼 is the angle between the quasi−normal vector 

field 𝑛𝑞  and the principle normal vector field  𝑛 . 

Inversely, we write 

[
𝑡
𝑛
𝑏

] = [
1 0 0
0 𝑐𝑜𝑠 𝛼 − 𝑠𝑖𝑛 𝛼
0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

] [

𝑡
𝑛𝑞

𝑏𝑞

]                      (8)                                               

Consequently, by the use of these relations, the quasi 

frame formulae is given by 

[

𝑡 ′

𝑛𝑞
′

𝑏𝑞
′

] = [

0 𝑘1 𝑘2

−𝑘1 0 𝑘3

−𝑘2 −𝑘3 0
] [

𝑡
𝑛𝑞

𝑏𝑞

]                           (9)                                               

where 
qqqq b,nk,b,tk,,n,tk =−=−= 321

 

are the quasi curvatures[6]. 

3. CLASSIFICATION OF CURVES WITH 

RESPECT TO Q - FRAME IN 𝔼3 

 

Let 𝛾 ∶ 𝐼 → 𝔼3 be a unit speed regular curve in 𝔼3. Then 

the position vector can be considered as a combination 

of  its quasi  frame as 

𝛾(𝑠) =  𝑚0(𝑠)𝑡(𝑠) +  𝑚1(𝑠)𝑛𝑞(𝑠) + 𝑚2(𝑠)𝑏𝑞(𝑠)              (10)                                     

where 𝑚0 , 𝑚1  and 𝑚2  are curvature functions of the 

curve γ (s), the derivative of the position vector is 

𝛾 ′(𝑠) = 𝑚0
′ 𝑡(𝑠) +  𝑚0𝑡′(𝑠) + 𝑚1

′ 𝑛𝑞(𝑠) + 𝑚1𝑛𝑞
′ (𝑠) +

              𝑚2
′ 𝑏𝑞(𝑠)  +  𝑚2𝑏𝑞

′ (𝑠)                                     (11) 

Using Quasi frame formulas, we write 

𝛾 ′(s) = 𝑚0
′ 𝑡(s) + 𝑚0(𝑘1𝑛𝑞(s) + 𝑘2𝑏𝑞(s)) + 𝑚1

′ 𝑛𝑞(s) 

+𝑚1(−𝑘1𝑡(s) + 𝑘3𝑏𝑞(s)) + 𝑚2
′ 𝑏𝑞(s) +  𝑚2(−𝑘2𝑡(s) 

−𝑘3𝑛𝑞(s))                                                                    (12) 

It follows that 

γ′(s) = (𝑚0
′ −  𝑘1𝑚1−𝑘2𝑚2)𝑡(𝑠)

+  (𝑚1
′ + 𝑘1𝑚0−𝑘3𝑚2)𝑛𝑞(𝑠)  

                               + (𝑚2
′ +𝑘2𝑚0 +  𝑘3𝑚1)𝑏𝑞(𝑠) 

                 =t(s)                                                           (13)                                                                                                                          

Hence, we obtain 
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𝑚0
′ − 𝑘1𝑚1−𝑘2𝑚2= 1 

                              𝑚1
′ +𝑘1𝑚0−𝑘3𝑚2 = 0                      (14) 

𝑚2
′ +𝑘2𝑚0+ 𝑘3𝑚1 = 0 

Lemma 3.1. Let 𝛾 ∶ 𝐼 → 𝔼3  be a unit speed regular 

curve in 𝔼3  with the vectorial equation(10). Then the 

position vector. γ satisfies the curvature conditions in the 

equation system (14). 

Corollary 3.2. Suppose that, a regular unit speed curve 

in 𝔼3 is denoted by γ : I → 𝔼3. Then, γ corresponds to a 

W−curve if and only if it satisfes the differential 

equation 

𝑚0
′′ (𝑠) = −(𝑘1

2 + 𝑘2
2)𝑚0(𝑠) + 𝑘3(𝑘1𝑚2(𝑠) − 𝑘2𝑚1(𝑠)) 

where the principle curvatures 𝑘𝑖 , i = 1, 2, 3 are real 

constants. 

Proof. Assume, the regular and unit speed curve γ 

satisfies the equation system (14). If 𝑘1, 𝑘2 and 𝑘3 are 

chosen real constants in (14), using the first equation, 

one can write   

                              𝑚0
′′ (𝑠) = 𝑘1𝑚1

′ + 𝑘2𝑚2
′                      (15)                               

Combining (15) with the second and third equation of 

(14), we obtain the result. 

 

3.1. Constant −ratio curves with quasi frame 

 

Definition 3.3. Suppose that a regular unit speed curve 

in 𝔼3 is denoted by 𝛾 ∶ 𝐼 ⊂ ℝ → 𝔼3. Then the relation 

                                𝛾 = 𝛾𝑇 + 𝛾𝑁                                   (16)                                                             

is valid. In case of ‖𝛾𝑇‖ : ‖𝛾𝑁‖ is a real constant, then γ 

is defined as a constant ratio curve.In other words, for 

these curves, the related constant ratio can be considered 

as ‖𝛾𝑇‖ : ‖𝛾‖ [1]. 

In addition, grad(∥γ(s)∥) is calculated by 

 grad(∥γ(s)∥) = 
𝑑(∥𝛾(𝑠)∥)  

𝑑𝑠
𝛾 ′(𝑠)= 

<𝛾(𝑠),𝛾′(𝑠)>

∥𝛾(𝑠)∥
𝛾 ′(𝑠)         (17)                             

where γ′ = T is the tangent vector field of γ [2]. 

The next consequence classifies constant - ratio curves. 

Theorem 3.4. Suppose, a regular unit speed curve is 

denoted by 𝛾 ∶ 𝐼 ⊂ ℝ → 𝔼𝑛 in 𝔼𝑛. Then γ is of constant 

ratio satisfying ‖𝛾𝑇‖ : ‖𝛾‖ = c⇔ ‖𝑔𝑟𝑎𝑑𝜌‖= c where c 

is a real constant. 

Especially, we know that for a curve of constant ratio we 

have ‖𝑔𝑟𝑎𝑑(∥ 𝛾(𝑠) ∥)  ‖= c ≤ 1.  

The next theorem, which is a result of equation (17), is 

important in classifying constant ratio curves. 

Theorem 3.5.[4] For a regular unit speed curve 𝛾 ∶ 𝐼 ⊂
ℝ → 𝔼𝑛 , ‖𝑔𝑟𝑎𝑑(∥ 𝛾(𝑠) ∥)  ‖ = c (𝑐 = 𝑐𝑜𝑛𝑠𝑡. )  if and 

only if the following three statements are valid: 

(i) ∥gradρ∥= 0 ⇔ γ (I) is included in a 

hypersphere whose center is the 

origin. 

(ii) ∥gradρ∥= 1 ⇔  γ (I) is congruent to 

line segment (pass through the origin). 

(iii) ∥gradρ∥ = c ⇔  ρ =∥γ(s)∥= cs, 0 <
𝑐 < 1 

The following result provides  a classification of 

constant ratio curves according to quasi frame in𝔼3: 

Proposition 3.6. Let 𝛾 ∶ 𝐼 → 𝔼3 be a unit speed regular 

curve according to q − frame in 𝔼3. In case of the curve 

is of constant ratio then its position vector is given by 

                               

( ) ( )
( ) ( )( ) ( )

( )

( ) ( )( ) ( )
( ) )18(sb

kk

1cscc1kkkk1c

sn
kk

1cscc1kkkk1c
sstcs

q2
2

2
1

222222
2

2
112

2

q2
2

2
1

222222
2

2
121

2
2

+

−−−+−
+

+

−−−+−
+=

 

 Proof. Let 𝛾 ∶ 𝐼 → 𝔼3  be a unit speed regular curve 

given by the vectorial equation (10). Then the equation 

system(14) holds. If the curve is of constant ratio, then 

‖𝛾𝑇‖

‖𝛾‖
 = c = const. 

𝑚0

𝑐𝑠
= 𝑐  

𝑚0 = 𝑐2𝑠  

Putting 𝑚0 = 𝑐2𝑠   in (14), multiplying the second 

equation of (14) with 𝑚1  and multiplying the third 

equation of (14) with 𝑚2, we get 

𝑐2𝑠(k1m1+k2m2)+𝑚1
′ m1 + 𝑚2

′ m2 = 0 

Using the frst equation of (14), we yield 

                               𝑚1
2 + 𝑚2

2 = 𝑐2𝑠2(1 − 𝑐2)                (19)                                                                            

By the use of the first equation of (14) and substituting 

m2 =
𝑐2−1−k1m1

k2
  into (19), we obtain 

m1 =
(𝑐2 − 1)𝑘1 ± 𝑘2√(𝑘1

2 + 𝑘2
2)(1 − 𝑐2)𝑐2𝑠2 − (𝑐2 − 1)2

𝑘1
2 + 𝑘2

2  

and 

m2 =
(𝑐2 − 1)𝑘2 ± 𝑘1√(𝑘1

2 + 𝑘2
2)(1 − 𝑐2)𝑐2𝑠2 − (𝑐2 − 1)2

𝑘1
2 + 𝑘2

2  

This completes the proof. 
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3.2. T − Constant curves with quasi frame 

 

Defnition 3.7. Suppose, a regular unit speed curve in 𝔼3 

is denoted by γ ∶ I ⊂ ℝ → 𝔼3 . If the length of the 

tangent component of the curve (‖𝛾𝑇‖) is constant, then 

the curve  is called T − constant curve [2]. Especially, if  

‖𝛾𝑇‖ = 0, then the curve is called as T − constant curve 

of first kind, if not, second kind [10]. 

Corollary 3.8. Let 𝛾 ∶ 𝐼 → 𝔼3  be a unit speed regular 

curve according to q-frame in Euclidean 3 − space. 

Then, it is a T-constant curve of first kind if and only if 

the curvature functions m1 and  m2 satisfies: 

                                      𝑚1
2 + 𝑚2

2 = c1                              (20)                                                        

Proof. Let 𝛾 ∶ 𝐼 → 𝔼3  be a unit speed reguler curve 

given by the vectorial equation (10). The equation 

system (14) is hold if 𝛾  is T − constant curve of first 

kind, then m0 = 0  in (14): 

                                      k1m1+k2m2= −1                      (21)                                                          

                                                           𝑚1
′ =

k3m2                               (22)                                                                

                                         𝑚2
′ = −k3m1                          (23)                                                             

By the use of ( 22) and (23), we write 

m1
′

m1
=−

m2
′

m2
= k3 

𝑚1
′ m1 + 𝑚2

′ m2 = 0 

Therefore, we obtain 

𝑚1
2 + 𝑚2

2 = c1 

This completes the proof. 

Proposition 3.9. Let γ ∶ 𝐼 →  𝔼3 be a unit speed regular 

curve according to q − frame in Euclidean 3 − space. It is 

congruent to T − constant curve of first kind if and only 

if it has the parameterization 

                    𝛾(𝑠) =
−k1±k2√(𝑘1

2+𝑘2
2)c1−1

𝑘1
2+𝑘2

2 𝑛𝑞(𝑠) +

                                                  
−k2±k1√(𝑘1

2+𝑘2
2)c1−1

𝑘1
2+𝑘2

2 𝑏𝑞(𝑠)               (24)                            

where c1 is a real constant. 

Proof. Let 𝛾 be a T − constant curve of first kind. Then, 

the equation (20) is satisfied: 

                                        𝑚2
2 = c1 − 𝑚1

2                            (25)                                                                                             

With the help of (21), one can put m2 = −
1+ 𝑘1𝑚1

𝑘2
  into 

(25). Then, the curvature functions are 

                 𝑚1 =
−k1 ± k2√(𝑘1

2 + 𝑘2
2)c1 − 1

𝑘1
2 + 𝑘2

2                          (26) 

and 

                 𝑚2 =
−k2±k1√(𝑘1

2+𝑘2
2)c1−1

𝑘1
2+𝑘2

2                             (27)                                                                                                        

This completes the proof. 

Theorem 3.10. Let γ be a T − constant curve of first 

kind. Then the quasi curvatures k1, k2, k3  satisfies the 

relation: 

                   [
−k1±k2√(𝑘1

2+𝑘2
2)c1−1

𝑘1
2+𝑘2

2 ]

′

= 𝑘3 [
−k2±k1√(𝑘1

2+𝑘2
2)c1−1

𝑘1
2+𝑘2

2 ]               (28)                                

Proof. By putting (26) and (27) into (22), we obtain the 

desired result. 

Corollary 3.11. Let γ : I → 𝔼3 be a unit speed regular 

curve according to q − frame in Euclidean 3 − space. 

Then it is a T − constant curve of second kind if and only 

if the curvature functions 𝑚1 and 𝑚2 satisfies: 

                          2𝑐1𝑠 + 𝑐2 = 𝑚1
2 + 𝑚2

2                            (29)                                                                            

Proof. Let γ be a unit speed regular curve given by the 

vectorial equation(10). If it is T − constant curve of 

second kind, 𝑚0  = 𝑐1. Hence, the equation system (14) 

turns into 

 

                                 k1m1 + k2m2 = −1                        (30)                                                        

                                  𝑚1
′ = k3m2 − k1𝑐1                       (31)                                                          

                                   𝑚2
′ = −k3m1 − k2𝑐1                     (32)                                                        

Multipiying (31) with m1 and multiplying (32) with m2, 

sum of them are 

                       m1 + 𝑚2
′ m2 = −𝑐1(k1m1 + k2m2)               (33) 

Therefore, by the use of (30), we yield 

𝑚1
′ m1 + 𝑚2

′ m2 = 𝑐1 

and 

𝑚1
2 + 𝑚2

2 = 2𝑐1𝑠 + 𝑐2 

Proposition 3.12. Let γ : I → 𝔼3 be a unit speed regular 

curve according to q − frame in Euclidean 3 − space. It is 

congruent to T − constant curve of second kind if and 

only if it has the parameterization 

𝛾(𝑠) =  𝑐1𝑡(𝑠) +
−k1±k2√(𝑘1

2+𝑘2
2)(2𝑐1𝑠+𝑐2)−1

𝑘1
2+𝑘2

2 𝑛𝑞(𝑠) +

                 
−k2±k1√(𝑘1

2+𝑘2
2)(2𝑐1𝑠+𝑐2)−1

𝑘1
2+𝑘2

2 𝑏𝑞(𝑠)                        (34)             

where 𝑐1,𝑐2 are real constants.  

Proof. Let γ be a T − constant curve of second kind (𝑚0 

=  𝑐1). Then, the equation (29) is satisfied. With the help 

of (21), one can put  m2 = −
1+ 𝑘1𝑚1

𝑘2
  into (29). Then, 

the curvature functions are 
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                    m1 =
−k1±k2√(𝑘1

2+𝑘2
2)(2𝑐1𝑠+𝑐2)−1

𝑘1
2+𝑘2

2                         (35) 

and 

           m2 =
−k2 ± k1√(𝑘1

2 + 𝑘2
2)(2𝑐1𝑠 + 𝑐2) − 1

𝑘1
2 + 𝑘2

2              (36) 

This completes the proof. 

3.3. N − Constant curves with quasi frame 

 

Definition 3.13. Suppose, a regular unit speed curve in 

𝔼3  is denoted by γ : I ⊂ ℝ  → 

𝔼3. If the length of the normal component of the curve ‖𝛾𝑁‖ 

is constant, then the curve  is called N − constant curve 

[2]. Especially, if ‖𝛾𝑁‖ = 0, then the curve is called as 

N−constant curve of first kind, if not, second kind. 

So, for a N – constant curve γ in 𝔼3      

( ) ( ) ( ) )37(smsms 2
2

2
1

2
N +=  

becomes a constant function. Therefore, by 

differentiation 

𝑚1
′ m1 + 𝑚2

′ m2 = 0                                         (38) 

For the N − constant curves of first kind we give the 

following result. 

Lemma 3.14. : Let γ : I → 𝔼3 be a unit speed regular 

curve according to q − frame in Euclidean 3 − space. If it 

is congruent to N − constant curve, then the following 

equation system is hold: 

                                 𝑚0
′ − k1m1−k2m2= 1, 

                                 𝑚1
′ +k1m0−k3m2= 0, 

                                 𝑚2
′ +k2m0+ k3m1 = 0,                  (39) 

𝑚1
′ m1 + 𝑚2

′ m2 = 0. 

Theorem 3.15. Let γ be a N − constant curve of first 

kind. Then it corresponds to a straight line. 

Proof. Let γ be a N − constant curve of first kind. Then 

𝑚1
2 + 𝑚2

2 = 0 

Hence, we write m1 = 0, m2 = 0. The position vector is 

given by γ (s) = m0t(s). Since the curve is along to its 

tangent, it corresponds to a straight line. 

Proposition 3.16. Let γ : I →𝔼3 be a unit speed regular 

curve with respect to quasi frame in 𝔼3 . Then it is 

congruent to N − constant curve of second kind if and 

only if it is a T − constant curve of first kind or the 

position vector is given by 

γ (s) = (s + b)t(s) +
𝑘1

2+𝑘2
2

𝑘1
′ k2−k1𝑘2

′ −(𝑘1
2+𝑘2

2)k3
nq(𝑠) +

−k1(𝑘1
2+𝑘2

2)

𝑘2(𝑘1
′ k2−k1𝑘2

′ )−(𝑘1
2+𝑘2

2)k3
bq(𝑠) 

Proof. Let γ be a N − constant curve of second kind. 

Then the equation system (39) is satisfied. Multiplying 

the second equation of (39) with m1 and multiplying the 

third equation of (39) with m2, the sum of these relations 

are 

m0(k1m1+k2m2) = 1 

Using the first equation of (39), we obtain m0 (𝑚0
′ −1) = 

0. If m0 = 0, then it corresponds to a T − constant curve 

of first kind. 

If 𝑚0
′  = 1, then putting m0 = s+b into (39) we get 

k1m1+k2m2 = 0 

Substituting m2  = 
−k1m1

k2
 into the second equation of 

(39), we write 

                 𝑚1
′ =

−k1k3

k2
m1 − k1(𝑠 + 𝑏)                      (40)                                 

Also, substituting m2 = 
−k1m1

k2
  into the third equation of 

(39), we write 

[
−k1m1

k2
]
′

+k2(𝑠 + 𝑏)+ k3m1 = 0 

              [
−k1

k2
]
′

m1 −
k1

k2
𝑚1

′ + k2(𝑠 + 𝑏)+ k3m1 = 0  (41)                                   

Combining (40) and (41), we yield 

m1 =
𝑘1

2 + 𝑘2
2

𝑘1
′ k2 − k1𝑘2

′ − (𝑘1
2 + 𝑘2

2)k3

 

Since m1 =−
k1

k2
m1, then 

m2 =
−k1(𝑘1

2 + 𝑘2
2)

𝑘2(𝑘1
′ k2 − k1𝑘2

′ − (𝑘1
2 + 𝑘2

2)k3)
 

This completes the proof. 
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