

29

Volume Special Issue, Issue 1, Page 29-36, 2024 https://doi.org/10.46810/tdfd.1425662 Research Article

Performance Analysis of Span Data Type in C# Programming Language

Hakan AKDOĞAN1* , Halil İbrahim DUYMAZ1 , Nadir KOCAKIR1 , Önder KARADEMİR1

1* Özdilek Ev Tekstil San. ve Tic. AŞ, Özveri Ar-Ge Merkezi, Bursa, Türkiye

Hakan AKDOĞAN ORCID No: 0009-0000-5067-268X

Halil İbrahim DUYMAZ ORCID No: 0009-0005-8406-8831

Nadir KOCAKIR ORCID No: 0000-0001-7421-0631

Önder KARADEMİR ORCID No: 0000-0001-5757-7335

*Corresponding author: hakan.akdogan@ozdilek.com.tr

(Received: 25.01.2024, Accepted: 07.03.2024, Online Publication: 01.10.2024)

Keywords

C#,

Span Data

Type,

Performance

Analysis,

.NET Core

Abstract: This study presents a comparative analysis of the Span data type in the C# programming

language against other data types. Span is a data type supported in .NET Core 2.1 and later versions,

and this research investigates its impact on method performance and memory usage. The primary

objective of the study is to highlight the potential advantages of the Span data type for C#

developers. In pursuit of this goal, the study examines the performance effects of the Span data type

through comparative analyses using various methods. For instance, when comparing the

StringReplace and SpanReplace methods over 1000 iterations, it is observed that SpanReplace is

significantly faster. Similarly, analyses conducted on methods like Contains used in data types such

as Queue, List, and Stack demonstrate the performance advantages of the Span data type. In

scenarios where the Span data type is employed, it is determined that memory consumption is lower

compared to other data types. These findings can assist C# programmers in understanding the

potential of the Span data type and optimizing their code accordingly. The Span data type may be a

more effective option, especially in data processing and performance-sensitive applications.

C# Programlama Dilinde Span Veri Türünün Performans Analizi

Anahtar

Kelimeler

C#,

Span Veri

Tipi,

Performans

Analizi,

.NET Core

Öz: Bu çalışma, C# programlama dilindeki Span veri tipinin diğer veri tipleriyle karşılaştırmalı

analizini sunmaktadır. Span, .NET Core 2.1 ve sonrasında desteklenen bir veri tipidir ve bu

araştırma, bu veri tipinin metot performansı ve bellek kullanımı üzerindeki etkilerini araştırmaktadır.

Çalışmanın temel amacı, C# geliştiricilerine Span veri tipinin potansiyel avantajlarını vurgulamaktır.

Bu amaç doğrultusunda, çeşitli metotlar kullanılarak yapılan karşılaştırmalı analizlerle Span veri

tipinin performans üzerindeki etkileri incelenmiştir. Örneğin, StringReplace ile SpanReplace

metotları 1000 iterasyonda karşılaştırıldığında, SpanReplace'in önemli ölçüde daha hızlı olduğu

görülmüştür. Benzer şekilde, Queue, List, Stack gibi veri tiplerinde kullanılan Contains metodu

üzerinde yapılan analizler de Span veri tipinin performans avantajlarını göstermiştir. Span veri

tipinin kullanıldığı senaryolarda, bellek tüketiminin diğer veri tiplerine göre daha düşük olduğu

belirlenmiştir. Bu bulgular, C# programcıları için Span veri tipinin potansiyelini anlamalarına ve

kodlarını optimize etmelerine yardımcı olabilir. Span veri tipi, özellikle veri işleme ve performans

hassas uygulamalarda daha etkili bir seçenek olabilir.

www.dergipark.gov.tr/tdfd

http://www.dergipark.gov.tr/tdfd
http://www.dergipark.gov.tr/tdfd
https://orcid.org/0009-0000-5067-268X
https://orcid.org/0009-0005-8406-8831
https://orcid.org/0000-0001-7421-0631
https://orcid.org/0000-0001-5757-7335
http://www.dergipark.gov.tr/tdfd
http://www.dergipark.gov.tr/tdfd

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 29-36, 2024

30

1. INTRODUCTION

The ever-evolving landscape of programming languages

demands a continual exploration of novel features and

data types to enhance code efficiency and application

performance. In this context, the present study conducts

a comprehensive comparative analysis focusing on the

Span data type within the C# programming language,

contrasting its attributes against other prevalent data

types. Span, introduced and supported in .NET Core 2.1

and subsequent versions, emerges as a key subject of

investigation. This research delves into the intricate

dynamics of the Span data type, aiming to discern its

influence on method performance and memory

utilization.

The primary objective of this study is to elucidate the

latent advantages that the Span data type offers to

developers immersed in the C# programming paradigm.

To achieve this goal, the research employs a systematic

approach, scrutinizing the performance implications of

the Span data type through meticulous comparative

analyses leveraging various methods.

Furthermore, the study extends its inquiry to encompass

analyses of methods such as Contains, Slice, SubString,

StartsWith and Replace commonly employed in data

types like String, Queue, List, and Stack. The outcomes

of these analyses consistently underscore the

performance advantages inherent in the utilization of the

Span data type. Notably, in scenarios where the Span

data type finds application, discernible reductions in

memory consumption are identified in contrast to other

data types.

The findings of this investigation bear substantial

implications for C# programmers, providing valuable

insights into the untapped potential of the Span data

type. Armed with this knowledge, developers can make

informed decisions in optimizing their code to harness

the advantages offered by the Span data type.

Consequently, the Span data type emerges as a

promising and more effective option, particularly in

domains that demand enhanced data processing

capabilities and cater to performance-sensitive

applications.

2. LITERATURE REVIEW

Code effiency and application performance has been a

topic of growing interest in the field of software

engineering. This literature review aims to provide a

comprehensive overview of existing studies,

methodologies, and advancements.

The study titled "Performance Characterization of .NET

Benchmarks," conducted by Deshmukh et al. [1],

published in IEEE in 2021, investigates hardware

performance bottlenecks in .NET applications.

Employing Principal Component Analysis (PCA) and

hierarchical clustering on open-source .NET and

ASP.NET benchmarks, the research reveals that these

applications possess distinct characteristics compared to

traditional SPEC-like programs. Consequently, this

dissimilarity underscores the need for consideration in

architectural research. The study highlights that .NET

benchmarks exhibit a significantly higher front-end

dependency and analyzes the effects of managed runtime

events, such as Garbage Collection (GC) and Just-in-

Time (JIT) compilation.

The article titled Measuring Performance Improvements

in .NET Core with BenchmarkDotNet by Almada [2],

investigates the performance implications of value-type

versus reference-type enumerators in C#. The author

begins by highlighting how the C# compiler generates

different code for the 'foreach' keyword based on the

type of the collection. The critical distinction lies in

whether the GetEnumerator() method returns a value

type or a reference type enumerator, which significantly

impacts collection iteration performance. Reference-type

enumerators, associated with classes and interfaces,

involve virtual calls and heap allocations, potentially

affecting performance. On the other hand, value-type

enumerators, exemplified by collections like List<T>,

demonstrate improved performance, especially for large

collections, and avoid heap allocations. The article

includes benchmarking using BenchmarkDotNet,

comparing the performance of iterating a List<int> when

cast to IEnumerable<int> (reference-type enumerator)

versus using List<int> directly (value-type enumerator).

The results indicate substantial performance differences,

with value-type enumerators outperforming their

reference-type counterparts. The article concludes by

emphasizing the importance of considering the

implications of virtual calls, recommending the use of

value-type enumerators for better performance in

collection iteration, and encouraging the adoption of

immutable collections to avoid casting to interfaces. The

benchmarks conducted on various .NET versions

highlight performance improvements, providing

additional motivation for transitioning to the latest

versions. This insight contributes valuable considerations

for developers seeking to optimize collection iteration

performance in C#.

The research paper by Usman et al. [3], the authors

conduct a performance analysis of searching algorithms

in C#. The study focuses on evaluating the efficiency of

various searching algorithms, including linear search,

binary search, and brute force search, measured in terms

of time complexity. The algorithms are implemented in

the C family of compilers, including C#, and their

performance is assessed on different machines using a

sample file. The analysis considers the execution time of

searching algorithms, with variations observed based on

different systems and file sizes.

The results suggest that linear search exhibits better time

complexity, while brute force search excels in finding all

search patterns. The paper emphasizes the significance

of efficient searching in programming, highlighting its

importance for system throughput and efficiency.

Experimental works include the development of a C#

program incorporating the mentioned algorithms and a

detailed examination of their performance on machines

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 29-36, 2024

31

with varying processing power. The authors conclude by

discussing the implications of their findings and propose

future work involving the implementation of these

techniques on other compilers and exploring space

complexity considerations.

Shastri et al. [4], offer a comprehensive examination of

various searching and hashing algorithms, shedding light

on their efficiencies in terms of time complexity. The

study delves into five distinct algorithms, namely Linear

Search, Binary Search, Interpolation Search, Division

Method Hashing, and Mid Square Method Hashing.

Through rigorous experimentation and analysis, the

authors demonstrate the performance of these algorithms

using Visual Studio C#. They meticulously evaluate the

run-time of each algorithm across different input sizes,

ranging from 10,000 to 100,000 elements, and highlight

the advantages and disadvantages of each. Notably, the

findings reveal that Binary Search consistently

outperforms other algorithms, showcasing its superiority,

particularly for large datasets. This insightful exploration

contributes valuable insights to the field of algorithm

analysis and aids in understanding the optimal choices

for various search and hash functions in real-world

applications.

Arif et al. [5], provide an empirical analysis of C#, PHP,

JAVA, JSP, and ASP.Net with a focus on performance

analysis based on CPU utilization. The paper

underscores the significance of software development

within the context of computer systems, emphasizing the

need for enhanced speed and reliability in modern digital

systems. Through extensive research, the authors explore

the impact of different programming languages on

computer performance and resource utilization, with a

particular emphasis on CPU usage. Their investigation

involves the development of a software application using

these languages, focusing on factors such as algorithm

quality, programming language selection, and SQL

query optimization. The findings suggest that JAVA/JSP

exhibit superior performance compared to other

languages in terms of CPU usage, memory utilization,

and execution time, providing valuable insights for

developers and software architects aiming to optimize

system performance.

Sestoft [6], explores the comparative numeric

performance of C, C#, and Java across various small-

scale computational tasks. While managed languages

like C# and Java offer ease of use and safety, their

performance in numeric computations, especially

involving arrays or matrices of floating-point numbers, is

comparatively inferior to that of traditional languages

like C and C++. This performance gap arises due to

differences in compiler optimization strategies, array

access overheads, and the need for index checks in

managed languages, which can incur additional

execution overhead and hardware slowdowns. However,

the study demonstrates that with careful optimization

techniques, such as employing unsafe code in C# or

leveraging high-performance virtual machines in Java,

it's possible to narrow this performance gap, showcasing

the nuances and trade-offs in numeric computation

across these languages.

This study presents a comparative analysis of the Span

data type, supported in .NET Core 2.1 and later versions,

within the context of other data types in the C#

programming language. While existing literature has

analyzed various aspects of .NET applications, including

hardware performance bottlenecks, C# collection

iteration performance, the efficiency of different search

algorithms, and the impact of programming languages on

CPU usage, this work specifically focuses on the effects

of the Span data type on method performance and

memory utilization, adding a new dimension to the

discourse. Previous studies have primarily concentrated

on performance comparisons of specific algorithms,

programming languages, or .NET versions. In contrast,

this study examines the direct impacts of utilizing the

Span data type in terms of method performance and

memory usage, aiming to highlight its potential

advantages for C# developers. By comparatively

analyzing the performance differences in specific

methods such as StringReplace and SpanReplace, and

the effects on memory consumption in data types

(Queue, List, Stack) when methods like Contains are

used, this work demonstrates that the Span data type can

be a more effective option for applications with high

performance sensitivity and data processing

requirements. Therefore, this study significantly

contributes to the existing literature by revealing the

potential that the Span data type, introduced in newer

versions of .NET Core, offers for code optimization

within the C# programming paradigm, using academic

language.

3. MATERIAL AND METHOD

3.1. Span Data Type

The methodology employed in this research revolves

around a comprehensive investigation of the Span data

type in C#, introduced in version 7.2 and supported in

.NET Core 2.1 and subsequent releases. The primary

objective of the Span data type is to efficiently handle

data in memory and expedite processing procedures,

making it an ideal choice for operations involving

substantial datasets.

The robust aspects and limitations of the Span data type

are categorized under specific headings, facilitating a

more straightforward interpretation of the data collected

in the study.

3.1.1. Memory management and performance

The study is focused on how Span is designed to

optimize memory usage and enhance processing speed in

.NET applications. Traditional collection structures often

maintain data on the heap, leading to unnecessary RAM

occupation and increased Garbage Collector workload.

Span, however, stores data pointers on the Stack. The

Stack, typically limited to around 4 MB per application,

provides faster access compared to the heap. Given these

considerations, the Stack offers significantly faster

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 29-36, 2024

32

access than the heap. Therefore, the ability of Span to

keep data on the stack enables swift operations.

In Figure 1, the utilization of stack and heap memory for

the String data type is illustrated.

Figure 1. The way string uses stack and heap memories [7]

In Figure 2, the utilization of stack memory by the Span

data type is illustrated.

Figure 2. The way span use stack memory [8]

3.1.2. Reduced memory footprint

Span allows the usage of data on the stack without

memory allocation by pointing to it. This is particularly

advantageous in operations such as data copying, slicing,

and sorting. Unlike traditional collections that produce

new objects for such operations, Span directly accesses

existing data through pointers stored on the stack. This

prevents unnecessary memory allocations, contributing

to more efficient application performance.

3.1.3. Memory efficiency

The study highlights the significant advantages of Span

in terms of memory efficiency. For instance, when

working with a string, traditional substring methods

create new references in memory for each extracted

portion, leading to excessive memory consumption and

increased Garbage Collector activity. Span, on the other

hand, maintains an offset and length on the stack,

avoiding the creation of new references on the heap. This

offset and length point to the desired portion of the string

data on the heap, allowing operations to be completed

without creating new references in memory.

3.1.4. Ref struct

The Span is categorized as a ref struct type, indicating

specific limitations. Span cannot operate under any

async-marked methods or Iterator methods. This

restriction arises from the usage of local variables in

both methods. Unlike these methods, Span avoids local

variable assignments to preserve data and disposes of

data from memory when the scope is exited.

Additionally, ref struct types cannot implement

interfaces.

3.2. Environment and Libraries

In the conducted study, based on the information

gathered about the Span data type, tests were conducted

using both simulated data and real data from applications

used in our company. These tests were performed using

C# and .NET Framework 7.0. In order to conduct

controlled iterations for testing purposes and perform

data manipulation using predefined functions, the

BenchmarkDotNet library was used. The performance

difference between the Span data type and other included

data types was revealed through these tests. All tests

were conducted in the same environment, and multiple

repetitions ensured the elimination of undesired

conditions that could impact test results.

The physical characteristics of the testing environment

and the libraries employed are presented in the below

table.

3.2.1. Test environment

In Table 1, certain specifications regarding the physical

environment in which the experiments were conducted,

including Processor, RAM, Operating System, and the

necessary library for performance measurement during

the experiments, are provided.

Table 1. Test Environment

Processor Intel(R) Core(TM) i7-8550U CPU @
1.80GHz

RAM 16 GB

Operating

System

Microsoft Windows 11 Pro

Library BenchmarkDotNet-0.13.5

3.2.2. BenchmarkDotNet

BenchmarkDotNet is a versatile tool designed to

seamlessly convert methods into benchmarks, monitor

their performance, and facilitate the dissemination of

reproducible measurement experiments. This library

simplifies the benchmarking process, akin to composing

unit tests. Its internal mechanisms leverage sophisticated

techniques, notably the perfolizer statistical engine,

ensuring the generation of reliable and precise results.

Beyond its facilitative role, BenchmarkDotNet serves as

a protective barrier against common benchmarking

pitfalls, offering alerts for potential issues within

benchmark design or acquired measurements. The output

is presented in an intuitive format that accentuates

crucial details about the experimental outcomes [9].

4. DATA ANALYSIS AND DISCUSSION

In this section, an in-depth analysis is presented

concerning the performance aspects observed within the

context of a online education portal project developed at

Özdilek Özveri R&D Center. The examination focuses

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 29-36, 2024

33

on empirical evaluations conducted on genuine user data,

exceeding a count of 80,000 records, to systematically

discern the performance distinctions between the Span

and List data types. Special attention is devoted to

benchmark tests meticulously devised to highlight the

unique performance attributes of the Span data type,

particularly in the realm of data manipulation within the

String data type. The dataset utilized for these

benchmark tests is structured in JSON format, ensuring

consistency across each test iteration. The ensuing

analysis and discussion shed light on the nuanced aspects

of performance exhibited by these data types in real-

world applications, providing valuable insights into their

respective strengths and capabilities.

The JSON data utilized in real-world data tests is

presented in Figure 3 below.

Figure 3. JSON User Data

4.1. User Data Benchmark Tests

4.1.1. User data contains method benchmark

Contains Method: The Contains method is used to check

if a specified element is present in a collection, such as

an array or list. It returns true if the element is found and

false if not. This method is commonly used to determine

the existence of an item in a dataset, providing a

straightforward way to perform such checks in .NET

applications.

In this benchmark test, the presence of the term

"example" is being examined within the email field of

the JSON where user data is stored [10].

As illustrated in the figure below, the Contains method

applied on Span exhibited a performance approximately

two times faster than when applied on List.

Figure 4. Contains Method Benchmark

4.1.2. User data binary search method benchmark

Binary Search Method: The Binary Search method is

employed to efficiently locate a specified value within a

sorted collection, such as an array or list. It follows a

binary search algorithm, systematically dividing the

collection in half and determining whether the sought

value lies in the first or second half. This process

continues until the exact position of the value is

identified or it is confirmed that the value is not present

in the collection. The binary search method is

particularly advantageous for large datasets due to its

logarithmic time complexity, resulting in faster search

operations compared to linear search algorithms.

In this benchmark test, the presence of the term

"example" is being examined within the email field of

the JSON where user data is stored [11].

As illustrated in the figure below, the Binary Search

method applied on Span concludes the operation in

approximately 55 ns, whereas List completes the same

operation in around 73 ns.

Figure 5. Binary Search Method Benchmark

4.1.3. User data slice method benchmark

Slice Method: The Slice method efficiently extracts a

contiguous subset of elements from a data structure, like

an array or a Span. Rather than copying elements, it

creates a new view or reference to the original data,

allowing for enhanced performance and reduced memory

usage when working with specific data segments. This

feature is particularly useful for handling large datasets

with improved efficiency [12].

As illustrated in the figure below, the Slice method

applied on Span accomplishes the task of cutting a JSON

array in approximately 1 ns, whereas, in contrast, this

operation takes around 15 ns when performed on a List.

0 5 10 15

List Contains

Span Contains

Mean(ns)

List Contains Span Contains

0 20 40 60 80

List Binary Search

Span Binary Search

Mean(ns)

List Binary Search Span Binary Search

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 29-36, 2024

34

Figure 6. Slice Method

4.2. Example Data Benchmark Tests

In this section, benchmark tests have been conducted by

iterating 10,000 times over the sentence 'This is an

example sentence.' for performance evaluation.

4.2.1. Example data replace method benchmark

Replace Method: The Replace method is a string

manipulation function that replaces all occurrences of a

specified substring with another substring within a given

string. It provides a straightforward way to modify string

content by substituting specified patterns with desired

values. The method takes two string parameters: the first

represents the substring to be replaced, and the second

represents the new substring. The replacement is applied

to all instances of the specified substring in the original

string. This function is commonly used for simple text

transformations and substitutions within string data [13].

In this benchmark test, the Replace method was applied

to substitute the substring "an example" with "a sample"

in the sentence "This is an example sentence." As

illustrated in the figure below, when applied to a Span,

the operation concludes in approximately 25,000 ns,

while on a String, it takes about 430,000 ns to complete.

This comparison highlights the substantial performance

advantage of using the Replace method with Span over

String.

Figure 7. Replace Method

As illustrated in the graph below, when this method is

applied to a Span, it performs the operation without any

memory allocation, whereas when applied to a String, it

allocates approximately 500,000 B of memory. This

observation underscores the efficient memory handling

of the method when used with Span compared to the

memory allocation associated with its application on

String.

Figure 8. Replace Method Allocated Memory

4.2.2. Example data slice method benchmark

In the benchmark test, the Slice method was applied to

truncate the sentence "This is an example sentence" from

the first character to the 20th character, resulting in the

string "This is an example se". As illustrated in the figure

below, the tests conducted with the Slice method

revealed that the utilization of Span is approximately 9

times faster than its counterpart using String.

Figure 9. Slice Method

4.2.3. Example data startsWith method benchmark

StartsWith Method: The StartsWith method is used to

determine whether a given string begins with a specified

prefix. It returns a boolean value indicating whether the

string starts with the provided prefix. This method is

commonly employed to perform simple prefix-based

checks in strings without the need for manual character

comparisons. The result is true if the string starts with

the specified prefix; otherwise, it returns false. The

method is straightforward and provides a convenient

way to validate the initial portion of a string in various

applications, including text processing and pattern

matching [14].

In this benchmark test, the StartsWith method was

employed to determine whether the sentence "This is an

example sentence" begins with the word "This." As

illustrated in the figure below, the comparison using the

StartsWith method revealed a significant performance

gap. While the String implementation took nearly 38,000

ns to complete this operation, the Span implementation

accomplished it in a mere 2.8 ns. This emphasizes the

0 5 10 15 20

List Slice

Span Slice

Mean(ns)

List Slice Span Slice

0

200.000

400.000

600.000

String Replace Span Replace

Mean(ns)

String Replace Span Replace

0

200000

400000

600000

String Replace Span Replace

Allocated(B)

String Replace Span Replace

0

5

10

String Slice Span Slice

Mean(ns)

String Slice Span Slice

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 29-36, 2024

35

noteworthy efficiency advantage of the Span type in

performing prefix-based checks compared to traditional

String operations.the benchmark test, the Slice method

was applied to truncate the sentence "This is an example

sentence" from the first character to the 20th character,

resulting in the string "This is an example se". As

illustrated in the figure below, the tests conducted with

the Slice method revealed that the utilization of Span is

approximately 9 times faster than its counterpart using

String.

Figure 10. StartsWith Method

4. CONCLUSION

The findings from our comprehensive investigation into

the Span data type in C# programming unequivocally

demonstrate its superior efficiency in memory utilization

and processing speed relative to traditional data types.

Our research, grounded in a methodical comparative

analysis of real-world and synthetic datasets, highlights

the significant advantages of employing Span across

various computational methods. Notably, our results

reveal that SpanReplace consistently outshines

StringReplace in terms of performance over 1000

iterations, thereby affirming the efficiency gains

attainable with Span's adoption.

Our examination of memory consumption patterns

further underscores the importance of Span, showcasing

a marked reduction in memory footprint when

juxtaposed with conventional data types. This facet is

particularly salient in the processing of large datasets,

where efficient memory management is directly linked

to the overall performance of applications.

The implications of our findings extend well beyond the

realm of performance enhancement. They furnish C#

developers with valuable insights into codebase

optimization, enabling them to leverage the full potential

of the Span data type. With this knowledge, developers

are better equipped to tackle the challenges of

performance-sensitive applications, benefiting from the

tangible improvements in speed and memory efficiency

that Span offers.

Looking forward, our study serves as a robust foundation

for future research focused on the Span data type.

Further investigations could explore specific use cases or

optimization strategies across various application

domains, enriching our understanding of Span's

performance characteristics through the inclusion of

empirical data from a broader array of scenarios.

In summary, our research elucidates the transformative

potential of the Span data type within C# programming,

heralding it as a pivotal choice for high-performance and

memory-efficient applications. As the software

development landscape evolves, the insights derived

from our study will undoubtedly contribute to ongoing

advancements in code efficiency and application

performance.

Acknowledgement

This study was presented as an oral presentation at the

"6th International Conference on Life and Engineering

Sciences (ICOLES 2023)" conference.

REFERENCES

[1] Deshmukh R, Li R, Sen RR, Henry M, Beckwith

G, Gupta G. Performance characterization of .NET

benchmarks. IEEE International Symposium on

Performance Analysis of Systems and Software

(ISPASS); 2021 Apr. Stony Brook, NY, USA. p.

107-17. doi: 10.1109/ISPASS51385.2021.00028.

[2] Almada A. Performance of value-type vs.

reference-type enumerators in C# [Internet]. 2023

Jul 22 [cited 2023 Jul 22]. Available from:

https://www.linkedin.com/pulse/performance-

value-type-vs-reference-type-enumerators-

ant%C3%A3o-almada/

[3] Usman M, Bajwa Z, Afzal M. Performance

analysis of searching algorithms in C#.

International Journal for Research in Applied

Science & Engineering Technology (IJRASET).

2014;2(4):511-3.

[4] Shastri S, Singh A, Mohan B, Mansotra V. Run-

time analysis of searching and hashing algorithms

with C# [Internet]. 2016 Dec [cited 2016 Dec].

Available from:

https://www.researchgate.net/publication/3115419

37_Run-

Time_Analysis_of_Searching_and_Hashing_Algo

rithms_with_C#

[5] Arif MA, Hossain MS, Nahar N, Khatun MD. An

empirical analysis of C#, PHP, JAVA, JSP and

ASP.Net regarding performance analysis based on

CPU utilization. Banglavision Research Journal.

2014;14(1):174-88.

[6] Sestoft P. Numeric performance in C, C# and Java

[Internet]. 2007 Feb 28 [cited 2007 Feb 28].

Available from:

https://www.researchgate.net/publication/2283808

60_Numeric_performance_in_C_C_and_Java

[7] The Tech Platform. Why and how string is

immutable in C# [Internet]. 2021 Oct [cited 2021

Oct]. Available from:

https://www.thetechplatform.com/post/why-and-

how-string-is-immutable-in-c

[8] Wickramarathna N. An introduction to writing

high-performance C# using Span<T> struct

[Internet]. 2021 Dec [cited 2021 Dec]. Available

from: https://nishanc.medium.com/an-

0

200000

400000

String StartsWith Span StartsWith

Mean(ns)

String StartsWith Span StartsWith

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 29-36, 2024

36

introduction-to-writing-high-performance-c-using-

span-t-struct-b859862a84e4

[9] BenchmarkDotNet. BenchmarkDotNet: Powerful

.NET library for benchmarking [Internet]. 2024

Jan [cited 2024 Jan]. Available from:

https://github.com/dotnet/BenchmarkDotNet

[10] CodeAcademy. Contains() [Internet]. 2023 Apr

[cited 2023 Apr]. Available from:

https://www.codecademy.com/resources/docs/c-

sharp/strings/contains

[11] Tripathi P. Binary search using C# [Internet].

2023 Nov [cited 2023 Nov]. Available from:

https://www.c-sharpcorner.com/blogs/binary-

search-implementation-using-c-sharp1

[12] Microsoft. ArraySegment<T>.Slice Method

[Internet]. 2024 Jan [cited 2024 Jan]. Available

from: https://learn.microsoft.com/en-

us/dotnet/api/system.arraysegment-

1.slice?view=net-8.0

[13] Geeks for Geeks. C# | Replace() method

[Internet]. 2019 May [cited 2019 May].

Available from:

https://www.geeksforgeeks.org/c-sharp-replace-

method/

[14] Microsoft. String.StartsWith Method [Internet].

2024 Jan [cited 2024 Jan]. Available from:

https://learn.microsoft.com/en-

us/dotnet/api/system.string.startswith?view=net-

8.0

