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ABSTRACT

Objective: Functional connectivity serves as a widely employed metric in neuroscience research focusing on the dynamics of the brain. 
Additionally, non-neuronal physiological oscillations are acknowledged as being able to impact functional connectivity. This study aimed 
to explore the effects of non-neuronal hypercapnic stimulation on the activity of intrinsic connectivity networks (ICNs), as well as the 
dynamic changes in connectivity between them.

Materials and Methods: The study involved 10 healthy participants, encompassed their functional magnetic resonance imaging (fMRI) 
scans with carbon dioxide-enriched air stimuli in a block paradigm, with group independent component analysis (GICA) being used for 
defining ICNs. Similarity analysis has been conducted between the connectivity changes in the network components and the end-tidal 
partial pressure of carbon dioxide (PETCO2).

Results: The study has identified 40 components representing 10 ICNs. Of these, 11 components representing seven ICNs were found to 
have significantly correlated time courses with PETCO2. Among the networks without correlated components, the dynamic functional 
connectivity metrics of the language network and the subcortical network have been found to be significantly modulated by PETCO2.

Conclusion: The cerebrovascular reactivity to a hypercapnic stimulus is a factor that influences changes in the blood oxygenation level-
dependent fMRI signal. This non-neuronal effect is detectable for ICN components derived by the GICA technique and must be considered 
when making inferences about network connectivity metrics.
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INTRODUCTION

Functional connectivity, commonly characterized as the 
coordination of activity among different brain regions, 
represents the communication and transfer of information 
within the brain. In order to investigate connectivity, one 
study conducted an examination of the similarity in blood 
oxygen level dependent (BOLD) signals from different brain 
regions through the use of functional magnetic resonance 
imaging (fMRI) during both task activations and resting 
state (1). Studies on resting state functional connectivity 
offer insights into the spontaneous low-frequency 

BOLD oscillations within the brain (2, 3). This approach 
is particularly preferred as it requires minimal active 
participation from subjects, thus allowing the detection of 
connectivity networks.

Intrinsic connectivity networks (ICNs, also known as resting 
state networks) refer to a collection of brain regions that 
exhibit similarities in their BOLD time series acquired during 
resting state. Investigating the dynamics of the brain using 
functional connectivity allows researchers to identify ICNs 
and evaluate cognitive tasks, conditions, and diseases from 
a network perspective. Functional connectivity analysis 
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of fMRI data and the detection of connectivity networks can 
be conducted through two fundamental methods. The first 
involves the detection of brain voxels correlated with the 
average BOLD response of a predetermined brain region or seed 
region based on a hypothesis (4). The second method employs 
a data-driven, exploratory approach known as independent 
component analysis (ICA) (5). ICA has the ability to extract 
meaningful information from complex data without the need 
for a priori anatomical assumptions or subjective selection of 
seed areas. Another aspect of ICA is its capability to isolate 
sources of noise to some extent. In functional neuroimaging, 
the presence of noise such as physiological artifacts or scanner-
related distortions can significantly impact the quality and 
interpretability of the data. By decomposing mixed signals into 
independent components, ICA can help identify and separate 
out noise sources (6), thereby enhancing the signal-to-noise 
ratio and improving the overall robustness of the analysis.

While ICA can aid in isolating sources of noise, importance is 
had in recognizing that BOLD signal changes may indeed arise 
from non-neuronal sources. However, BOLD fMRI alterations 
may result from neuronal activation via neurovascular 
coupling, or they can originate from various other physiological 
processes influencing cerebral blood flow (CBF), oxygenation, 
or volume. In this sense, BOLD fMRI can be utilized not only 
for studying neuronal activity but also for assessing vascular 
health (7). This process is linked to cerebrovascular reactivity 
(CVR), which refers to the ability of blood vessels in the brain 
to dilate or constrict in response to a hypercapnic stimulus. 
Hypercapnic stimulation can be achieved by breathing carbon 
dioxide-enriched air or breath-holding, which in turn triggers 
an increase in CBF and results in an increase in the BOLD signal. 
Thus, CVR can be assessed by analyzing the variations of the 
BOLD signal during breathing paradigms (8). Importantly, given 
that both CVR and functional connectivity rely on the analysis 
of BOLD echo planar imaging (EPI), estimating connectivity 
parameters becomes plausible using CVR data.

This study aimed to explore how the BOLD response, which 
varies in response to a hypercapnic stimulus, impacts ICNs. This 
exploration is important for understanding the extent to which 
these networks, traditionally seen as neuronal, are influenced 
by physiological signals.

MATERIALS AND METHODS

MRI Dataset and Physiological Recordings

This study used the MRI data shared by Blockley et al. at the 
Oxford University Research Archive (9). The published research 
article that utilized this data focused on the feasibility of 
reliably calculating CVR maps within clinically acceptable 
scan durations. It explored the use of CO2-enriched air with a 
sinusoidally modulated stimulus paradigm as an alternative to 
the Toronto block paradigm, in which the hypercapnic stimuli 
are administered in block form (9). Despite the sinusoidal 
breathing paradigm being considered a promising alternative, 
this study has chosen to use only the MRI data acquired during 

the Toronto breathing paradigm. Additionally, it utilized the 
partial pressure of end-tidal CO2 (PETCO2) data obtained during 
the MRI scans.

The MRI dataset comprises functional and structural images 
from 10 healthy participants (5 females; age range 19–21) 
and were acquired using a 3T scanner. The fMRI scans were 
consisted of 210 EPI volumes lasting 7 minutes, with time of 
repetition (TR) equal to 2000 ms and time of echo (TE) equal to 
30 ms, covering the whole brain at a voxel size of 3.4 x 3.4 x 5 
mm3. Additionally, T1-weighted structural scans were obtained 
with 1.5 mm isotropic voxels. For the hypercapnic stimulation 
during functional imaging, a gas mixture (CO2-enriched air) 
was breathed by the participants and administered using 
a gas blender (RespirAct™ Gen 3, Thornhill Research Inc., 
Toronto, Canada). The Toronto protocol had two hypercapnia 
blocks with an increase of 10 mmHg from the subject’s specific 
baseline level of PETCO2 and lasted 45 s and 120 s. The protocol 
has three baseline level periods: 1) lasting 60 seconds at the 
beginning, 2) lasting 90 seconds between two blocks, and 3) 
lasting 105 seconds at the end (10). Further details about the 
scanning parameters and experimental setup were described 
in the reference paper (9).

Data Analysis

Preprocessing

All preprocessing steps were performed using the program 
FMRIB’s Software Library (FSL v6.0; www.fmrib.ox.ac.uk/
fsl). Field maps and functional images were used during 
the preprocessing stages to cover motion and distortion 
correction and slice timing correction (11, 12). Structural and 
functional images were co-registered using a boundary-based 
registration method (13) and normalized to the Montreal 
Neurological Institute (MNI) space. Segmentation procedures 
were employed to derive grey matter masks for individual 
subjects. These masks were then utilized to compute the 
subject-specific global signal (GS) representing the average 
brain signal encompassed within this defined mask. Spatial 
smoothing with a 5 mm full width at half maximum (FWHM) 
kernel was applied as the final stage of preprocessing (14). 

Group Independent Component Analysis

Preprocessed functional data were decomposed into 
functional networks using the Group ICA of fMRI Toolbox 
(GIFT; http://mialab.mrn.org/software/gift/), and 100 common 
spatially independent components (ICs) were detected (15). 
Variance normalization was applied prior to the GICA analysis. 
In the first stage of dimension reduction, 200 subject-specific 
principal components were obtained. Subsequently, a second-
dimension reduction was implemented on the aggregated 
group data that was composed of sequentially added principal 
components from all participants, resulting in 100 principal 
components. The Infomax algorithm was utilized to maximize 
the spatial independence of the data (15). To increase the 
reliability of the ICA algorithm, the procedure was repeated 20 
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times with the ICASSO method, in which the most central run 
was chosen as the resulting IC. A group information-guided ICA 
(GIG-ICA) approach within the GIFT was used to derive subject-
specific ICs that match the obtained group components while 
preserving their spatial independence (16).

The commonly used method in the component labeling 
process is the visual inspection of three complementary pieces 
of information from the components: the spatial map, time 
series, and spectral power (17). As a result of the evaluation, 
40 of the 100 components were defined as the network 
components of the ICNs. The cortical network atlas of the 
program Functional Connectivity Toolbox (CONN v20b) (18) 
and the network parcellation atlas of Yeo et al. (19) were used 
to label the network components. Additionally, the subcortical 
network was labeled, as it had not been defined in either atlas.

The Similarity of Time Courses Between the 
Network Components and PETCO2

To investigate the level of temporal similarity, the study 
employs a comprehensive analysis pipeline as illustrated 
in Figure 1. The focus centers on assessing the correlation 
between the time course of the PETCO2 and the defined 
network components. To ensure accurate temporal alignment 
before the correlation analysis, the study employs GS as the 
reference signal. Calculating the GS involves transforming the 
gray matter probabilistic map produced in the segmentation 
stage into a mask consisting of voxels above a threshold value 
of 0.5 and then extracting the average BOLD time series of the 
gray matter mask.

The reference GS was initially utilized to correct the temporal 
delay of the PETCO2 time course for each subject by employing 
cross-correlation, thereby ensuring synchronization (time-
locked) with the GS. The open-source Rapidtide v2.2.7 software 
package (20) was used for the cross-correlation calculation. 
Further refinement was performed by adjusting the temporal 
position of the PETCO2 time course using component delay 
times relative to the GS. However, the conventional cross-
correlation method, which identifies time delays based on 
maximum correlation, was deemed unsuitable due to potential 
uncorrelatedness between the ICA-derived component 
time courses and the PETCO2 time course. Consequently, 
component delay times were determined using the average 
time courses within the component maps. A threshold (t > 
2.0) was applied to the spatial map of the relevant component, 
and the gray matter mask was multiplied while creating the 
component ROIs. The average signal within the component 
ROI was calculated, and the time delay of this signal as detected 
through cross-correlation with GS was considered to be equal 
to the time delay of the corresponding component time course. 
Delay times for the 40 components were used separately to 
correct the time lag between the component time courses and 
PETCO2 time course, and then the correlation coefficients were 
calculated (Figure 1).

Statistical Analyses for Time Series Correlation

Random PETCO2 signals were selected from each participant’s 
own post-calibration period for use in the non-parametric 
statistical analysis in order to make a noise estimate. This 
process was repeated for each participant, with the PETCO2 
signal taken from 10 random time periods obtained by shifting 
10 s. A total of 100 random correlation values (10 for each 
participant) were found in the resulting random correlation 
pool. Fisher’s z-transformation was applied to the correlation 
values before making the statistical inference. Statistical 
analysis was performed using SPSS (IBM SPSS Statistics, v22; 
https://www.ibm.com/tr-tr/products/spss-statistics) to test 
whether the coupled correlation value differed from this 
random correlation pool with an independent samples t-test, 
with a multiple-comparison correction (Bonferroni correction) 
being applied to the results.

PETCO2-Modulated Dynamic Functional 
Network Connectivity Analysis

The study assesses the PETCO2 signal’s modulation of the 
dynamic functional connectivity change between ICN 
component pairs. This involves computing sliding-window 
correlation coefficients between the time-courses of ICN 
components, referred to as dynamic functional network 
connectivities (dFNCs) and subsequently assessing PETCO2’s 
modulatory effect on the resulting dFNCs through regression 
analysis. The GIFT toolbox (21) was utilized for the sliding-
window analysis, and additional modifications were made to 
the dFNC codes to enable regression analysis.

Detrending, despiking, and low-pass filtering (<0.15 Hz) 
were applied to the time series of the ICN components. 
The correlation value was used as the connectivity metric 
in consecutive time windows. The size of the selected time 
windows was chosen as 30 TR (60 s), and the shifting amount 
for consecutive time windows was chosen as 1 TR (2 s). The 
selection of the time window width was carefully balanced 
to avoid being excessively wide, which could lead to a loss of 
dynamism; this also prevents it from being too short, which 
would increase sensitivity to noise (22). In addition, each 
window was convolved with a Gaussian kernel with a 3 TR FWHM 
to eliminate possible discontinuities due to sudden drops 
at the beginning and end of the time windows. Connectivity 
calculations were made for a total of 180 windows, resulting in 
dFNCs comprising 180 values. The PETCO2 signal for which the 
regression analysis will be performed was averaged within the 
same time window and subsequently reduced to 180 values.

Statistical Analysis for Regression

The randomize command in FSL was employed for the 
statistical inference of the regression coefficients using non-
parametric permutation (500 permutations) (23). Multiple-
comparison (family-wise error) correction was applied for each 
ICN component pair, with the significance threshold set at 
pFWE < 0.05.

https://www.ibm.com/tr-tr/products/spss-statistics
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RESULTS

Group Independent Component Analysis 
Results

Following the GICA analysis, a total of 100 independent 
components were acquired. Upon evaluation, 40 of these 100 
components were identified as network components within 

the ICNs (Figure 2).

The default mode network includes six different ICs covering 
the posterior cingulate cortex, medial prefrontal cortex, and 
left lateral parietal regions. The frontoparietal network contains 
five ICs that comprise the left lateral prefrontal cortex and 
left and right posterior parietal cortices. The dorsal attention 
network consists of the left inferior parietal sulcus and right 

Figure 1. Correlation analysis pipeline with time delay correction for each component time course.

Figure 2. Grouped spatial maps of the ICN components determined to be included in a connectivity network as a result of the GICA 
analysis. 
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inferior parietal sulcus. The visual network is represented 
by five ICs that correspond to the right lateral, medial, and 
occipital ICs. The sensorimotor network consists of five ICs that 
cover the superior, left, and right lateral sensorimotor regions. 
The cerebellar network encompasses the anterior cerebellar 
ICs. The salience network comprises the left insula and the right 
prefrontal cortex region. The language network is represented 
by the left and right posterior superior temporal gyri and the 
right inferior parietal gyrus. Additionally, the limbic network 
includes five ICs, and the subcortical network consists of one IC.

Correlation Analysis Results Between ICN 
Components and PETCO2 Signal Change

The subject-wise average temporal shifts applied to the time 
series of the network components prior to the correlation 
analysis were in the range of -1.30 to +1.36 seconds with 
respect to the GS. Significant ICN components exceeding 
the Bonferroni-corrected significance threshold (p<0.05/40) 
as a result of the two-sample t-test are shown in Table 1. 
According to the two-sample t-test, the ICN components that 
show a significant correlation with the PETCO2 signal include: 
the superior component of the sensorimotor network; the 
medial component of the visual network; the left and right 
intraparietal sulcus components of the dorsal attention 
network; the posterior parietal cortex component of the 
frontoparietal network; the medial prefrontal cortex and 
posterior parietal cortex components of the default mode 
network; the limbic network; and the anterior component of 
the cerebellar network.

Regression Analysis Results Between dFNC and 
the PETCO2 Change

The matrix of t-values (Figure 3) resulting from the regression 
analysis revealed relationships between the dFNC values and 
PETCO2 time course. Notably, significant cells were observed 
within the three components of the visual network (visual, 
lateral (R), visual, occipital, visual, medial), despite the absence 
of significant correlations between their time courses and the 
PETCO2 signal. Additionally, other significant findings include 
dynamic connectivity between the sensorimotor, lateral (R) 
component and the subcortical network, as well as between the 
sensorimotor, lateral (R) component and language, posterior 
part of the superior temporal gyrus (pSTG)(L) component. 
These results highlight specific interactions influenced by the 
PETCO2 signal within the examined ICNs.

DISCUSSION

This study has used fMRI data, which captures cognitive 
brain activity, while measuring cerebrovascular reactivity 
through hypercapnic stimulation. During fMRI, hypercapnic 
stimulation increases the blood flow rate due to vasodilation, 
thus increasing the measured functional response. GICA was 
performed to detect intrinsic connectivity networks in this 
dataset. Thus, the study has investigated how non-neuronal 
hypercapnic stimulation affects ICNs that have been obtained 
using fMRI data. The components obtained as a result of the 
GICA were examined, and the components representing ICNs 
were successfully identified. In this respect, the ICNs defined 
in the literature have been shown to be detectable under 
conditions definable as the stress testing of brain vessels. Recent 
studies are found in the literature that support this finding. Hou 
et al. (24) measured resting state and CVR in two separate fMRI 
scans and reported static functional connectivity metrics to be 
calculable despite the presence of hypercapnic stimulation. 
However, dynamic connectivity analyses were not performed 
on the time series of the network components obtained with 
GICA, and they did not investigate their correlation with the 
PETCO2 signal.

Lewis et al. (25) investigated static and dynamic connectivity 
in CVR data and interpreted the correlation between the 
detected ICNs and the PETCO2 signal in the study as the CVR 
of these networks. They reported the sensorimotor and visual 
networks to exhibit high CVR. These findings are consistent 
with the current study’s finding that the dynamic connectivity 
of the sensorimotor and visual networks is modulated by the 
PETCO2 signal.

In addition, the high correlation between ICN and PETCO2 time 
series has been suggested as being attributable to the spare 
capacity the cerebral circulation has for increasing CBF (i.e., the 
vascular reserve of the relevant network) (25). Meanwhile, Tong 
et al. (26) reported GICA to be able to produce networks that do 
not actually exist by applying synthetic time delays to the BOLD 
signal. They interpreted this as the ICA being highly sensitive 

Table 1. ICN components and their significance levels 
showing significant correlation with the PETCO2 signal 
change

Comp. 
Number

Corresponding ICN
mean 

r-value
p-value

44 Sensorimotor, Superior 0.42 0.001

9 Visual, Medial 0.38 <0.001

32 Dorsal Attention, IPS(L) 0.46 <0.001

46 Dorsal Attention, IPS(R) 0.35 <0.001

23 FrontoParietal, PPC (R) 0.36 <0.001

47 Frontoparietal 0.32 <0.001

25 Default Mode, MPFC 0.34 <0.001

45 Default 0.32 0.001

57 Default Mode, PCC 0.41 <0.001

37 Limbic 0.27 0.001

26 Cerebellar, Anterior 0.29 <0.001
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to time delays in the BOLD signal. When evaluated from this 
perspective, the correlation between the PETCO2 time series 
and ICN time series may be due to network-specific delays in 
the systemic signal. In this case, the observed correlation may 
be an indicator of the systemic oscillations reflected onto the 
network.

The current study’s findings show the network components to be 
similar to the PETCO2 time series, whereas network components 
that do not show a direct correlation may have significant 
modulation with PETCO2 in a dynamic connectivity analysis. 

The facts that hypercapnic stimulation affected the connectivity 
metrics in nine of the 10 networks and that this finding indicates 
a more widespread effect than shown in the literature can be 
interpreted in two ways. The first reason may be that, when 
determining ICNs, they are separated into many components, 
resulting in components with a high contamination. The second 
reason may be that, through this study’s unique approach, a 
second time delay correction made for each network component 
has allowed the effect to be revealed more precisely.

Figure 3. Matrix of t-values resulting from the regression analysis between the dFNC values and PETCO2 time course. Each cell 
represents the statistical significance of the relationship between the corresponding pair of dFNC values and PETCO2, providing 
insights into the modulatory effect of PETCO2 on dynamic functional connectivity within ICNs. The color bar represents t-values, 
with statistically significant pairs being shown in black. 
(MPFC = Medial Prefrontal Cortex; PCC = Posterior Cingulate Cortex; LP = Lateral Parietal; RPFC = Rostral Prefrontal Cortex; 
AInsula = Anterior Insula; IPS = Inferior Parietal Sulcus; LPFC = Lateral Prefrontal Cortex, IFG = Inferior Frontal Gyrus, pSTG = 
Posterior Superior Temporal Gyrus)
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Despite the use of non-parametric statistics, the study is limited 
by a small sample size. Because the dataset originated from 
a different study, a larger sample could not be obtained, nor 
could a power analysis be conducted. As a result, care should 
be used when generalizing the findings, as the small sample 
size may limit statistical power and increase the possibility of 
bias.

CONCLUSION

The CVR to a hypercapnic stimulus exerts a significant influence 
on the alterations observed in the BOLD fMRI signal. This non-
neuronal effect manifests notably in ICN components derived 
through the GICA technique. The intricate relationship between 
CVR and the BOLD fMRI signal underscores the importance of 
acknowledging non-neuronal factors in the study of neural 
networks. As scientists investigate the functional connectivity 
of the brain, especially by employing methodologies such as 
GICA, incorporating non-neuronal influences becomes critical 
for precise interpretations and robust network connectivity 
metrics.
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