

Simge KALAV¹ Ebru BULUT¹ Emine TARLABELEN KARAYTUĞ¹

Rahşan ÇEVİK AKYIL¹

¹Adnan Menderes University, Faculty of Nursing, Internal Medicine Nursing, Aydın, Türkiye

Geliş Tarihi/Received 25.01.2024 Revizyon Talebi/Revision 10.11.2024 Requested

Son Revizyon/Last Revision 22.02.2025 Kabul Tarihi/Accepted 24.02.2025 Yayın Tarihi/Publication Date 31.05.2025

Sorumlu Yazar/Corresponding author: Simge KALAV

E-mail: skalav@adu.edu.tr

Cite this article: Kalav S, Bulut E, Tarlabelen Karaytuğ E, Çevik Akyıl R.Health Literacy and Affecting Factors in Individuals with Stroke: A Cross-Sectional Study. *J Nursology*. 2025;28(2):177-187. doi: 10.17049/jnursology.1425878

Content of this journal is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License.

Health Literacy and Affecting Factors in Individuals with Stroke: A Cross-Sectional Study

İnme Geçiren Bireylerde Sağlık Okuryazarlığı ve Etkileyen Faktörler: Kesitsel Çalışma

ABSTRACT

Objective: This study aimed to examine the factors affecting the health literacy of individuals with stroke.

Methods: In this analytical and cross-sectional study, "Sociodemographic Characteristics Form" and "the Health Literacy Scale" were administered to 223 individuals with stroke who were hospitalized in the neurology clinic of a university hospital in western Turkey. The research data were analyzed in the "Statistical Package for the Social Sciences 22" program. Kolmogorov-Smirnov test, Pearson Correlation, Mann Whitney U", "Kruskal Wallis", and "Post Hoc/Games-Howell" tests were used.

Results: The total mean scale score in our study was 88.67±22.36. The mean rank values of the individuals, who were aged below 50, who had a high education level, and who did not have a chronic disease other than stroke, on the scale and all its subscales were significantly higher. The mean rank of the scale increased as the economic status raised from low to high. The mean rank value of those who received training from health professionals on the "access to information subscale" was significantly higher.

Conclusion: Age, marital status, education level, income level, general health status, presence of another chronic disease, and status of receiving training from a health professional were determined as factors affecting health literacy in individuals with stroke. It is thought that determining the health literacy levels of inpatients with stroke is an important step in determining the stroke literacy levels of individuals and thus their awareness of stroke.

Keywords: Stroke, health literacy, nursing

Ö7

Amaç: Bu çalışmada inme geçiren bireylerin sağlık okuryazarlığını etkileyen faktörlerin incelenmesi amaçlandı.

Yöntemler: Analitik ve kesitsel olan bu araştırmada, Türkiye'nin batısındaki bir üniversite hastanesinin nöroloji kliniğinde yatan 223 inme geçirmiş bireye "Sosyodemografik Özellikler Formu" ve "Sağlık Okuryazarlığı Ölçeği" uygulandı. Araştırma verileri "Statistical Package for the Social Sciences 22" programı ile analiz edildi. Kolmogorov-Smirnov testi, Pearson Korelasyonu, Mann Whitney U", "Kruskal Wallis" ve "Post Hoc/Games-Howell" testleri kullanıldı.

Bulgular: Çalışmamızda ölçeğin toplam puan ortalaması 88,67±22,36'idi. 50 yaş altında olan, eğitim düzeyi yüksek olan ve inme dışında bir kronik hastalığı bulunmayan bireylerin ölçek ve tüm alt boyutlardan aldıkları sıra değeri ortalamaları anlamlı şekilde daha yüksek bulundu. Ekonomik durum düşükten yükseğe gittikçe ölçeğin toplam sıra değeri ortalaması arttı. Sağlık çalışanlarından eğitim alanların "bilgiye erişim alt boyutu" sıra değeri ortalaması anlamlı olarak daha yüksekti.

Sonuç: Yaş, medeni durum, eğitim düzeyi, gelir düzeyi, genel sağlık durumu, başka bir kronik hastalık mevcudiyeti ve sağlık çalışanından eğitim almış olma durumu inme geçiren bireylerde sağlık okuryazarlığı etkileyen faktörler olarak saptandı. Yatarak tedavi gören inme geçirmiş bireylerin sağlık okuryazarlık düzeylerinin tespit edilmesinin, inme okuryazarlık düzeylerinin, dolayısıyla inme konusundaki farkındalıklarının belirlenmesinde önemli bir adım olduğu düşünülmektedir.

Anahtar Kelimeler: İnme, sağlık okuryazarlığı, hemşirelik

INTRODUCTION

Stroke is one of the leading causes of death and disability worldwide and is highly preventable. It is emphasized that age is one of the most important risk factors for stroke, and an estimated 75% of strokes occur in people 65 years old and above. It was reported that there were 7.44 million deaths due to stroke worldwide in 2021. According to the data from the Global Burden of Disease Study, in 2019, the incidence of stroke for Turkey was estimated as 125,345 (154 per hundred thousand), the prevalence was 1,080,380 (1.3%), the death rate due to stroke was 48,947 and the number of life years lost due to stroke-related death/disability was estimated to be 993,082 years.

Stroke burden largely depends on modifiable risk factors and may be influenced by modifiable factors such as the risk of recurrent stroke, smoking, and patient compliance with oral antihypertensives and antithrombotics.⁵ Many of these risk factors can be affected by the patient's ability to understand, implement, and maintain recommendations of health professionals.⁶ Therefore, stroke is one of the chronic diseases in which the concept of health literacy, which is defined as the ability of individuals to acquire, understand, and cope with the necessary health information to improve their health, gains importance.⁵ Poor health literacy can be a major barrier to the ability of people with stroke to reduce their risk of recurrent stroke.⁶

Health literacy is an understanding that interfaces with technological and social environments and involves multiple cognitive and social domains.⁷An inadequate level of health literacy can cause difficulties in patients' understanding of health-related information messages, less utilization of preventive health services, problems in accessing health services, delayed time of diagnosis, increased use of emergency services, lack of understanding of medical instructions, difficulties in complying with recommended treatments, and low selfmanagement. 6,8,9 Low health literacy may also increase the incidence of chronic diseases, the frequency of hospitalizations, disease-related direct costs, and mortality.^{5,8,10} Low health literacy levels are common in Turkey, and 9 out of 10 elderly individuals aged 65 and over have been reported to have inadequate or limited health literacy. 11 This suggests that stroke-related health literacy may also be low.

In the literature, the knowledge of stroke symptoms and risk factors is defined with the term "stroke literacy". 12 The literature highlights the need to improve stroke literacy. 13 People with stroke and their relatives often have unmet needs for training on all aspects of stroke care, including the causes of stroke, the prevention of stroke, and post-

stroke recovery.¹⁴ It is considered important for individuals to receive training on individual stroke risk factors, stroke alarm symptoms, activation of emergency medical systems, need for follow-up after discharge, prescription medications and treatments, especially before being discharged after an acute stroke.¹³ However, in a study evaluating the effect of health literacy on continuing education of individuals who had a stroke, it was noted that more than half of the individuals had inadequate health literacy.⁶

Effective maintenance of post-stroke self-management majorly depends on patients' health literacy. Advanced stroke literacy is inadequate on its own; however, is considered an important component in an approach to reducing the risk of recurrent stroke. In the literature, there are studies focusing on health literacy of stroke survivors. In these studies, medication literacy in stroke survivors, mental health literacy in stroke survivors, the relationship of stroke health literacy with stroke risk factors and post-stroke depression, the knowledge status of individuals about stroke at the time of discharge in acute stroke, and the effect of health literacy on the continuation of education in stroke survivors were examined. However, no study has been conducted on this subject in Turkey.

AIM

This study aimed to examine the factors affecting the health literacy of stroke individuals receiving inpatient treatment at a university hospital in Turkey.

Research questions are as follows:

- What is the level of health literacy of individuals with stroke?
- What are the factors affecting health literacy in individuals with stroke?

METHODS

Study Design

This study had an analytical and cross-sectional design and was presented in adherence to the Strobe Checklist.

Study Population

The data were collected in the 14-bed neurology clinic of a university hospital in Turkey between December 2021 and October 2022. The number of individuals treated in the neurology department of the hospital in 2020 was 1465. The sample size was calculated as 223 based on an incidence of 18.4% with a confidence interval of 95% and an accuracy of 5%, using the sample calculation method for an incidence of an event with a known population.²⁰ Inclusion criteria were (1) being aged over 18, (2) having a score of "0,1,2" on the Modified Rankin Scale (mRS), (3)

being conscious without any cognitive impairment and memory loss, (4) volunteering to participate in the study, (5) being literate, and (6) having no communication barriers.

Of the 248 individuals evaluated for eligibility, 223 individuals who were confirmed eligible were included in the study. Since 9 individuals with stroke refused to participate in the study and 16 individuals scored 3,4,5 on the mRS, 25 individuals were excluded. The remaining 223 individuals were included in the final analysis.

Instruments

The data of the study were collected using a "Sociodemographic Characteristics Form" and the "Health Literacy Scale".

Sociodemographic Characteristics Form: This form was prepared by the researchers based on the literature. The form includes questions regarding the sociodemographic characteristics of individuals (age, gender, education level, marital status, occupation, social security, income status, and place of longest residence) as well as questions about health status (height, weight, body mass index, smoking-alcohol use, presence of another chronic disease, type of stroke, recurrent stroke status, duration of stroke diagnosis, the status of receiving training on stroke, regular medication status, blood pressure measurement, compliance with dietary recommendations, adoption of an active lifestyle, following appointments, evaluation of general health status). This form consists of 27 items in total.

The Health Literacy Scale: It consists of 25 items and four subscales. The Turkish validity and reliability study of the scale were established by Aras and Bayik Temel.²² All items on the scale have a positive structure and there is no reverse item. The scale is scored between 1-5 points. A minimum of 25 and a maximum of 125 points are obtainable from the scale. Low scores indicate that the level of health literacy is inadequate, problematic, and weak and high scores indicate that the level is adequate. The higher the score, the higher the level of health literacy. The scale has four subscales. The "Access to information" subscale includes five items; a minimum score of 5 and a maximum score of 25 can be taken from this subscale. The "Understanding information" includes seven items; a minimum score of 7 and a maximum score of 35 can be taken from this subscale. The "Appraisal" subscale consists of 8 items and a minimum score of 8 and a maximum score of 40 can be taken from this subscale. The "Application" subscale includes 5 items and a minimum score of 5 and a maximum score of 25 can be taken from this subscale. The Cronbach Alpha value was found to be 0.92 for the overall scale and between 0.62 and 0.79 for the subscales. In this study, the Cronbach Alpha value of the Health Literacy Scale was found to be 0.96.

The Modified Rankin Scale (mRS): This scale is used to measure the degree of disability in patients who have had a stroke. The scale is graded on a score of 0 to 6. For outcome prediction in clinical trials, the mRS is usually dichotomized where good functional outcome is a score 0-2 and poor functional outcome 3-6.²³

Data Collection

The questionnaire forms were applied by the researchers in face-to-face interviews in the patient rooms of the neurology clinic for an average of 20 minutes. To collect the research data, the individuals with stroke in the neurology clinic were visited 3 days a week (on weekdays, on days when assistant researchers were available) between 08:00-17:00. The questionnaire was filled out using the self-report method. However, the researchers guided individuals who requested help while filling in the questionnaires (for example, the individuals did not have glasses with him although he needed reading glasses or asked for help from the researcher due to fatigue). During the study, the care and treatment process of the participants and the routine workflow of the clinic were not interrupted.

Statistical Analysis

The research data were analyzed in the Statistical Package for the Social Sciences 22 (IBM SPSS Corp., Armonk, NY, USA) program. Descriptive statistics were presented as numbers, percentage distributions, and mean (mean)±standard deviation (SD) values. Kolmogorov-Smirnov or Shapiro-Wilk tests were used to evaluate whether the data showed a normal distribution. Numerical values with normal distribution were compared with the "Pearson Correlation" analysis and categorical variables and dependent variables were compared using the "Mann Whitney U", "Kruskal Wallis", and "Post Hoc/Games-Howell" tests. The strength of the correlation coefficient; very weak (0.00-0.25), weak (0.26-0.49), moderate (0.50-0.69), high (0.70-0.89), very high (0.90-1.00) was evaluated.²⁴ Results are presented at a confidence interval of 95% and a significance level of P<.05.

Ethical Aspect of Research

The study was conducted in accordance with the Declaration of Helsinki. The protocol of the present study was approved by Aydın Adnan Menderes University Faculty of Nursing Non-Interventional Clinical Research Ethics Committee (Date: 08.11.2021, Protocol No: 2021/272). Written informed consent was obtained from the individuals with stroke who met the inclusion criteria.

Participants were informed that they could withdraw from the study at any time for any reason with no negative consequences.

RESULTS

Sample characteristics

The majority of the individuals with stroke were aged 50 and over (89.2%) and married (91.5%). More than half of the participants (55.6%) were male. Most of the participants had a low level of education (74%), 41.3% were living in the city center, and more than half had a moderate economic status (64.6%) (Table 1).

Table 1. Distribution of the Participants According to Sociodemographic Characteristics (n = 223)

Patient characteristics	n	%
Age Mean ± SD: 67.67±14.37 years		
Age Group		
<50 years	24	10.8
≥50 years	199	89.2
Gender		
Female	99	44.4
Male	124	55.6
Marital Status		
Married	204	91.5
Single	19	8.5
Education Level		
Literate	82	36.8
Primary school	83	37.2
Middle school	19	8.5
High school	26	11.7
University	13	5.8
Working Status		
Working	29	13.0
Not working	194	87.0
Economic Status		
Low	73	32.7
Middle	144	64.6
High	6	2.7
Place of residence		
Rural	58	26.0
Urban	165	74.0
Body Mass Index		
Underweight	3	1.3
Normal weight	69	30.9
Pre-obesity	104	46.6
Obesity class I /II	42	18.8
Obesity class III	5	2.2
Smoking		
No	168	75.8
Smoking 1–10 cigarettes per day	15	6.7
Smoking 11–20 cigarettes per day	20	13.0
Smoking more than a pack per day	10	4.5

Table 1. Distribution of the Participants According to Sociodemographic Characteristics (n= 223) (Continued)

	n	%
Alcohol consumption		
No	209	93.7
Yes	14	6.3
Other Chronic Diseases		
Yes	181	81.2
No	42	18.8
Disease Duration		
Less than 1 month	139	62.3
1-3 months	16	7.2
4-11 months	16	7.2
1-3 years	24	10.8
More than 3 years	28	12.5
Education About Stroke		
Received training on stroke from a health professional	74	33.2
Received training on stroke from	14	6.3
other sources		
The number of recurrence stroke		
None	159	71.3
1 time	26	11.7
2 times	30	13.5
≥ 3 times	8	3.5
Regular Medication	_	
Yes	203	91.0
No	20	9.0
Blood Pressure Measurement	20	3.0
Twice per day	14	6.3
Once or several times a week	59	26.5
Once or several times a month	39	17.5
None	111	49.7
Following Dietary Recommendations		
Yes	39	17.5
Partially	118	52.9
No	66	29.6
Weight Control	00	23.0
Yes	44	19.7
Partially	113	50.7
No	66	29.6
Regular Physical Activity	00	25.0
Yes	52	23.3
Partially	95	42.6
No	76	34.1
Adherence to Medical Appointments	70	34.1
Yes	174	78.0
Partially	23	10.3
,	26	
No Functional Health Status	20	11.7
	0	4.0
Very good	9 75	4.0
Good	75 110	33.6
Moderate	110	49.3
Poor	27	12.1
Very poor	2) ; mean (<i>SD</i>) is	1.0

About half of the participants were overweight (46.6%). The most frequent comorbidities were hypertension (60.5%) and diabetes mellitus (39%). The majority of the participants were using their medications regularly (91.0%) and went to hospital appointments (78%), but half of them did not undergo blood pressure measurements regularly (49.8%). They partially complied with recommendations (52.9%) and partially achieved weight control (50.7%). In terms of the duration of diagnosis, 62.3% of the participants had a stroke diagnosis for less than a month. 33.2% of the participants obtained information about their disease from health professionals and 71.3% did not develop recurrent stroke. Additional characteristics of the individuals are presented in Table 1.

Health literacy and affecting factors

The mean total score of the Health Literacy Scale was 88.67±22.36. Individuals with stroke had the highest mean score (27.91±8.06) in the "appraisal" subscale, followed by understanding information (24.33±7.15), application (20.92±4.23), and access to information (15.60±6.43), respectively (Table 2).

Table 2. Mean Scores of the Health Literacy Scale and its Subscales in Individuals with Stroke

	Mean	SD	
Access	15.60	6.43	
Understanding	24.33	7.15	
Appraisal	27.91	8.06	
Application	20.92	4.23	
Total score	88.67	22.36	
Note: Data presented as Mean (SD: Standart deviation)			

There was a significant, negative and very weak correlation between age and "application" subscale score (P<.001, r=.240). There was a significant, negative and weak correlation between age and other subscales scores (access, understanding, appraisal - total score) of the participants (P<.001, r=-.445; P<.001, r=-.434; P<.001, r=-.373; P<.001, r=-.454, respectively). The mean rank value of the scale and the mean rank values of the all subscales (access, understanding, appraisal, application) were higher in those aged below 50 compared to those aged 50 and over (P<.001; P<.001; P<.001; P<.001; P<.005, respectively) (Table 3).

The mean rank values of the single participants from all subscales were higher than that of the married participants. There was a statistically significant difference between them in "access", "understanding", and "appraisal" subscales whereas there was no significant difference between the two groups in terms of the "application" subscale (P<.001; P=.004; P=.010; P=.681, respectively) (Table 3).

The mean rank scores of those who were high school and university graduates on the overall scale and all subscales (access, understanding, appraisal, application) were statistically significantly higher than that of those who were literate, primary, and middle school graduates (P<.001; P<.001; P<.001; P<.001; P<.001, respectively) (Table 3).

The mean rank values on the overall scale and all subscales increased as the economic status increased from low to high. The mean scale rank of the participants with low income was significantly lower than that of those with middle and high income (P=.002) (Table 3).

The mean rank values of those without chronic disease on the overall scale and all subscales (access, understanding, appraisal, application) were significantly higher (P<.001; P=.005; P=.003; P=.002; P=.019, respectively) (Table 3). The mean rank values of those who expressed their general health status as "poor" on the overall scale and all subscales were the lowest.

There was no significant difference between the mean rank values of the groups on the overall scale and all subscales in terms of health literacy, sex, disease duration, body mass index, and recurrent stroke status (*P*>.05) (Table 3).

DISCUSSION

Health literacy levels of the individuals with stroke

According to our study results, the mean health literacy score of individuals with stroke was 88.67±22.36. The level of health literacy increased as the scale score increased. Therefore, it can be said that the mean health literacy score of the participants was moderate in the studies conducted with individuals with stroke, similar to our study findings. 16,17 In a study conducted on stroke health literacy, the level of stroke knowledge of inpatients was found to be low.²⁵ Other studies have reported inadequate stroke health literacy/knowledge both in the general population²⁶-²⁹ and in populations at high risk of stroke and individuals with stroke. 19,26 To reduce the risk of recurrent stroke in people with stroke, it may be important to improve not only health literacy but also stroke literacy. Stroke literacy could not be addressed in our study due to the lack of an appropriate measurement tool. However, we observed that stroke awareness is insufficient in individuals with stroke. It is thought that stroke literacy should be examined more, especially in developing countries.

Health literacy and sociodemographic characteristics of individuals

In our study, the mean age of the individuals was 67.67±14.37. In similar studies carried out with people with stroke, the mean ages of individuals were 56.84±10.22 and 51.80±8.62. 16,17 The mean age obtained in one study was

Table 3. Health Literac	<u> </u>		A mm v = : = = 1	Ammliantian	Tatal
	Access	Understanding	Appraisal	Application	Total score
Age Mean	r =445	r =434	r =373	r =240	r =454
57.67±14.37	<i>P</i> <.001*	P<.001*	P<.001*	<i>P</i> <.001*	<i>P</i> <.001*
Age Group					
<50 years	22.292 ±3.617	30.250 ±5.69	34.542 ±7.512	22.833 ±3.144	110.292±19.034
	(MR:183,38)	(MR:168,17)	(MR:171,00)	(MR:146,54)	(MR:179,25)
≥50 years	14.794 ±6.233	23.623 ±6.990	27.121 ±7.776	20.694 ±4.295	86.070 ±21.337
•	(MR:103,39)	(MR:105,23)	(MR:104,88)	(MR:107,83)	(MR:103,89)
Гest and <i>P</i> -value	MWU=675	MWU=1040	MWU=972	MWU=1559	MWU=774
	<.001	<.001	<.001	.005	<.001
Gender					
emale	14.959 ±6.647	23.505 ±6.739	28.626 ±7.273	21.273 ±4,004	88.343 ±21.069
	(MR:105.50)	(MR:102.90)	(MR:115.77)	(MR:117.86)	(MR:109.32)
Male	16.113 ±6.243	25.000 ±7.428	27.355 ±8.638	20.645 ±4.402	88.944 ±23.429
	(MR:117.19)	(MR:119,26)	(MR:108.99)	(MR:107.32)	(MR:114.14)
Test and P -value	MWU=5494.50	MWU=5237.50	MWU=5764.50	MWU=5558	MWU=5873
	.177	.060	.435	.221	.580
Marital Status	,				.000
Married	15.137 ±6.374	23.922 ±7.106	27.500 ± 8.067	20.853 ± 4.342	87.265 ±22.168
	(MR:107.22)	(MR:108.23)	(MR:108.60)	(MR:111.46)	(MR:107.80)
Single	20.579 ±4.914	28.789 ±6.223	32.421 ±6.752	21.684 ±2.769	103.842±19.012
8. 2	(MR:163.32)	(MR:152.53)	(MR:148.55)	(MR:117.76)	(MR:157.11)
Test and P -value	MWU=963	MWU=1168	MWU=1243.50	MWU=1828.50	MWU=1081
Cot and F value	<.001	.004	.010	.681	<.001
Education Level	1002	100 1	.020	.001	1,002
iterate	13.012 ± 5.781	20.537 ±6.009	24.781 ±7.575	19.707 ±4.539	77.793 ±20.131
iterate	(MR:84.23)	(MR:76.29)	(MR:85.32)	(MR:92.73)	(MR:78.93)
Primary school	15.458 ±6.314	25.181 ±6.775	28.181 ±7.781	21.386 ±4.111	90.108 ±20.704
Tillary School	(MR:110.42)	(MR:119.25)	(MR:113.89)	(MR:118.54)	(MR:115.46)
Middle school	15.632 ±6.817	25.211 ±7.292	28.737 ±7.957	21.211 ±3.735	90.790 ±22.162
viluale scribor	(MR:115.24)	(MR:122.47)	(MR:118.74)	(MR:112.58)	(MR:118.66)
Jigh school	21.077 ±3.654	29.423 ±5.686	32.808 ±7.082	22.192 ±3.499	105.423±17.109
High school	(MR:168.85)	(MR:160.27)	(MR:154.37)	(MR:134.58)	(MR:164.58)
Injugacity	21.846 ±4.219	31.462 ±5.125	35.077 ±5.251	22.692 ±3.449	111.615±15.289
Jniversity					
Foot and D. valva	(MR:178.85)	(MR:179.12)	(MR:173.65)	(MR:145.81)	(MR:183.62)
Test and P -value	KW = 49.747 <.001	KW = 55.437	KW = 37.454	KW = 15.223 .004	KW = 55.289
Economic Status	<.001	<.001	<.001	.004	<.001
	12 200 ±6 147	22 004 ±6 000	2F 900 ± 7 100	20 726 +2 900	82.726 ±19.452
_OW	13.288 ±6.147	22,904 ±6,880	25.890 ± 7.109	20.726 ±3.899	
vatalalla	(MR:87.29)	(MR:97.55)	(MR:92.21)	(MR:105.30)	(MR:91.60)
Middle	16.625 ±6.248	24.938 ± 7.223	28.667 ±8.409	20.924 ±4.438	91.035 ± 23.306
	(MR:122.79)	(MR:118.25)	(MR:119.71)	(MR:113.68)	(MR:120.37)
High	19.167 ±7.441	27.333 ± 6.861	34.667 ±3.011	23.333 ±2.422	104.500 ± 15.719
	(MR:153.75)	(MR:137.75)	(MR:167.67)	(MR:153.08)	(MR:159.25)
Test and P -value	KW = 17.358	KW = 5.987	KW = 13.415	KW = 3.384	KW = 12.943
a.i ai : -:	<.001	.050	<.001	.184	.002
Other Chronic Diseases	45.000			00.010	
Yes	15.083 ± 6.311	23.713 ±7.073	27.182 ±7.959	20.613 ±4.399	86.419±21.896
	(MR:106.14)	(MR:105.90)	(MR:105.43)	(MR:107.18)	(MR:104.87)
Vo	17.833±6.570	27.024 ±6.951	31.095 ± 7.849	22.262 ± 3.132	98.405 ±21.997
	(MR:137,25)	(MR:138.29)	(MR:140,30)	(MR:132.79)	(MR:142.74)
Test and P -value	MWU=2740.50	MWU = 2697	MWU=2612.50	MWU = 2928	MWU = 2510
	.005	.003	.002	.019	<.001

Table 3. Health Literac	v and the Affecting	Factors	(Continued)
Table 3. Health Ellerae	v and the Ancethis	LIGCLOIS	<i>Continuca</i>

	Access	Understanding	Appraisal	Application	Total score
Disease Duration					
Less than 1 month	16.432 ±5.969	24,712 ±7,152	28,698 ±7,882	21,043 ±4,039	90,777 ±21,872
	(MR:119,33)	(MR:115,78)	(MR:118,29)	(MR:113,62)	(MR:118,13)
1-3 months	15.438 ±5.738	23,875 ±5,071	28,125 ±5,427	21,688 ±3,156	89,125 ±12,590
1 3 111011113	(MR:106,34)	(MR:103,31)	(MR:108.47)	(MR:120,56)	(MR:107.81)
4-11 months	13.563 ±7.118	21.938 ±9.313	24.000 ±10.354	19.688 ±5.885	79.188 ±30.020
4-11 1110111113	(MR:93,84)	(MR:93.50)	(MR:87.44)	(MR:105.09)	(MR:92.66)
1.2		· · · · · ·	26.708 ±8.493	· ·	
1-3 years	13.333 ±6.888	24.125 ±6.713		19.667 ±4.517	83.917 ±22.236
	(MR:89.88)	(MR:109.02)	(MR:102.25)	(MR:93.35)	(MR:95.92)
More than 3 years	14.679 ±7.761	24.286 ±7.358	27.214 ±8.139	21.679 ±4.295	87.500 ±23.664
	(MR:108.16)	(MR:111.34)	(MR:105.16)	(MR:118.98)	(MR:108.80)
Test and P -value	KW=6.147	KW = 2.142	KW = 4.561	KW = 2.943	KW = 4.322
	.188	.710	.335	.567	.364
Received training on stro	ke from a health profession	al			
Yes	17.324 ±5.276	22.824 ±6.845	27.595 ± 8.254	20.770 ± 4.109	88.243 ±22.738
	(MR:128.01)	(MR:98.18)	(MR:109.5)	(MR:105.38)	(MR:110.80)
No	14.745 ±6.796	25.087 ±7.206	28.081 ±7.997	21.000 ±4.304	88.893 ±22.251
	(MR:104.05)	(MR:118.86)	(MR:113.22)	(MR:115.29)	(MR:112.59)
Test and P -value	MWU = 4328	MWU=4490.50	MWU = 5331	MWU = 5023	MWU=5424.50
	.009	.024	.688	.275	.845
Received training on stro		.027	.000	.213	.0+0
_		20 020 17 000	20.020 +7.500	10 500 10 0353	05 057 124 424
Yes	18.214 ±5.820	26.929 ±7.966	30.929 ±7.509	19.500 ±6.0352	95.857 ±24.491
	(MR:137.11)	(MR:136.96)	(MR:136.21)	(MR:106.04)	(MR:133.39)
No	15.426 ±6.451	24.162 ±7.083	27.718 ±8.081	21.019 ±4.087	88.196 ±22.196
	(MR:110.32)	(MR:110.33)	(MR:110.38)	(MR:112.40)	(MR:110.57)
Test and P -value	MWU=1111.50	MWU=1113.50	MWU = 1124	MWU=1379.50	MWU=1163.50
	.131	.134	.147	.718	.200
Recurrent Stroke					
Yes	14.385 ±6.948	23.385 ±7.514	26.554 ±8.906	20.446 ±4.812	84.646 ± 24.505
	(MR:101,60)	(MR:103.47)	(MR:102.65)	(MR:105.23)	(MR:101.68)
No	16.101 ±6.168	24.728 ±6.986	28.481 ±7.656	21.120 ±3.970	90.3354±21.283
	(MR:116.28)	(MR:115.51)	(MR:115.85)	(MR:114.78)	(MR:116.25)
Test and P -value	MWU=4459	MWU=4580	MWU=4527	MWU=4695	MWU=4464
rest una / Value	.121	.205	.165	.310	.125
Body Mass Index	.121	.203	.105	.510	.125
Underweight	12.667 ±6.658	22.667 ±2.082	24.667 ±8.145	21.667 ±4.1633	82.333 ±4.619
Onderweight					
	(MR:76.17)	(MR:91.00)	(MR:78.50)	(MR:123.83)	(MR:80.33)
Normal weight	16.449±6.676	24.841±6.670	28.652±8.339	21.058±4.280	91.0580±23.234
	(MR:121.93)	(MR:116.13)	(MR:118.97)	(MR:115.80)	(MR:119.80)
Pre-obesity	15.471 ± 6.063	24.048 ±7.081	27.981 ±7.843	21.183±4.289	88.567 ±21.944
	(MR:109,38)	(MR:108.92)	(MR:112.06)	(MR:116.25)	(MR:111.06)
Obesity class I /II	15.191 ± 6.872	24.833 ±8.387	26.809 ±8.497	20.071 ±4.233	86.500 ±23.149
	(MR:108.92)	(MR:118.94)	(MR:103.46)	(MR:97.15)	(MR:107.11)
Obesity class III	11.800 ±7.049	20.200 ±6.058	27.800 ±6.535	20.400 ±2.509	80.200 ±20.315
	(MR:76.90)	(MR:73.40)	(MR:106.30)	(MR:88.70)	(MR:84.00)
Test and P -value	KW = 4.337	KW = 3.122	KW = 2.393	KW = 3.741	KW = 2.939
	.362	.538	.664	.442	.568
Functional Health Status					
Very good	14.333 ±7.649	28.222 ±5.932	29.111 ±6.092	21.333 ±2.062	93.000±16.008
very good	(MR:99.94)	(MR:147.06)	(MR:118.78)	(MR:105.50)	(MR:121.17)
Good	17.520 ±6.650	27.840 ±6.236	31.493 ±7.645	22.480 ±3.685	99.333 ±21.248
Juou					
Modorato	(MR:133.98)	(MR:144.53)	(MR:142.53)	(MR:141.99)	(MR:145.46)
Moderate	16.064 ±5.027	22.755 ±6.258	27.036 ±6.837	20.600±3.914	86.236±18.626
_	(MR:113.03)	(MR:95.92)	(MR:101.99)	(MR:101.53)	(MR:101.85)
Poor	8.593±6.338	19.704 ±8.743	21.370 ±9.699	18.111 ±5.409	67.778 ±25.206
	(MR:48.94)	(MR:75.31)	(MR:67.67)	(MR:77.26)	(MR:58.56)
Very poor	18.500 ±.707	25.000 ±5.657	25.500 ±7.778	16.500 ± 7.778	86.000 ±9.899
	(MR:136.50)	(MR:113.75)	(MR:85.50)	(MR:61.50)	(MR:96.00)
Test and P -value	KW = 35.348	KW = 37.384	KW = 32.690	KW = 28.813	KW = 41.741
	<.001	<.001	<.001	<.001	<.001

Note: Data presented as number (%), *P<.05, MWU; Mann Whitney U test, KW; Kruskal Wallis test; MR: Mean Rank, r; correlation coefficient

similar to the mean age found in our study.³⁰ According to our study results, there was a weak negative correlation between health literacy and age. Yalcinoz Baysal and Yıldız³¹ reached similar results in their study with older adults. Access to and appraisal of information decreases as age increases and it becomes difficult to understand information and use it in practice. Our study results showed that high school and university graduates had higher levels of health literacy. In the literature, it has been found that the level of health literacy is related to general literacy.^{7,32} In addition, it has been reported that the level of literacy decreases with age and low level of health literacy is more common among older adults and less educated individuals. 33,34 In a study examining the drug literacy of stroke patients, it was found that the drug literacy levels of patients in the younger age group were higher. 16 Younger individuals may have higher levels of health literacy due to fewer health problems, higher levels of literacy, and a more active mind. 16 In the study conducted by Rheault et al. 34, being younger than 55 was found to be strongly associated with higher levels of health literacy. Young adults have more opportunities for further education. Given that most of the individuals who participated in our study were aged over 50 and had a low education level (literate/primary school), it can be suggested that low education level is a factor that affects health literacy, especially in advanced ages. A higher level of education can contribute to a better understanding of treatment, more attention to the treatment process, and better compliance with health professionals' referrals. 16 Patients may have limited health literacy due to many reasons. For instance, those with low education levels have difficulty understanding and using complex health information and elderly patients have decreased cognitive and physical function due to aging.³³ It can be suggested that the level of health literacy is influenced by age and differs according to education levels and that the level of health literacy increases as the general education level increases.

In our study, no significant difference was determined between sex and health literacy. The lack of standardization in education and historical disadvantages in educational environments may have impacted individuals over a certain age. Therefore, regardless of sex, the general literacy levels of these individuals may remain low both in the early period and throughout life due to the limited educational opportunities of their generation. The fact that the mean age of the participants in our study was over 65 and most of them were aged over 50 can explain this situation. It is thought that the principle of lifelong learning should be included in the national education policy to improve the level of health literacy.

We found that single individuals had higher levels of health literacy than married participants. Similar results were obtained in a study examining health literacy in elderly individuals.³¹ In a study conducted with stroke individuals, no significant difference was reported between single and married stroke individuals in terms of health literacy.¹⁶ It is thought that the single individuals in our study had more opportunities to spare more time on health literacy activities than the married ones. However, different results in previous studies suggest that individual characteristics and current opportunities, as well as marital status, may also be effective in health literacy.

In our study, the levels of health literacy of those with poor economic status were lower compared to those with middle and high economic status. It has been stated in the literature that there is a strong correlation between health literacy and socioeconomic status.^{7,32} In the study conducted by Chang et al.16, it was reported that stroke individuals with high-income levels had better levels of health literacy levels. High-income individuals with stroke may find the opportunity to pay more attention to their quality of life after the disease compared to those with low income and therefore can attach more importance to issues within the scope of health literacy. 16 It has been emphasized that low-income levels may negatively affect older adults in terms of the deprivation of education rights.⁷ Considering the mean age of the participants in our study, it can be suggested that health literacy may be associated with the social determinants of health. It is thought that those with high-income levels have more opportunities to access and use technology than those with low income, therefore their health literacy is better. It can be said that high-income level is a factor that positively affects health literacy.

Health literacy and health-related characteristics of individuals with stroke

In our study, it was determined that the level of health literacy of those who did not have any chronic disease other than stroke was higher than that of those who had a chronic disease other than stroke. In the literature, it has been stated that age and the number of chronic diseases contribute significantly to health literacy skills.³⁴ In the study conducted by Clairmont, Frey, and Adcock¹⁸, the level of health literacy of individuals with three or more stroke risk factors was found to be significantly higher than that of individuals with two or fewer stroke risk factors. In a study in which health literacy and modifiable risk factors for ischemic stroke were examined, it was determined that more than half of the participants had adequate health literacy, but a large proportion of the population had limited health literacy in areas such as good lifestyle,

smoking, alcohol use, and physical activity.³⁵ To increase individuals' awareness of the modifiable risk factors of stroke, the warning signs of stroke, and things to do in an emergency, it is important to first determine the general literacy, health literacy, and stroke literacy of patients, and then develop health policies that will include them in education programs according to the specified levels.

In our study, the levels of health literacy of those who expressed their general health status as good/moderate were found to be higher. In a study conducted with individuals with stroke, higher health literacy was associated with better general health.36 According to our study results, the duration of stroke is not a factor that affects health literacy. In a similar study, it was found that 62% of individuals with stroke had adequate health literacy 12 months after discharge.³⁰ This difference may be because most of the individuals included in our study were newly diagnosed patients. Health literacy can be improved through social networks and interaction with health professionals. Individuals with stroke may have more opportunities to engage in interactions that improve their ability to acquire, understand, process, and practice health information.³⁰ However, more than half of the individuals in our study did not receive health training from any source and it was observed that those who received training on stroke from a health professional had higher scores regarding accessing and understanding information. For this reason, it is considered important that all individuals in the post-stroke period benefit from health services and can strengthen their health literacy, regardless of their education level. The majority of the individuals in our study did not have recurrent strokes. There was no difference in the levels of health literacy of individuals with and without recurrent stroke. This can be explained by the fact that patients do not have enough awareness of stroke even in the post-stroke period, do not demand health training, and post-discharge training has not yet been extended in hospitals in our country.

Study Limitations

There were some limitations of this study. The first limitation of the current study was that it was conducted in a single institution. The other one was the absence of a valid and reliable scale on stroke health literacy in our country.

It can be said that the general health literacy level of individuals with stroke is moderate. Age, marital status, education level, income level, general health status, presence of another chronic disease, and status of receiving training from a health professional are determined as factors affecting health literacy in

individuals with stroke. Although there is no relationship between recurrent stroke and disease duration and health literacy, there is a need for further studies with longer duration and larger samples to determine this relationship.

Determination of health literacy levels of individuals with stroke is an important step in determining their stroke literacy levels and therefore their awareness about stroke. Thus, patient-specific stroke education plans can be made. Nurses/health professionals working in the field of neurology must carry out stroke awareness training according to the age and education level of individuals with stroke. Our study results and clinical observations suggest that the stroke health literacy level of individuals with stroke, including knowledge of stroke symptoms, may be inadequate. Low health literacy may make individuals with stroke vulnerable to preventable health problems after stroke and risk of recurrent stroke. Therefore, it is important to develop valid and reliable measurement tools that can assess stroke literacy in stroke or healthy individuals and to determine the stroke literacy levels of individuals by health professionals with these tools. Integrating institutional policies into the healthcare system that will enable the determination of stroke literacy levels is a priority requirement.

Etik Komite Onayı: Etik kurul onayı Aydın Adnan Menderes Üniversitesi Hemşirelik Fakültesi Girişimsel Olmayan Klinik Araştırmalar Etik Kurulu'ndan (Tarih: 08.11.2021, Protokol No:2021/272) alınmıştır. Bilgilendirilmiş Onam: Katılımcılardan bilgilendirilmiş onam alınmıştır.

Yazar Katkıları: Fikir- SK,EB,RÇA; Tasarım- SK,EB; Denetleme- RKÇ; Kaynaklar- SK, EB, ETK; Veri Toplanması ve/veya İşlemesi- SK, EB, ETK; Analiz ve/ veya Yorum- EB, SK; Literatür Taraması- SK, EB, ETK; Yazıyı Yazan- SK, EB; Eleştirel İnceleme- SK, EB, ETK, RÇA

Çıkar Çatışması: Yazarlar, çıkar çatışması olmadığını beyan etmiştir. Bu makalenin yazarı Rahşan ÇEVİK AKYIL aynı zamanda bu derginin yardımcı editörüdür. Tarafsız ve şeffaf bir hakemlik süreci sağlamak amacıyla, bu makaleye ilişkin hakemlik ve yayın kararı aşamasında yazar karar dışında bırakılmıştır. Makalenin değerlendirilmesi sırasında kör hakemlik uygulanmış ve yazarın editörlük pozisyonu hakemlere açıklanmamıştır. Ayrıca, çıkar çatışmalarını önlemek amacıyla bu sürecin tüm aşamaları derginin etik kuralları ve COPE, ICMJE gibi uluslararası etik yönergelerine uygun olarak yönetilmiştir.

Finansal Destek: Yazarlar, bu çalışma için finansal destek almadığını beyan etmiştir.

Ethics Committee Approval: Ethics committee approval was obtained from Aydın Adnan Menderes University Faculty of Nursing Non-Interventional Clinical Research Ethics Committee (Date: 08.11.2021, Number: 2021/272)

Informed Consent: Informed consent was obtained from the participants.

Peer-review: Externally peer-reviewed.

Hakem Değerlendirmesi: Dış bağımsız.

Author Contributions: Concept -SK, EB, RÇA; Design- SK, EB; Supervision- RÇA; Resources- SK, EB, ETK; Data Collection and/or Processing- SK, EB, ETK; Analysis and/or Interpretation- EB, SK; Literature Search- SK, EB, ETK; Writing Manuscript- SK, EB; Critical Review- SK, EB, ETK, RÇA

Conflict of Interest: The authors have no conflicts of interest to declare. The author of this article, Rahşan ÇEVİK AKYIL, is also the associate editor of this journal. In order to ensure an impartial and transparent refereeing process, the author was excluded from the decision regarding the refereeing and publication of this article. Blind refereeing was applied during the evaluation of the article and the author's editorial position was not disclosed to the referees. In addition, in order to prevent conflicts of interest, all stages of this process were managed in accordance with the journal's ethical rules and international ethical guidelines such as COPE and ICMJE.

Financial Disclosure: The authors declared that this study has received no financial support.

REFERENCES

- Norrving B, Barrick J, Davalos A, et al. Action plan for stroke in Europe 2018-2030. Eur Stroke J. 2018;3(4):309-336. https://journals.sagepub.com/doi/epub/10.1177/2396987318808719
- Simmons CA, Poupore N, Nathaniel TI. Age stratification and stroke severity in the telestroke network. J Clin Med. 2023;12(4):1519. https://doi.org/10.3390/jcm12041519
- American Heart Association (AHA), 2024. 2024 Heart disease and stroke statistics update fact sheet. Accessed: https://www.heart.org/-/media/PHD-Files-2/Science-News/2/2024-Heart-and-Stroke-Stat-Update/2024-Statistics-At-A-Glance-final 2024.pdf, 22.11.2024
- Topçuoğlu MA. Stroke epidemiology and near future projection in Turkey: Analysis of Turkey Data from the Global Burden of Disease Study. *Turk J Neurol*.2022;28:200-211. https://tjn.org.tr/full-text-pdf/65/eng
- Zhao C, Zhao M, Li C. The health literacy status and influencing factors of the high-risk stroke population in Jilin Province. *J Public Health (Berl.)*. 2022;30:855–860. https://doi.org/10.1007/s10389-020-01353-5
- Sanders K, Schnepel L, Smotherman C, et al. Assessing the impact of health literacy on education retention of stroke patients. *Prev Chronic Dis*. 2014;11:E55. http://dx.doi.org/10.5888/pcd11.130259
- Magnani JW, Mujahid MS, Aronow HD, et al. Health literacy and cardiovascular disease: Fundamental relevance to primary and secondary prevention: A Scientific Statement From the American Heart Association. Circulation. 2018;138(2):e48–e74. https://www.ahajournals.org/doi/10.1161/CIR.0000000000
- Avcı E, Özkan S. The level of health literacy in world and Turkey and affecting factors. In:Özkan S, ed. Health Literacy. Ankara: Turkiye Klinikleri; 2019:p.16-21. https://www.turkiyeklinikleri.com/article/en-dunyada-ve-turkiye-de-saglik-okuryazarligi-duzeyi-ve-etkileyen-faktorler-84987.html
- Quinlan P, Price KO, Magid SK, Lyman S, Mandl LA, Stone PW. The relationship among health literacy, health knowledge, and adherence to treatment in patients with rheumatoid arthritis. HSS Journal®. 2013;9(1):42-49. https://doi.org/10.1007/s11420-012-9308-6
- 10. Huang YJ, Chen CT, Lin GH, et al. Evaluating the European Health Literacy Survey questionnaire in patients with

- stroke: A latent trait analysis using rasch modeling. *Patient*. 2018;11(1):83-96. https://doi.org/10.1007/s40271-017-0267-3
- 11. Türkiye sağlık okuryazarlığı düzeyi ve ilişkili faktörleri araştırması, 2018. [Turkey health literacy level and related factors survey, 2018]. Accessed April 25, 2023. https://sggm.saglik.gov.tr/Eklenti/39699/0/soya-rapor-1pdf.pdf.
- 12. Morren J, Salgado E. Stroke literacy, stroke behavior and stroke proficiency in a South Florida population (P01.007). Accessed April 25, 2023. https://www.neurology.org/doi/10.1212/WNL.78.1_supplement.P01.007
- Cook CV, Pompon RH. Lessons on health literacy and communication in post-stroke rehabilitation: a primer and proposal. *Delaware Journal of Public Health*. 2023;9(3), 44-49. https://doi.org/10.32481/djph.2023.08.010
- 14. Guo Y, Zhang Z, Lin B, Mei Y, Liu Q, Zhang L, Wang W, Li Y, Fu Z. The unmet needs of community-dwelling stroke survivors: a systematic review of qualitative studies. *Int J Environ Res Public Health*. 2021;18(4):2140. https://doi.org/10.3390/ijerph18042140
- Denny MC, Vahidy F, Vu KY, Sharrief AZ, Savitz SI. Videobased educational intervention associated with improved stroke literacy, self-efficacy, and patient satisfaction. *PLoS One*. 2017;12(3):e0171952. https://doi.org/10.1371/journal.pone.0171952
- 16. Chang X, Wang K, Wang Y, Tu H, Gong G, Zhang H. Medication literacy in Chinese patients with stroke and associated factors: a cross-sectional study. *Int J Environ Res Public Health*. 2022;20(1):620. https://doi.org/10.3390/ijerph20010620
- 17. Thangkratok P, Posai V. Mental health literacy and quality of life among patients with stroke. *BSCM* .2021;60:63-74. https://he01.tci-thaijo.org/index.php/CMMJ-MedCMJ/article/view/242149
- 18. Clairmont C, Frey J, Adcock A. Association of stroke health literacy with stroke risk factors and post-stroke depression (4386). *Neurology*. 2020;94(15 Supplement) 4386. https://doi.org/10.1212/WNL.94.15 supplement.4386
- 19. Wang MD, Wang Y, Mao L, et al. Acute stroke patients' knowledge of stroke at discharge in China: a cross-sectional study. *Trop Med Int Health*. 2018;23(11):1200-1206. https://doi.org/10.1111/tmi.13148
- 20. Bayık Temel A, Cimen Z. Kronik hastalığı olan yaşlı bireylerde sağlık okuryazarlığı, sağlık algısı ve ilişkili faktörler [Investigation of health literacy, perception of health and related factors in elderly patients with chronic illness]. JEUNF. 2017;33(3):105-125. https://dergipark.org.tr/tr/download/article-file/393966
- 21. Ozcan G, Ozkaraman A. Tip 2 diabetes mellitus hastalarında sağlık okuryazarlığı düzeyi ve etkileyen faktörler [The Level of health literacy and affecting factors in type 2 diabetes mellitus patients]. *E-J. Dokuz Eylul Univ. Nurs. Fac.* 2021;14(1):3-16.
 - https://doi.org/10.46483/deuhfed.691680
- 22. Bayık Temel A, Aras Z. Evaluation of validity and reliability of

- the Turkish Version of health literacy scale. *Florence Nightingale J Nurs*. 2017;25(2):85-94. https://doi.org/10.17672/fnhd.94626
- Broderick JP, Adeoye O, Elm J. Evolution of the modified rankin scale and its use in future stroke trials. *Stroke*. 2017;48(7):2007–2012. https://doi.org/10.1161/STROKEAHA.117.017866.
- 24. Akgül, A. Statistical analysis techniques in medical research: SPSS applications, 3. Edition. Ankara, Emek Ofset Ltd. Şti, 2005.
- 25. Clairmont C, Adcock A, Colantonio L. Association between stroke health literacy and insurance with stroke severity and post-stroke depression. *Mountaineer Undergraduate Research Review*. 2021;6(1):21-26. https://researchrepository.wvu.edu/cgi/viewcontent.cgi?a rticle=1093&context=murr
- 26. Posawang P, Vatcharavongvan P. Stroke health literacy: a narrative review of assessment tools and improvement strategies. *J. Assoc. Med. Sci.* 2022;56(1):192–200. https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/257181/175419
- 27. Zafar A, Albakr AI, Shahid R, et al. Stroke literacy in the population of the Eastern Province of Saudi Arabia; immediate steps are essential to bridge the gap. *J Stroke Cerebrovasc Dis*. 2020;29(10):105088. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.10508
- 28. Pitton Rissardo J, Fornari Caprara AL, Cervi Prado AL. Stroke Literacy in a South Brazilian City: A community based survey. *J Stroke Cerebrovasc Dis.* 2018;27(9):2513-2518. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.05.00
- 29. Lim W, Chuang DF, Chue K et al. Stroke literacy in Singapore: data from a survey of public housing estate residents. *Ann*

- Acad Med Singap. 2014;43(9):454–463. https://www.annals.edu.sg/pdf/43VolNo9Sep2014/V43N9p454.pdf
- 30. Flink M, Lindblom S, von Koch L, Carlsson AC, Ytterberg C. Health literacy is associated with less depression symptoms, higher perceived recovery, higher perceived participation, and walking ability one year after stroke a cross-sectional. *Top Stroke Rehabil*. 2023;30(8):865–871. https://doi.org/10.1080/10749357.2023.2178133
- 31. Yalcinoz Baysal H, Yildiz M. Determining of health literacy level in elderly: an example of eastern Turkey. *Mid Blac Sea J Health Sci.* 2021;7(1):7-14. https://doi.org/10.19127/mbsjohs.784674
- 32. Havranek EP, Mujahid MS, Barr DA, et al. Social determinants of risk and outcomes for cardiovascular disease: A scientific statement from the American Heart Association. *Circulation*. 2015;132(9):873–898. https://doi.org/10.1161/CIR.0000000000000228
- 33. Koay K, Schofield P, Gough K, et al. Suboptimal health literacy in patients with lung cancer or head and neck cancer. Support Care Cancer. 2013;21(8):2237–2245. https://doi.org/10.1007/s00520-013-1780-0
- 34. Rheault H, Coyer F, Jones L, Bonner A. Health literacy in Indigenous people with chronic disease living in remote Australia. *BMC Health Serv Res.* 2019;19:523. https://doi.org/10.1186/s12913-019-4335-3
- 35. Sedova L, Bártlová S, Hudáčková A, Havierniková L, Dolák F, Ostrý S. Health literacy and modifiable risk factors of a stroke. *Kontakt.* 23(3):149-156. https://kont.zsf.jcu.cz/pdfs/knt/2021/03/02.pdf
- 36. Hahn EA, Magasi SR, Carlozzi NE, et al. Health and functional literacy in physical rehabilitation patients. *Health Lit Res Pract*.2017;1(2):e71–e85.
 - https://doi.org/10.3928/24748307-20170427-02