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Abstract: With the rapid proliferation of microservices architectures these days, the efficient and 

fast transfer of large matrix data between services has become a significant challenge. This study 

presents an analysis aimed at finding solutions to this challenge. The analysis addresses the 

compression and decompression of large matrix data, focusing on lossless compression 

algorithms to optimize data transfer without data loss. The study is implemented on an example 

scenario. This scenario is taken from a project with a microservice architecture. In the example 

scenario, an image processing service developed in Python programming language generates 

640x480 matrix data. After going through a compression algorithm, this data is periodically 

transferred to a backend service developed in C# programming language. This data is then stored 

in a database. In the final stage, decompression operations are performed so that this data can be 

used for reporting. The performance of various compression algorithms in the data compression, 

database storage and report generation stages is extensively tested. Within the scope of the study, 

tests were performed using five different compression algorithms (Gzip, Zlib, Deflate, Brotli and 

Bz2). The results are obtained through performance tests aimed at determining the most 

optimized end-to-end solution. Analyzing the performance of the compression algorithms on the 

example scenario, the Brotli algorithm gives the most optimal result in terms of both speed and 

compression size. This work makes an important contribution to data transfer optimization in 

microservice architectures and provides a reference for research in this area by presenting the 

performance analysis of various compression algorithms. 
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Öz: Son zamanlarda mikroservis mimarilerinin hızla yayılmasıyla birlikte, büyük matris 

verilerinin hızlı ve verimli bir şekilde servisler arasında transferi, önemli bir zorluk haline 

gelmiştir. Bu çalışma, bu zorluğa çözüm bulmayı amaçlayan bir analiz sunmaktadır. Analiz, 

büyük matris verilerinin sıkıştırma ve açma işlemlerini ele almakta ve veri transferini optimize 

etmek için veri kaybı olmadan çalışan sıkıştırma algoritmalarına odaklanmaktadır. Çalışma, bir 

örnek senaryo üzerinde uygulanmıştır. Bu senaryo, mikroservis mimarisine sahip bir projeden 

alınmıştır. Örnek senaryoda, Python programlama dili ile geliştirilmiş bir görüntü işleme servisi, 

640x480 boyutunda bir matris verisi üretmektedir. Bu veri, bir sıkıştırma algoritmasından 

geçtikten sonra periyodik olarak C# programlama dili ile geliştirilmiş bir back-end servise 

transfer edilmektedir. Bu veri daha sonra bir veritabanında depolanmaktadır. Son aşamada, bu 

verinin raporlama için kullanılabilmesi için açma işlemleri gerçekleştirilmektedir. Çeşitli 

sıkıştırma algoritmalarının performansı, veri sıkıştırma, veritabanı depolama ve rapor oluşturma 

aşamalarında detaylı bir şekilde test edilmiştir. Çalışma kapsamında beş farklı sıkıştırma 

algoritması (Gzip, Zlib, Deflate, Brotli ve Bz2) kullanılarak testler gerçekleştirilmiştir. Sonuçlar, 

en optimize edilmiş end-to-end çözümü belirlemeye yönelik performans testleri ile elde  
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edilmiştir. Örnek senaryo üzerinde sıkıştırma algoritmalarının performansını analiz ederken, 

Brotli algoritması hem hız hem de sıkıştırma boyutu açısından en optimal sonucu vermektedir. 

Bu çalışma, mikroservis mimarilerinde veri transferi optimizasyonuna önemli bir katkı 

sağlamakta ve çeşitli sıkıştırma algoritmalarının performans analizini sunarak bu alandaki 

araştırmalara referans oluşturmaktadır. 

 

 

1. INTRODUCTION 

 

The rapid evolution of information technology is 

replacing traditional monolithic structures with 

microservice architectures that seek more agile and 

scalable systems. By decomposing software applications 

into small, independent services, microservice 

architectures aim to accelerate development processes, 

provide scalability and increase flexibility. 

 

While the rise of microservice architectures has made 

software applications more flexible and scalable, this 

transformation has also brought with it the need to 

efficiently transfer large data sets. The fast and efficient 

transfer of large data sets between services has become 

critical. Problems such as bandwidth consumption, 

latency and storage costs arise during the transfer of big 

data. These problems are optimized through a number of 

methods such as data compression and coding, protocol 

optimization, cache utilization, parallel processing, 

distributed storage, etc. 

 

This paper aims to optimize the problems that arise 

during the transfer of large matrix data between 

microservices by using compression algorithms. It 

focuses on the performance of Gzip, Zlib, Bz2, Deflate 

and Brotli lossless compression algorithms in the 

compression and decompression processes of matrix data 

transfer between Python and C# based applications with 

a message broker in between. It examines data transfer at 

each step of the process and provides detailed 

performance analysis. It also discusses their performance 

on matrix variants with different types of data sets. The 

results were obtained in the context of a real-life project. 

In addition, this study aims to shed light on the 

optimization of other microservices projects with large 

data transfers in different data types by using 

compression algorithms. 

 

The rest of the paper is organized as follows: Section 2 

summarizes the literature review. Section 3 discusses the 

problem definition, information about compression 

algorithms, information about the algorithms that will be 

tested to solve the problem, and the types of matrices 

used in the testing. Section 4 presents the results of the 

performance tests. Section 5 contains the evaluation and 

comments on the final results. 

 

2. LITERATURE REVIEW 

 

With the rapid deployment of microservice architectures, 

the fast and efficient transfer of large matrix data 

between services emerged as a major challenge. In this 

context, a survey of the existing literature was conducted 

to gain various perspectives. Research on topics such as 

microservice architecture, lossless compression 

algorithms, matrix data, inter-service communication, 

etc., guided this review. Specifically, the realization of a 

gap in the literature concerning the optimization of large 

matrix data transmission between microservices 

motivated the investigation to fill this void. Enliçay et al. 

[1] undertook a study on the optimization of large 

datasets between microservices using the Deflate and 

Gzip algorithms. It was observed that no significant 

differences existed between the two algorithms, leading 

to the continued preference for the more prominent Gzip 

algorithm. Öztürk et al. [2] conducted tests on various 

NoSQL database technologies utilizing LZ4 and Zlib 

algorithms, finding that the Zlib algorithm, when used 

with MongoDB, achieved the best compression ratio. 

Conversely, when Snappy was employed, LevelDB 

yielded the fastest compression results. Deorowicz [3] 

provided a comprehensive examination of globally 

utilized compression algorithms, elucidating the 

differences and usage directions of these algorithms, 

along with underlying strategies and methods. This 

comparison facilitated an understanding of the 

appropriateness of each algorithm based on different 

scenarios. 

 

Ramu [4] asserted that the adoption of microservice 

architecture has led to significant advancements in 

building scalable and flexible software systems. The 

study examined and evaluated the impact of 

microservices architecture on performance, focusing on 

vital elements such as inter-service communication, 

service discovery, data management, fault tolerance, and 

scalability. The findings contributed to the understanding 

of microservices and offered practical recommendations 

for architects and developers to optimize the 

performance of their applications. Kodituwakku and 

Amarasinghe [5] investigated and compared the 

performance of lossless data compression algorithms, 

evaluating their efficacy in compressing text data. The 

entropy of these algorithms was discussed, and an 

experimental comparison was conducted. Tapia et al. [6] 

described the transition of a project developed in 

monolithic architecture to the microservice level, noting 

the absence of mention regarding data optimization. 

Somashekar [7] presented effective solutions for 

optimizing data across microservices, focusing on 

optimizing the setup and layout of systems rather than 

the data itself. Semunigus and Pattanaik [8] analyzed 

differences between Huffman encoder, LZW encoder, 

and Arithmetic encoder, which was deemed insufficient 

for addressing both the analysis of matrix defects and the 

control of foundation disassembly. The blocks suitable 

for the project were identified as the high-level changes 

constructed with these blocks. 
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The mentioned studies above provide a comprehensive 

overview of matrix data transfer in microservices 

architectures. However, it is crucial to consider the 

limitations and gaps in the existing research in this area. 

This article focuses on existing studies to understand the 

shortcomings in the current literature and highlight how 

its own research aims to contribute to filling these gaps. 

 

3. LITERATURE REVIEW 

 

3.1. Problem Description 

 

The system we are working on is built within the 

microservices architecture. The system architecture is 

shown in Figure 1. The end user completes the setup of 

the artificial intelligence service by selecting one of the 

previously registered cameras in the system. In the 

subsequent process, the Angular-based front-end 

communicates the necessary configuration to the .NET 

Core-based back-end service through APIs. After the 

writing process to the database, the same configurations 

are stored on Redis, a discrete cache mechanism, in a 

key-value format. Simultaneously, the service 

responsible for coordinating Python-based artificial 

intelligence services is notified using Redis's pub-sub 

mechanism. Once the coordinating service is notified, it 

retrieves the settings from the relevant Redis key and 

initiates the process of the heat map module based on 

these settings. The artificial intelligence service now 

monitors camera recordings via the stream URL of the 

relevant camera within the specified time period in the 

settings. At the end of the period, it publishes the 

movement data of detected individuals to the relevant 

queue in RabbitMQ, which serves as a message broker. 

Another C#-based back-end service, listening to this 

queue, receives the relevant report and writes it to the 

PostgreSQL database. 

 

The journey of the data necessitating performance 

optimization within the architecture is addressed in 

Figure 1. The artificial intelligence service monitors the 

camera, sends the acquired data to the back-end service 

through RabbitMQ. Here, the data is later written to the 

database for use during report preparation. 

 

All these operations are conducted to monitor, analyze, 

and generate reports on the movements of people visiting 

social areas, primarily malls and hypermarkets. The 

obtained data is stored in the database for later reporting. 

If desired, data sets are presented to end users on a daily, 

monthly, or yearly basis. The visualization of these data 

sets benefits from the heat map method. 

 

The periodic data obtained by the artificial intelligence 

service is of a two-dimensional integer array type. 

Therefore, we can refer to it as a two-dimensional 

matrix. The first dimension of this matrix has a size of 

640, and the second dimension has a size of 480 

characters. The majority of matrix data consists of 0 

parameters. Other parameters different from 0 represent 

the number of people passing through that point. The 

reason for the matrix size being 640x480 is due to the 

camera resolution. Due to the excess of matrix elements, 

the size of the data sometimes reaches megabytes. The 

largeness of the data has made it essential to optimize the 

process in terms of delays in transfer, storage costs, and 

resource consumption. Especially in the preparation of 

heat map reports, pulling, summing, and serving matrix 

data of 640x480, which can be tens or hundreds, from 

the database will result in significant resource 

consumption and delays. 

 

Research has concluded that utilizing compression 

algorithms would be beneficial to optimize the process. 

Figure 2 shows that the data needs to be optimized at 4 

different points. 

Figure 1. The journey of matrix data on the project architecture. 

Figure 2. Showing the stages where matrix data is processed on the architecture. 
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3.2. Compression Algorithms 

 

A data compression algorithm is a software or hardware 

method used to process data more efficiently during 

storage or transmission. Data compression algorithms 

are typically divided into two main categories. [10] 

 

 
Figure 3.  Behavior of compression algorithms. 
 

The first consideration when determining algorithms to 

be considered for evaluation is to prefer lossless 

compression algorithms, as each parameter in the matrix 

is deemed to be highly significant. The second condition 

is to select algorithms that can be used in both the C# 

and Python programming languages. After making this 

distinction, the final condition to consider is the active 

preference and usage of algorithms in the software 

industry. Through literature reviews and research, we 

have decided to evaluate five different algorithms. Five 

compression algorithms (Gzip, Zlib, Deflate, Brotli, and 

Bz2) have been examined for data transfer optimization 

in micro services architectures. 

 

3.2.1. Gzip 

 

Gzip [11] is an algorithm developed for data 

compression purposes. It primarily operates using the 

Lempel-Ziv (LZ77) compression algorithm and Huffman 

coding. LZ77 analyzes the data and provides 

compression by identifying consecutive repeating 

patterns. Huffman coding adds an extra compression step 

by providing a shorter representation for more frequently 

occurring symbols. The main features of Gzip include: 

 

• Effective Compression: It efficiently compresses data, 

reducing file sizes effectively. 

• LZ77 and Huffman Coding: It performs compression 

using LZ77 and Huffman coding as fundamental 

algorithms. 

• Usage in Web Pages: It is commonly used, especially 

on web servers, to compress text-based data sent to 

browsers. This enables faster loading of web pages. 

 

Gzip is a widely used compression algorithm across 

various applications and is preferred for tasks such as 

data transfer over the internet and file archiving. 

 

3.2.2. Zlib 

 

Zlib [9] is a data compression library developed based 

on the Deflate algorithm. Zlib is commonly used for 

compression and archiving operations in the "gzip" 

format, although Zlib itself only encompasses 

compression features. The key features of Zlib include: 

 

• Fast and Efficient Compression: Zlib reduces file sizes 

by compressing data quickly and efficiently. 

• Portability: Zlib can be used on many different 

platforms and operating systems, allowing for a wide 

range of applications. 

• Ease of Use: The Zlib library provides an easy-to-use 

API, facilitating the integration of compression 

operations for developers. 

 

Zlib is widely utilized for data compression and 

archiving by web browsers, servers, databases, and many 

other applications. 

 

3.2.3. Deflate 

 

Deflate [13] is an effective algorithm used for data 

compression, combining two fundamental components: 

the LZ77 (Lempel-Ziv 1977) compression algorithm and 

Huffman coding. 

 

• LZ77 (Lempel-Ziv 1977): This algorithm analyzes the 

data and provides compression by identifying 

consecutive repeating patterns. It encodes new blocks by 

referencing previous data blocks. 

• Huffman Coding: It ensures symbols in the compressed 

data are represented with shorter codes. Frequently used 

symbols have shorter codes, while less frequently used 

symbols have longer codes. 

 

The Deflate algorithm is widely used for compression 

and decompression operations. File formats like Gzip, 

Zip, and PNG can utilize the Deflate compression 

algorithm. Deflate is known for its fast operation, high 

compression ratios, and broad usability. Web browsers, 

file archiving, databases, and many applications prefer 

Deflate to optimize data transfer. 

 

3.2.4. Brotli 

 

Brotli [9] is a data compression algorithm developed by 

Google. It is designed to replace other popular 

compression algorithms and is specifically used to speed 

up the loading of web pages.  Brotli aims to achieve 

higher compression ratios and better performance than 

Deflate algorithms (such as gzip and zlib). Some of its 

features include: 

 

•High Compression Ratios: Brotli provides high 

compression ratios, especially for text-based content. 

This helps in delivering web pages faster and more 

efficiently. 

• Adaptive Algorithm: Brotli uses an adaptive algorithm 

that can adjust the compression strategy based on the 

type and structure of the content. This results in more 

effective compression for various data types. 

• Support for Web Browsers and Servers: Brotli is 

supported by modern web browsers and web servers. 

This enables faster loading of web pages, enhancing the 

overall user experience. 

Compressed                    

Compressed        

Restored Original 

LOSSLESS                     

Restored Original 

LOSSY                     
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• Platform-Independent: Brotli can be used on different 

platforms and operating systems, offering a wide range 

of usability. 

 

The use of Brotli plays a significant role, particularly in 

data transfer over the internet and web performance 

optimization. Faster loading of web pages contributes to 

an improved user experience. 

 

3.2.5. Bz2 

 

Bz2 is a compression algorithm and accompanying 

program used for data compression, also known as 

"bzip2." It was developed by Julian Seward. Unlike 

traditional compression algorithms like ZIP and Gzip, 

bz2 combines techniques such as Burrows-Wheeler 

Transform (BWT) and Huffman coding. Some of its 

features include: 

 

• High Compression Ratios: Bz2 typically provides 

higher compression ratios compared to some other 

compression algorithms. 

• Burrows-Wheeler Transform (BWT): This 

transformation reorganizes the data, highlighting 

repeated patterns and leading to more effective 

compression. 

• Huffman Coding: It ensures symbols in the compressed 

data are represented with shorter codes. This involves 

shorter codes for frequently used symbols and longer 

codes for less frequently used symbols. 

• Platform-Independent: Bz2 can be used on different 

platforms and operating systems. 

• Data Archiving: It is commonly used for file archiving 

and distribution. 

The bz2 compression algorithm is widely used, 

especially in UNIX and Linux-based systems, and users 

often prefer the command-line tool named "bzip2" for 

compression tasks. 

 

3.3. Matrix Types Examined 

 

The performances of these algorithms have been 

measured on three different large-sized matrix data sets 

in processes such as compression, compressing and 

writing to the database, compressing, writing to the 

database, and then reading, as well as compressing, 

writing to the database, reading again, and 

decompressing. Although the type of matrix that solves 

our problem is a matrix containing a large number of 

zeros, to shed light on and assist in future studies related 

to the subject, we did not limit our tests to a single type 

of matrix but conducted tests on various matrix types. 

The general format of the examined large-sized matrix 

data is as follows: 

 

• Random Matrix 

Elements are randomly chosen integers. Example: 

[{1896322487, 423, 837, 29895, 5, ...}, {284997874, 

5713597144, 77, 6852, ...}, ...] 

 

• Sequential Elements Matrix 

Elements are consecutively repeating integers. Example: 

[{11, 11, 22, 11, 11, 22, ...}, {11, 11, 22, 11, 11, 22, ...}, 

...] 

 

• Matrix with Many Zeros 

Matrix with mostly zero elements, and integers. 

Example: [{0, 0, 598, 0, 0, 0, 85479, ...}, {0, 0, 8, 0, 0, 

923559, 0, ...}, ...] 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

Within the scope of the study, five different compression 

algorithms (Gzip, Zlib, Deflate, Brotli, and Bz2) 

underwent performance testing. These tests were focused 

on data compression ratios as well as compression and 

decompression times. All operations were performed 

according to the hardware and software standards shared 

in Table 1. 

 
Table 1. Test Environment Components. 

 

 

4.1. Experimental Results 

 

The numbered figures in Figure 4 represent the 

operations that will be subjected to performance testing. 

The location of these operations in the architecture can 

be found in Figure 2 in Section 3.1. The first numbered 

figure represents compressing the matrix, the second 

numbered figure represents writing the compressed 

matrix to the database, the third figure represents reading 

the compressed matrix data from the database, and the 

Sistem Windows 11  

(10.0.22000.2295/21H2/SunValley)  

12th Gen Intel Core i7-1260P, 1 CPU,  

16 logical and 12 physical cores,  

Kingston SSD snv2s2000g 

.NET SDK 7.0.400 

Database PostgreSQL 15.3, compiled by  

Visual C++ build 1914, 64-bit 

Measurement 

Tool 

BenchmarkDotNet v0.13.7 

Figure 4. Operations included in the test and their numbers. 
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fourth and last figure represents restoring the 

compressed matrix data.  

 

4.1.1. Complex matrix performance measurements 

 

Graphs in Figure 5 compare the performance of five 

different compression algorithms in terms of two key 

metrics: processing speed and memory usage. The first 

graph shows the average processing time of each 

algorithm in milliseconds, showing that Gzip, Zlib and 

Deflate have similar and relatively low processing times. 

In contrast, Brotli's processing time is higher than all 

three, while BZ2 has by far the slowest processing time. 

 

The second graph compares memory consumption in 

megabytes. Here again, Gzip, Zlib and Deflate show 

similar and quite low values in terms of memory 

consumption, while Brotli uses slightly more memory 

than these three, but the BZ2 algorithm requires a much 

larger amount. These results emphasize the need for an 

in-depth evaluation of compression processes in terms of 

time and memory efficiency. 

 

These data suggest that the choice of compression 

algorithm should be carefully tailored to the application 

requirements. For example, it can be concluded that Gzip 

or Zlib may be preferable when speed is critical, while 

Brotli or BZ2 may be more appropriate in scenarios 

where compression ratio is more important. However, 

the high memory consumption and low speed of BZ2 

can be a significant disadvantage, especially for real-

time systems or resource-constrained environments. 

 

Graphs in Figure 6; The first graph depicts the mean 

time taken by each algorithm to compress a dataset, 

measured in milliseconds (ms). Here, Gzip, Zlib, and 

Deflate show relatively similar and modest compression 

times at 60.44 ms, 46.65 ms, and 46.28 ms respectively, 

suggesting efficient performance in time-sensitive 

applications. Brotli, however, takes substantially longer 

at 498.63 ms, which may be a trade-off for better 

compression ratios. BZ2 is significantly slower at 182.75 

ms, indicating that while it may offer high compression 

ratios, it is less suitable for scenarios where time 

efficiency is critical. 

 

The second graph compares the algorithms based on the 

amount of memory allocated during compression, 

measured in megabytes (MB). Gzip, Zlib, and Deflate 

again cluster closely together, with each requiring just 

over 5 MB of memory, pointing towards a low memory 

footprint. Brotli's memory allocation is marginally 

higher at 5.11 MB, which could be justified by its 

potentially better compression efficiency. However, BZ2 

stands out with a substantially higher memory 

requirement of 735.03 MB, which is orders of magnitude 

greater than the others. This suggests that BZ2's 

compression technique, while perhaps yielding high 

compression ratios, is extremely memory-intensive, 

making it less feasible for systems with limited memory 

resources. 

 

In summary, when considering a compression algorithm 

for practical use, it's crucial to weigh the trade-offs 

between compression time, memory usage, and 

compression efficiency. Gzip, Zlib, and Deflate present 

themselves as balanced choices for general purposes. In 

contrast, Brotli may be more suitable when compression 

efficiency outweighs the need for speed, and BZ2 might 

only be practical when memory resources are abundant, 

and compression ratio is the paramount concern. 

 

Graphs in Figure 7; In the first graph, we examine the 

mean compression time in milliseconds (ms) for each 

algorithm. Gzip shows a mean time of 72.91 ms, Zlib at 

50.21 ms, and Deflate at 49.12 ms, which are fairly close 

Figure 5. Complex matrix performance measurements belong to just first operation in Figure 4. 

Figure 6. Complex matrix performance measurements belong to first and second operations in Figure 4. 
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in performance, indicating they could be suitable for 

tasks where moderate compression speed is required 

without significant time constraints. Brotli dramatically 

increases to 462.35 ms, suggesting a possible preference 

for a higher compression ratio at the cost of time 

efficiency. BZ2 is notably quicker than Brotli at 187.62 

ms, but still substantially slower compared to Gzip, Zlib, 

and Deflate, which may make it less ideal for time-

critical applications. 

 

The second graph shows memory allocation during the 

compression process in megabytes (MB). Gzip, Zlib, and 

Deflate maintain a low memory footprint at 

approximately 6.45 MB each, making them practical for 

environments with memory usage constraints. Brotli has 

a similar memory requirement at 6.4 MB, slightly less 

than the others, which is impressive considering its 

compression time. BZ2, however, requires a staggering 

736.62 MB of memory, which is an order of magnitude 

higher than its counterparts. This high memory demand 

could severely limit BZ2's usability, especially in 

systems where memory is a scarce resource. 

 

In conclusion, while Gzip, Zlib, and Deflate offer 

balanced performance with low memory consumption, 

Brotli might be considered when the compression ratio is 

more important, provided that the longer compression 

time is acceptable. BZ2, despite its moderate 

compression time, may only be viable in systems where 

ample memory is available and the highest possible 

compression ratio justifies its significant memory 

allocation. These insights are critical when selecting an 

algorithm for specific use cases, particularly when 

balancing the need for speed, efficiency, and available 

system resources. 

 

Graphs in Figure 8; The first graph details the mean 

compression time, revealing that Gzip, Zlib, and Deflate 

take 2,422.40 ms, 2,693.30 ms, and 499.9 ms 

respectively. These times suggest that while Gzip and 

Zlib have slower compression rates, Deflate is 

significantly faster, almost five to six times quicker than 

its counterparts. Brotli and BZ2 offer even better 

performance at 354.2 ms and 335.8 ms, respectively, 

which might make them preferable in time-sensitive 

scenarios where efficiency is paramount. 

 

In the second graph, memory allocation is depicted, with 

Gzip, Zlib, and Deflate all showing minimal differences 

in their memory usage, ranging between 7.63 MB to 7.62 

MB. Brotli's allocation is marginally lower at 7.57 MB, 

which could be considered negligible in most cases. 

However, BZ2 demonstrates a substantial increase in 

memory requirements, utilizing 742.29 MB. This 

considerable memory usage implies that BZ2 might only 

be suitable in situations where memory resources are 

abundant and a high compression ratio is required, 

despite its good performance in terms of compression 

speed. 

 

Overall, the graphs suggest that while Brotli and BZ2 

offer the best compression times, the latter does so at a 

significantly higher memory cost. This data is vital when 

considering the operational context of these algorithms, 

as it highlights the need to balance compression speed 

with resource consumption according to specific 

application needs. 

 

4.1.2. Sequential elements matrix performance 

measurements 

 

Graphs in Figure 9; In the first graph, the mean 

compression times are relatively low for Gzip, Zlib, and 

Deflate, recorded at 24.46 ms, 22.99 ms, and 22.62 ms, 

respectively. These figures suggest a high level of 

efficiency, with little to differentiate between the three in 

Figure 7. Complex matrix performance measurements belong to first, second and third operations in Figure 4. 

 

Figure 8. Complex matrix performance measurements belong to first, second, third and fourth operations in Figure 4. 
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terms of speed. Brotli shows a higher time of 46.46 ms, 

which could be attributed to its more complex 

compression algorithms designed for better compression 

ratios. BZ2, however, shows a significantly higher mean 

time of 1,108.02 ms, indicating that it is considerably 

slower than its counterparts. This would likely make 

BZ2 less suitable for applications where time efficiency 

is critical. 

 

The second graph is particularly revealing regarding 

memory allocation. Gzip, Zlib, and Deflate use similar 

and minimal amounts of memory, with allocations at 

6752 bytes, 6760 bytes, and 6392 bytes, respectively, 

which demonstrates their suitability for memory-

constrained environments. Brotli has a slightly higher 

allocation at 649 bytes, which remains relatively modest. 

However, BZ2’s memory allocation is an outlier, 

requiring a colossal 12,291,200 bytes. This is orders of 

magnitude greater than the other algorithms, suggesting 

it may be impractical for most applications due to its 

high memory demands, despite any potential benefits in 

compression ratio. 

 

In summary, these visual data points emphasize the 

importance of considering both compression speed and 

memory usage when selecting an algorithm. While Gzip, 

Zlib, and Deflate offer the best balance for general use, 

Brotli might be an alternative for specific use cases that 

can tolerate slightly longer compression times. BZ2's 

high resource consumption makes it suitable only for 

niche applications where its compression benefits 

outweigh the significant memory requirements. 
 

Graphs in Figure 10; From the first graph, we observe 

that Gzip, Zlib, and Deflate have quite competitive mean 

compression times of 25.76 ms, 23.58 ms, and 23.3 ms 

respectively. These small differences are unlikely to 

impact the choice of algorithm in scenarios where 

compression time is somewhat flexible. Brotli's mean 

time is slightly higher at 34.87 ms, which is still within 

an acceptable range for many applications, considering 

that it typically achieves better compression ratios. BZ2, 

however, has a mean time of 1,153.63 ms, which is 

substantially higher than the others. This may limit its 

use to non-time-sensitive processes where compression 

efficiency is more critical. 

 

In the second graph, memory allocation in kilobytes 

(KB) is represented, showing that Gzip, Zlib, and 

Deflate all have modest memory requirements at 65.13 

KB, 65.1 KB, and 64.78 KB, respectively. Brotli is 

slightly more efficient at 59.28 KB. In stark contrast, 

BZ2 requires a dramatically higher amount of memory at 

12,063.71 KB, which is nearly 200 times greater than its 

nearest competitor. This high memory allocation 

suggests that BZ2's use cases might be very specialized, 

where the benefits of its compression outweigh the cost 

in terms of memory usage. 

 

The data from these graphs suggest that for most general 

purposes, Gzip, Zlib, and Deflate offer a good balance of 

speed and memory efficiency. Brotli stands out as a 

strong candidate when slightly higher compression times 

are acceptable, and memory efficiency is a priority. BZ2 

appears to be a specialized tool that might be reserved 

for unique situations where its heavy memory use can be 

justified, likely in environments where memory is not a 

constraint and maximum compression is the primary 

goal. 

 

Figure 11; From the compression time perspective, Gzip 

and Zlib are the quickest, with times of 26.51 ms and 

21.89 ms, respectively, making them suitable for 

applications where speed is essential. Deflate and Brotli 

exhibit slightly longer compression times at 24.7 ms and 

35.29 ms, respectively, with Brotli's longer time possibly 

Figure 9. Sequential elements matrix performance measurements belong to just first operation in Figure 4. 

 

Figure 10. Sequential elements matrix performance measurements. 
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reflecting its focus on achieving higher compression 

ratios. BZ2 is the outlier, taking considerably longer at 

1,127.31 ms, suggesting it might be less suited for time-

sensitive processes. 

 

The memory allocation chart shows that Gzip, Zlib, 

Deflate, and Brotli have similar and relatively low 

memory footprints, all under 1.3 MB. This is beneficial 

in resource-constrained environments where maintaining 

a small memory usage is crucial. In stark contrast, BZ2 

requires a substantially larger amount of memory, at 

17.27 MB, which may hinder its practicality in systems 

with limited memory availability. 

 

Figure 12; Gzip and Zlib demonstrate relatively 

moderate compression times at 1,842.34 ms and 

1,975.51 ms, respectively. Deflate follows closely, 

showing a time of 69.66 ms, suggesting a faster 

performance that could be beneficial in time-sensitive 

applications. Brotli shows a compression time of 

1,502.17 ms, which is slower compared to Gzip and Zlib 

but faster than BZ2, which has the highest mean time at 

11,879.34 ms, indicating it may be less efficient for rapid 

compression needs. 

 

When examining memory allocation, Gzip, Zlib, Deflate, 

and Brotli are quite efficient, each requiring slightly over 

1 MB of memory. This low memory footprint is 

advantageous for environments where resource 

conservation is essential. However, BZ2's memory 

requirement is much higher at 17.36 MB, making it 

potentially impractical for memory-constrained systems 

despite its slower compression time. 

In an academic context, these findings would suggest 

that while Brotli and BZ2 have slower compression 

times, they might offer better compression ratios, which 

could be a trade-off depending on the application's 

requirements. However, the significantly higher memory 

usage of BZ2 could limit its use to systems where 

memory resources are not a concern. 

 

4.1.3. Matrix With Many Zero Performance 

Measurements 

 

Graphs in Figure 13; For compression time, Gzip is the 

fastest at 34.46 ms, closely followed by Zlib and Deflate 

at 29.32 ms and 30.61 ms respectively. Brotli is slightly 

slower at 56.54 ms, while BZ2 is the slowest at 67.27 

ms. 

 

Memory allocation shows Gzip, Zlib, and Deflate using 

less than 4 KB of memory, indicating high efficiency. 

Brotli requires slightly more at 671 bytes. BZ2, however, 

requires a much larger memory size of 12,197,576 bytes, 

which is substantially more than its counterparts. 

 

In summary, Gzip, Zlib, and Deflate are efficient in both 

time and memory usage, suitable for most applications. 

Brotli trades off some speed for compression quality, 

while BZ2, due to its high memory demand, may only be 

practical for specific use cases where its compression 

benefits outweigh its resource usage. 

 

Figure 11. Sequential elements matrix performance measurements belong to first, second and third operations in Figure  4. 

Figure 12. Sequential elements matrix performance measurements belong to first, second, third and fourth operations in Figure 4. 
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Graphs in Figure 14; The mean compression times are 

fairly close for Gzip, Zlib, and Deflate, recorded at 36.23 

ms, 32.45 ms, and 31.22 ms respectively, which suggests 

these algorithms are quite efficient. Brotli shows a 

higher time at 46.32 ms, and BZ2 is the slowest at 68.76 

ms, which could be a drawback for rapid compression 

needs. 

 

On the memory allocation front, Gzip, Zlib, and Deflate 

are comparable, requiring between 61.77 KB to 61.41 

KB. Brotli is slightly more efficient at 59.29 KB. 

However, BZ2's memory requirement is exceptionally 

high at 11,970.11 KB, which may render it less practical 

for environments with limited memory resources. 

 

In essence, Gzip, Zlib, and Deflate are suitable for 

general use, offering a good balance of speed and low 

memory usage. Brotli stands out as a slightly less 

efficient option in terms of speed but still maintains low 

memory use. BZ2, while slowest, may offer better 

compression ratios at the cost of significantly higher 

memory usage. 

 

Graphs in Figure 15; Gzip has a compression time of 

37.33 ms, Zlib is faster at 26.32 ms, and Deflate is very 

close to Zlib at 32.96 ms. Brotli is slower at 55.22 ms, 

and BZ2 is the slowest at 71.6 ms. 

 

For memory usage, Gzip, Zlib, and Deflate are nearly 

identical, ranging from 115.23 MB to 115.02 MB. Brotli 

is marginally more efficient at 111.79 MB. BZ2's 

memory allocation is significantly higher at 12,023.52 

MB, suggesting it is less efficient in terms of memory 

usage. 

 

Overall, Zlib and Deflate are the most efficient in both 

time and memory usage, while BZ2's high memory 

allocation could limit its practicality despite its 

compression capability. 

 

Graphs in Figure 16; In terms of compression time, 

Gzip, Zlib, and Deflate exhibit high performance, with 

mean times of 9,452.95 ms, 11,166.46 ms, and 10,679.48 

ms, respectively, indicating they are quite fast. Brotli has 

a lower time at 575.5 ms, and BZ2 is the most time-

efficient at 62.98 ms. 

 

Memory allocation shows that Gzip, Zlib, Deflate, and 

Brotli have similar low memory usage, around 1.29 MB 

to 1.28 MB. In stark contrast, BZ2 requires significantly 

more memory at 17.27 MB. 

 

Figure 14. Matrix with many zero performance measurements belong to first and second operations in Figure 4. 
 

Figure 13. 4.2.3. Matrix with many zero performance measurements belong to just first operation in Figure 4. 

 

Figure 15. Matrix with many zero performance measurements belong to first, second and third operations in Figure 4. 
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BZ2 stands out with the lowest compression time but 

requires more memory, while Brotli offers a balance 

between efficient compression time and low memory 

usage. Gzip, Zlib, and Deflate, while slower, also 

maintain a low memory footprint. 

 

4.2. Compression Performance Measurements 

 

Figure 17 covers the performance of compression 

algorithms in minimizing the 63,684-byte matrix. As 

observed, the Brotli algorithm demonstrates a clear 

superiority compared to the others. Brotli, being the 

overall winner in performance tests, owes its distinction 

to its high compression ratio. 

 

 
 

Figure 17. Compression ratios of algorithms. 

 

5. DISCUSSION 

 

The results of the experimental studies have shown that 

the Brotli algorithm provides the best performance. 

Brotli offers both a high compression ratio and fast 

compression and decompression times. Other algorithms 

either have a low compression ratio or slow processing 

times. These results provide a framework for the 

effective transfer of large matrix data in microservices 

architectures. An overall evaluation of the obtained 

results is presented below: 

 

• Gzip, Zlib, and Deflate have been the most performant 

in the first three periods, providing similar results to each 

other. 

• Brotli, despite lagging behind in performance in the 

first three measurements, has been the most efficient 

algorithm in the end-to-end test. 

• While the BZ2 algorithm exhibited the worst 

performance in the first three periods, it yielded good 

results in the later periods; however, it did not meet the 

expected memory usage. 

• The ultimate reason for Brotli being the optimal 

algorithm is its high compression ratio compared to 

others. 

• Brotli algorithm provided the most optimal results for 

all types of matrices. 

 

6. CONCLUSION 

 

This study focuses on optimizing data transfer in 

microservices architectures and evaluates the 

performance of compression and decompression 

processes for large matrix data. The results obtained 

indicate that the Brotli algorithm provides the best 

solution in this context. It has been the most performant 

algorithm for three different types of matrices subjected 

to testing. This study serves as a reference for 

researchers and industry professionals interested in data 

transfer in microservices architectures. The provided 

information should not be limited to matrix-specific 

evaluations but should also be considered for other data 

formats. 

 

Looking ahead, further research can expand upon this 

work by exploring a broader range of data formats such 

as text, JSON, and XML to determine the most effective 

compression algorithms for diverse data types. 

Additionally, investigating the distribution of 

compression and decompression tasks in distributed 

systems could offer insights into enhancing performance 

for large-scale data transfers. Embracing adaptive 

compression techniques and exploring hardware 

acceleration are promising directions that could lead to 

significant improvements in real-time data processing 

and efficiency. These future endeavors will build on the 

foundation laid by this study, offering a comprehensive 

understanding of data optimization in microservices 

architectures across various contexts and technologies. 
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