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The falling body problem for different time scales, such as ℝ, ℤ, hℤ, qℕ0, ℙc,d is the subject of this 

study. To deal with this problem, we use time-scale calculus. Time scale dynamic equations are used to 

define the falling body problem. The exponential time scale function is used for the solutions of these 

problems. The solutions of the falling body problem in each of these time scales are found. Moreover, 

we also test our mathematical results with numerical simulations. 
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1. INTRODUCTION 

Limits in calculating derivatives of real functions are the essential tools of regular calculus. However, many 

real-life problems are discussed in both continuous and discrete domains. To unify discrete and continuous 

domains Time Scale Calculus was established in the thesis of Stephan Hilger (Hilger, 1988). After that many 

studies were done about this issue. Bohner and Peterson (2001) is one of the most important books that explains 

the significant part of this calculus. The following articles show the results on the dynamic equations in time 

scale calculus; Akın and Bohner (2003), Akın et al. (2020), Anderson (2005), Kayar et al. (2022), Kayar and 

Kaymakçalan (2022a) and Kayar and Kaymakçalan (2022b). In the literature, many different kinds of calculus 

were defined. For instance, one can find the classical calculus, discrete calculus, h-calculus and q-calculus in 

the literature. Time scale calculus contains all of these in itself. Therefore, the results that we have found in 

time-scale calculus are general ones and one can reduce these results to these specific calculus types. In Alanazi 

et al. (2020), the falling body problem was studied by using q-calculus whose domain is qℕ
0. The basic formula 

for q-calculus is formerly obtained by Euler, nevertheless, its calculus was introduced by Jackson (1910). In 

this study, we generalize these results by using time scale calculus and we also show that our results coincide 

with the results in Alanazi et al. (2020). Moreover, we support our results with the numerical simulations. 

2. METHODS AND PRELIMINERIES 

The information in that section is taken from Bohner and Peterson (2001). The nonempty closed subset of real 

numbers is defined as a time scale and denoted by 𝑻. The forward jump operator 𝜎: 𝑻 → 𝑻 is defined as  

𝜎ሺ𝑡ሻ ≔ 𝑖𝑛𝑓ሼ𝑠 ∈ 𝑻: 𝑠 > 𝑡ሽ, 

for 𝑡 ∈ 𝑻 while the backward jump operator 𝜌: 𝑻 → 𝑻 is defined by  
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𝜌ሺ𝑡ሻ:= 𝑠𝑢𝑝ሼ𝑠 ∈ 𝑻: 𝑠 < 𝑡ሽ. 

If 𝑡 < 𝑠𝑢𝑝⁡ሼ𝑻ሽ and 𝜎ሺ𝑡ሻ = 𝑡, then 𝑡 is called right-dense, and if 𝑡 > 𝑖𝑛𝑓ሼ𝑻ሽ and 𝜌ሺ𝑡ሻ = 𝑡, then 𝑡 is called left-

dense. Besides, if 𝜌ሺ𝑡ሻ < 𝑡, we say that 𝑡 is left-scattered. The graininess function 𝜇: 𝑻 → [0,∞ሻ is defined by  

𝜇ሺ𝑡ሻ: = 𝜎ሺ𝑡ሻ − 𝑡. 

Definition 1: We say that a function 𝑝: 𝑻 → ℝ is regressive provided 1 + 𝜇ሺ𝑡ሻ𝑝ሺ𝑡ሻ ≠ 0 for all 𝑡 ∈ 𝑻𝑘 =
𝑻/ሺ𝜌ሺ𝑠𝑢𝑝ሼ𝑇ሽሻ, 𝑠𝑢𝑝ሼ𝑇ሽ] holds. The set of all regressive and rd-continuous functions 𝑝: 𝑻 → ℝ is denoted by 

𝓡 = 𝓡ሺ𝑻ሻ = 𝓡ሺ𝑻,ℝሻ. 

Definition 2: If 𝑝 ∈ 𝓡, then we define the exponential function by 

𝑒𝑝ሺ𝑡, 𝑠ሻ = 𝑒𝑥𝑝ቆන 𝜉𝜇ሺ𝜏ሻ൫𝑝ሺ𝜏ሻ൯𝛥𝜏
𝑡

𝑠
ቇ ⁡⁡⁡⁡⁡for⁡⁡⁡⁡𝑠, 𝑡 ∈ 𝑻 

where the cylinder transformation is defined by 

𝜉ℎሺ𝑧ሻ ≔ ൝
𝐿𝑜𝑔ሺ1 + 𝑧ℎሻ

ℎ
, ℎ ≠ 0

𝑧, ℎ = 0
 

Theorem 1: Time scale exponential function has following properties. 

i. 𝑒𝑝ሺ𝑡, 𝑠ሻ =
1

𝑒𝑝ሺ𝑠,𝑡ሻ
 

ii. (
1

𝑒𝑝ሺ.,𝑠ሻ
)
𝛥

=−
𝑝ሺ𝑡ሻ

𝑒𝑝
𝜎ሺ.,𝑠ሻ

 

iii. 𝑒⊖𝑝ሺ𝑡, 𝜏ሻ =
1

𝑒𝑝ሺ𝑡,𝜏ሻ
 

Definition 3: If 𝑝 ∈ 𝓡 then the first order linear dynamic equation 

 𝑦𝛥 = 𝑝ሺ𝑡ሻ𝑦ሺ𝑡ሻ (1) 

is called regressive. 

Theorem 2:(Variations of Constants Formula) 

Suppose (1) is regressive. Let 𝑡0 ∈ 𝑻 and 𝑦
0
∈ ℝ. The unique solution of the initial value problem 

 𝑦𝛥 = 𝑝ሺ𝑡ሻ𝑦 + 𝑓ሺ𝑡ሻ, 𝑦ሺ𝑡0ሻ = 𝑦0 (2) 

is given by 

 𝑦ሺ𝑡ሻ = 𝑒𝑝ሺ𝑡, 𝑡0ሻ𝑦0 +න 𝑒𝑝൫𝑡, 𝜎ሺ𝜏ሻ൯𝑓ሺ𝜏ሻ𝛥𝜏
𝑡

𝑡0

 (3) 

Theorem 3: (Variations of Constants Formula) 

Suppose (1) is regressive. Let 𝑡0 ∈ 𝑻 and 𝑦
0
∈ ℝ. The unique solution of the initial value problem 

 𝑦𝛥 = −𝑝ሺ𝑡ሻ𝑦𝜎 + 𝑓ሺ𝑡ሻ, 𝑦ሺ𝑡0ሻ = 𝑦0 (4) 
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is given by 

 𝑦ሺ𝑡ሻ = 𝑒⊖𝑝ሺ𝑡, 𝑡0ሻ𝑦0 +න 𝑒⊖𝑝ሺ𝑡, 𝜏ሻ𝑓ሺ𝜏ሻ𝛥𝜏,
𝑡

𝑡0

 (5) 

where 𝑝ሺ𝑡ሻ =
𝑝ሺ𝑡ሻ

1+𝜇ሺ𝑡ሻ𝑝ሺ𝑡ሻ
. 

2.1. Preliminaries for Falling Body Problem 

Let us assume that in a constant gravitational field, a particle of mass m falls through the air from a height h 

with an initial speed 𝑣0. It then encounters a resistance force that opposes the relative motion by which the 

particle moves relative to the air. It is known that this resistance force is related to relative speed. For slow 

speeds, the magnitude of the resistance force is proportional to the speed. But in other cases it may be 

proportional to the square of the velocity (or some other force). By applying Newton's second law we get 

 ⁡𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝑔 −𝑚𝑘𝑣, (6) 

where k represents a positive constant indicating the strength of the retarding force, the inverse of seconds is 

its dimensionality and, −𝑚𝑘𝑣, is a positive upward force because we take 𝑧 and 𝑣 = 𝑧′ to be positive upward, 

and the motion is downward, that is, 𝑣 < 0, so that, −𝑘𝑚𝑣 > 0. The solution of the equation (6) with the 

initial condition 𝑣ሺ0ሻ = 𝑣0 is given by 

 𝑣ሺ𝑡ሻ = −
𝑔

𝑘
+ (𝑣0 +

𝑔

𝑘
)𝑒−𝑘𝑡. (7) 

By using the initial condition 𝑧ሺ0ሻ = ℎ and integrating (7), we get 

 𝑧ሺ𝑡ሻ = ℎ −
𝑔𝑡

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ൫1 − 𝑒−𝑘𝑡൯, (8) 

see (Thornton, 2004).  

3. MAIN RESULTS  

3.1 Main Results for Falling Body Problem in Time Scale Calculus 

The equation of motion (6) in view of the time scale calculus becomes 

 𝑚𝑣𝛥 = −𝑚𝑔 −𝑚𝑘𝑣 (9) 

Or 

 𝑣𝛥 = −𝑔 − 𝑘𝑣. (10) 

Let 

 𝑣𝛥 = −𝑘𝑣 (11) 

be regressive. Then the solution of initial value problem 

https://doi.org/10.54287/gujsa.1427944
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 𝑣𝛥 = −𝑔 − 𝑘𝑣, 𝑣ሺ0ሻ = 𝑣0 (12) 

can be obtained by Variation of Constants Formula (3) as 

𝑣ሺ𝑡ሻ = 𝑒−𝑘ሺ𝑡, 0ሻ𝑣0 − 𝑔න 𝑒−𝑘

𝑡

0

൫𝑡, 𝜎ሺ𝜏ሻ൯𝛥𝜏. 

By using the properties given in Theorem 1 we have 

𝑒−𝑘ሺ𝑡, 𝜎ሺ𝜏ሻሻ =
1

𝑒−𝑘ሺ𝜎ሺ𝜏ሻ, 𝑡ሻ
=
1

𝑘

𝑘

𝑒−𝑘ሺ𝜎ሺ𝜏ሻ, 𝑡ሻ
=
1

𝑘
(

1

𝑒−𝑘ሺ𝜏, 𝑡ሻ
)
𝜟

. 

Therefore, 

න 𝑒−𝑘൫𝑡, 𝜎ሺ𝜏ሻ൯
𝑡

0

𝛥𝜏 = න
1

𝑘

𝑡

0

(
1

𝑒−𝑘ሺ𝜏, 𝑡ሻ
)
𝛥

𝛥𝜏 =
1

𝑘
൤1 −

1

𝑒−𝑘ሺ0, 𝑡ሻ
൨ =

1

𝑘
[1 − 𝑒−𝑘ሺ𝑡, 0ሻ] 

implies that  

 𝑣ሺ𝑡ሻ = 𝑒−𝑘ሺ𝑡, 0ሻ [𝑣0 +
𝑔

𝑘
] −

𝑔

𝑘
. (13) 

The vertical distance 𝑧ሺ𝑡ሻ in time-scale calculus is governed by 

 𝑧𝛥 = 𝑒−𝑘ሺ𝑡, 0ሻ [𝑣0 +
𝑔

𝑘
] −

𝑔⁡

𝑘
 (14) 

where 𝑣ሺ𝑡ሻ = 𝑧𝛥ሺ𝑡ሻ. Integrating (14) implies that 

𝑧ሺ𝑡ሻ = ℎ −
𝑔𝑡

𝑘
+ [𝑣0 +

𝑔

𝑘
]න 𝑒−𝑘ሺ𝑠, 0ሻ

𝑡

0

𝛥𝑠 = ℎ −
𝑔𝑡

𝑘
−
1

𝑘
[𝑣0 +

𝑔

𝑘
] [1 − 𝑒−𝑘ሺ𝑡, 0ሻ] = ℎ −

𝑔𝑡

𝑘
+
1

𝑘
[𝑣0 +

𝑔

𝑘
] [1 − 𝑒−𝑘ሺ𝑡, 0ሻ]. 

Remark 1: Let us choose the equation of motion (6) in view of the time scale calculus as 

𝑚𝑣𝛥 = −𝑚𝑔 −𝑚𝑘𝑣𝜎 

or 

𝑣𝛥 = −𝑔 − 𝑘𝑣𝜎 . 

Let us assume that these equations are regressive. Then the solution of the initial value problem 

𝑣𝛥 = −𝑔 − 𝑘𝑣𝜎 , 𝑣ሺ0ሻ = 𝑣0 

can be obtained by Variation of Constants Formula (5) as 

𝑣ሺ𝑡ሻ = 𝑒⊖ሺ−𝑘ሻሺ𝑡, 0ሻ𝑣0 − 𝑔න 𝑒⊖ሺ−𝑘ሻሺ𝑡, 𝜏ሻ
𝑡

0

𝛥𝜏. 

By using the properties given in Theorem 1 we have 

𝑒⊖ሺ−𝑘ሻሺ𝑡, 𝜏ሻ =
1

𝑒−𝑘ሺ𝑡, 𝜏ሻ
= 𝑒−𝑘ሺ𝜏, 𝑡ሻ. 

Therefore, 

https://doi.org/10.54287/gujsa.1427944
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න 𝑒⊖ሺ−𝑘ሻሺ𝑡, 𝜏ሻ𝛥𝜏
𝑡

0

= න 𝑒−𝑘

𝑡

0

ሺ𝜏, 𝑡ሻ𝛥𝜏 = −
1

𝑘
න −𝑘𝑒−𝑘ሺ𝜏, 𝑡ሻ𝛥𝜏

𝑡

0

= −
1

𝑘
[1 − 𝑒−𝑘ሺ0, 𝑡ሻ] =

1

𝑘
ൣ𝑒⊖ሺ−𝑘ሻሺ𝑡, 0ሻ − 1൧ 

implies that 

𝑣ሺ𝑡ሻ = 𝑒⊖ሺ−𝑘ሻሺ𝑡, 0ሻ𝑣0 −
𝑔

𝑘
ൣ𝑒⊖ሺ−𝑘ሻሺ𝑡, 0ሻ − 1൧ = 𝑒⊖ሺ−𝑘ሻሺ𝑡, 0ሻ [𝑣0 −

𝑔

𝑘
] +

𝑔

𝑘
. 

The vertical distance 𝑧ሺ𝑡ሻ in time-scale calculus is governed by 

𝑧𝛥 = 𝑒⊖ሺ−𝑘ሻሺ𝑡, 0ሻ [𝑣0 −
𝑔

𝑘
] +

𝑔

𝑘
, 

where 𝑣ሺ𝑡ሻ = 𝑧𝛥ሺ𝑡ሻ. After integration, we get  

𝑧ሺ𝑡ሻ = ℎ +
𝑔𝑡

𝑘
+ [𝑣0 −

𝑔

𝑘
]න 𝑒⊖ሺ−𝑘ሻሺ𝑠, 0ሻ

𝑡

0

𝛥𝑠 = ℎ +
𝑔𝑡

𝑘
+
1

𝑘
[𝑣0 −

𝑔

𝑘
] ൣ1 − 𝑒⊖ሺ−𝑘ሻሺ𝑡, 0ሻ൧. 

3.2 Special Cases 

Below the falling body problems for the important special time scales is considered. 

3.2.1. T=ℝ 

We consider the special case where 𝜇ሺ𝑡ሻ = 0 for all 𝑡 ∈ 𝑻. In this case equation (9) becomes as equation (6) 

and solution (13) reduces to solution (7), see (Thornton, 2004). 

3.2.2. T=ℤ 

We consider the special case where 𝜇ሺ𝑡ሻ = 1 for all 𝑡 = 𝑛 ∈ 𝑻. In this case equation (10) becomes as  

𝑣ሺ𝑛 + 1ሻ − 𝑣ሺ𝑛ሻ = 𝛥𝑣 = −𝑚𝑔 −𝑚𝑘𝑣 

and solution (13) reduces to 

𝑣ሺ𝑛ሻ = ሺ1 − 𝑘ሻ𝑛𝑣0 − 𝑔෍ሺ1 − 𝑘ሻ𝑛−𝑖−1
𝑛−1

𝑖=0

= ሺ1 − 𝑘ሻ𝑛𝑣0 − 𝑔෍ሺ1 − 𝑘ሻ𝑖
𝑛−1

𝑖=0

 

= ሺ1 − 𝑘ሻ𝑛𝑣0 − 𝑔
1 − ሺ1 − 𝑘ሻ𝑛

𝑘
= ሺ1 − 𝑘ሻ𝑛 [𝑣0 +

𝑔

𝑘
] −

𝑔

𝑘
, 

see (Elaydi (2005), page 4). 

The vertical distance 𝑧ሺ𝑡ሻ in time scale calculus is governed by 

 𝛥𝑧 = ሺ1 − 𝑘ሻ𝑛 [𝑣0 +
𝑔

𝑘
] −

𝑔

𝑘
, (15) 

where 𝑣ሺ𝑛ሻ = 𝛥𝑧ሺ𝑛ሻ. Summation (15) implies that 

𝑧ሺ𝑛ሻ = ℎ −
𝑔𝑛

𝑘
+
1

𝑘
[𝑣0 +

𝑔

𝑘
] [1 − ሺ1 − 𝑘ሻ𝑛] 

3.2.3. T=𝒉ℤ, where 𝟎 < 𝒉 ∈ ℝ 

We consider the special case where 𝜇ሺ𝑡ሻ = ℎ for all 𝑡 = 𝑛 ∈ 𝑻. In this case equation (10) becomes as 

https://doi.org/10.54287/gujsa.1427944
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𝑣ሺ𝑛 + ℎሻ − 𝑣ሺ𝑛ሻ

ℎ
= 𝑣𝛥 = −𝑔 − 𝑘𝑣 

and solution (13) reduces to 

𝑣ሺ𝑡ሻ = ሺ1 − 𝑘ℎሻ
𝑡
ℎ [𝑣0 +

𝑔

𝑘
] −

𝑔

𝑘
. 

The vertical distance 𝑧ሺ𝑡ሻ becomes 

𝑧ሺ𝑡ሻ = ℎ −
𝑔𝑡

𝑘
+
1

𝑘
[𝑣0 +

𝑔

𝑘
] [1 − ሺ1 − 𝑘ℎሻ𝑡 ℎΤ ] 

Moreover, one can see falling body motion and its velocity behavior when 𝑻 is taken as ℤ,𝒉ℤ⁡ and ℝ⁡in  

Figure 1, Figure 2, Figure 3 and Figure 4 for different initial velocities and initial heights. 

  

Figure 1. Graphs when 𝑣0 = 0 Figure 2. Graphs when 𝑣0 = −5 

  

Figure 3. Graphs when 𝑣0 = 0 and ℎ0 = 116,7 Figure 4. Graphs when 𝑣0 = −5 and ℎ0 = 120 
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3.2.4. T=𝒒ℕ𝟎 = {𝟏, 𝒒, 𝒒𝟐, 𝒒𝟑, … }, where 𝟏 < 𝒒 ∈ ℝ 

We consider the special case where 𝜎ሺ𝑡ሻ = 𝑞𝑡 and 𝜇ሺ𝑡ሻ depends on 𝑡 for all 𝑡 ∈ 𝑻. In this case equation (9) 

becomes as equation (14) in Alanazi et al. (2020). and solution (13) reduces to equation (26) in Alanazi et al. 

(2020). In Figure 5 and Figure 6 one can see the velocity and distance behavior when T=1.5ℕ𝟎. 

  

Figure 5. Velocity graphs for 1.5ℕ0 Figure 6. Distance graphs for 1.5ℕ0 

3.2.5. T=ℙ𝒄,𝒅 = ⋃ [𝒊ሺ𝒄 + 𝒅ሻ, 𝒊ሺ𝒄 + 𝒅ሻ + 𝒄],∞
𝒊=𝟎  where 𝟎 < 𝒄, 𝒅 ∈ ℝ, 𝒊 ∈ ℕ𝟎 

We consider the special case where 

𝜎ሺ𝑡ሻ = ൜
𝑡, 𝑖𝑓𝑡 ∈ ⋃𝑖=0

∞ [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐],

𝑑, 𝑖𝑓𝑡 ∈ ⋃𝑖=0
∞ ሼ𝑖ሺ𝑐 + 𝑑ሻ + 𝑐ሽ,

 

𝜇ሺ𝑡ሻ = ൜
0, 𝑖𝑓𝑡 ∈ ⋃𝑖=0

∞ [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐],

𝑏, 𝑖𝑓𝑡 ∈ ⋃𝑖=0
∞ ሼ𝑖ሺ𝑐 + 𝑑ሻ + 𝑐ሽ,

 

In this case equation (10) becomes as 

𝑑𝑣

𝑑𝑡
= −𝑔 − 𝑘𝑣, 𝑡 ∈ [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐]. 

We will find the solution interval by interval. 

First Case: Let us assume that the particle stops at the end of each interval [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐] for all 

𝑖 = 0,1,2, .. automatically, i.e without a force. 

 In this case the initial velocity at the beginning of each interval should be  

𝑣𝑖 =
𝑔

𝑘
[𝑒𝑘𝑐 − 1] 

for all 𝑖 = 0,1,2,⋯. Indeed, for the interval 𝑡 ∈ [0, 𝑐], we have 

𝑑𝑣

𝑑𝑡
= −𝑔 − 𝑘𝑣, 

𝑣ሺ0ሻ = 𝑣0 
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and the solution becomes 

𝑣ሺ𝑡ሻ = 𝑒−𝑘
𝑃 ሺ𝑡, 0ሻ [𝑣0 +

𝑔

𝑘
] −

𝑔

𝑘
= 𝑒−𝑘𝑡 [𝑣0 +

𝑔

𝑘
] −

𝑔

𝑘
, 

where 𝑒𝛼
𝑃ሺ𝑡, 𝑡0ሻ is exponential function for ℙ𝑐,𝑑 defined by  𝑒𝛼

𝑃ሺ𝑡, 𝑡0ሻ = 𝑒𝛼ሺ𝑡−𝑡0ሻ. 

 If the particle stops at the point when 𝑡 = 𝑐, then its velocity should be zero at the point when 𝑡 = 𝑐 and so, 

𝑣ሺ𝑐ሻ = 0. This implies that 𝑣0 =
𝑔

𝑘
[𝑒𝑘𝑐 − 1]. 

 For each interval 𝑡 ∈ [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐], we can find the solution as 

𝑣ሺ𝑡ሻ = 𝑒−𝑘
𝑃 ሺ𝑡, 𝑖ሺ𝑐 + 𝑑ሻሻ [𝑣𝑖 +

𝑔

𝑘
] −

𝑔

𝑘
= 𝑒−𝑘ሺ𝑡−𝑖ሺ𝑐+𝑑ሻሻ [𝑣𝑖 +

𝑔

𝑘
] −

𝑔

𝑘
 

and the initial velocity of each interval as 𝑣𝑖 =
𝑔

𝑘
[𝑒𝑘𝑐 − 1] at the point 𝑡 = 𝑖ሺ𝑐 + 𝑑ሻ for all 𝑖 = 0,1,2,⋯. 

 In this case at the points when 𝑡 = 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐, we have 

𝛥𝑣ሺ𝑖ሺ𝑐 + 𝑑ሻ + 𝑐ሻ = 𝑣൫ሺ𝑖 + 1ሻሺ𝑐 + 𝑑ሻ൯ − 𝑣ሺ𝑖ሺ𝑐 + 𝑑ሻ + 𝑐ሻ = 𝑣൫ሺ𝑖 + 1ሻሺ𝑐 + 𝑑ሻ൯ = 𝑣𝑖+1 =
𝑔

𝑘
[𝑒𝑘𝑐 − 1] 

Let us consider the displacement of the particle. Different than the other time scales, in this case 𝑧 does not 

denote the vertical distance but it denotes the displacement of the particle. 

 For the interval 𝑡 ∈ [0, 𝑐], we have 

𝑑𝑧

𝑑𝑡
= 𝑣 = 𝑒−𝑘𝑡 [𝑣0 +

𝑔

𝑘
] −

𝑔

𝑘
 

𝑧ሺ0ሻ = ℎ 

where 𝑣0 = 𝑣𝑖 =
𝑔

𝑘
[𝑒𝑘𝑐 − 1] for all 𝑖 = 0,1,2,… and the solution becomes 

𝑧ሺ𝑡ሻ = ℎ −
𝑔𝑡

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑡ሻ 

which shows the displacement of the particle over the first 𝑐 seconds. 

 For the displacement of the particle at the point when 𝑡 = 𝑐, we need to compute 

𝑧ሺ𝑐ሻ = ℎ −
𝑔𝑐

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ = ℎ0. 

Therefore, the particle is falling from the point 𝑧 = ℎ and stops at the point 𝑧 = ℎ − ℎ0 at 𝑡 = 𝑐. 

 For the interval 𝑡 ∈ [𝑐 + 𝑑, 2𝑐 + 𝑑], we have 

𝑑𝑧

𝑑𝑡
= 𝑣 = 𝑒−𝑘𝑡 (𝑣0 +

𝑔

𝑘
) −

𝑔

𝑘
, 

𝑧ሺ𝑐 + 𝑑ሻ = ℎ − ℎ0 

and the solution becomes 
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𝑧ሺ𝑡ሻ = ℎ − ℎ0 −
𝑔

𝑘
ሺ𝑡 − 𝑐 − 𝑑ሻ +

1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ𝑒−𝑘ሺ𝑐+𝑑ሻ − 𝑒−𝑘𝑡ሻ 

which shows the displacement of the particle over the interval [𝑐 + 𝑑, 2𝑐 + 𝑑]. 

 For the displacement of the particle at the point when 𝑡 = 2𝑐 + 𝑑, we need to compute 

𝑧ሺ2𝑐 + 𝑑ሻ = ℎ − ℎ0 −
𝑔𝑐

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ𝑒−𝑘ሺ𝑐+𝑑ሻ =

1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻሺ𝑒−𝑘ሺ𝑐+𝑑ሻ − 1ሻ = ℎ1. 

 Therefore, the particle is falling from the point 𝑧 = ℎ − ℎ1 and stops at the point 𝑧 = ℎ − ℎ0 − ℎ1 at 𝑡 = 2𝑐 +
𝑑. 

 For the interval 𝑡 ∈ [2𝑐 + 2𝑑, 3𝑐 + 2𝑑], we have 

𝑑𝑧

𝑑𝑡
= 𝑣 = 𝑒−𝑘𝑡 (𝑣0 +

𝑔

𝑘
) −

𝑔

𝑘
 

𝑧ሺ2𝑐 + 2𝑑ሻ = ℎ − ℎ0 − ℎ1 

and the solution becomes 

𝑧ሺ𝑡ሻ = ℎ − ℎ0 − ℎ1 −
𝑔

𝑘
ሺ𝑡 − 2𝑐 − 2𝑑ሻ +

1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ𝑒−𝑘ሺ2𝑐+2𝑑ሻ − 𝑒−𝑘𝑡ሻ 

which shows the displacement of the particle over the interval [2𝑐 + 2𝑑, 3𝑐 + 2𝑑]. 

 For the displacement of the particle at the point when 𝑡 = 3𝑐 + 2𝑑, we need to compute 

𝑧ሺ3𝑐 + 2𝑑ሻ = ℎ − ℎ0 − ℎ1 −
𝑔𝑐

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ𝑒−𝑘ሺ2𝑐+2𝑑ሻ 

=
1

𝑘
(𝑣0 +

𝑔

𝑘
) ൫1 − 𝑒−𝑘𝑐൯൫𝑒−𝑘ሺ𝑐+𝑑ሻሽ − 1൯𝑒−𝑘ሺ𝑐+𝑑ሻ = ℎ2. 

Therefore, the particle is falling from the point 𝑧 = ℎ − ℎ1 and stops at the point 𝑧 = ℎ − ℎ0 − ℎ1 − ℎ2 at 𝑡 =
3𝑐 + 2𝑑. 

 For the interval 𝑡 ∈ [3𝑐 + 3𝑑, 4𝑐 + 3𝑑], we have 

𝑑𝑧

𝑑𝑡
= 𝑣 = 𝑒−𝑘𝑡 [𝑣0 +

𝑔

𝑘
] −

𝑔

𝑘
 

𝑧ሺ3𝑐 + 3𝑑ሻ = ℎ − ℎ0 − ℎ1 − ℎ2 

and the solution becomes 

𝑧ሺ𝑡ሻ = ℎ − ℎ0 − ℎ1 − ℎ2 −
𝑔

𝑘
ሺ𝑡 − 3𝑐 − 3𝑑ሻ +

1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ𝑒−𝑘ሺ3𝑐+3𝑑ሻ − 𝑒−𝑘𝑡ሻ 

which shows the displacement of the particle over the interval [3𝑐 + 3𝑑, 4𝑐 + 3𝑑]. 

For the displacement of the particle at the point when 𝑡 = 4𝑐 + 3𝑑, we need to compute 

𝑧ሺ4𝑐 + 3𝑑ሻ = ℎ − ℎ0 − ℎ1 − ℎ2 −
𝑔𝑐

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ𝑒−𝑘ሺ3𝑐+3𝑑ሻ 
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=
1

𝑘
(𝑣0 +

𝑔

𝑘
) ൫1 − 𝑒−𝑘𝑐൯൫𝑒−𝑘ሺ𝑐+𝑑ሻ − 1൯𝑒−2𝑘ሺ𝑐+𝑑ሻ = ℎ3 

 Therefore, the particle is falling from the point 𝑧 = ℎ − ℎ1 − ℎ2 and stops at the point 𝑧 = ℎ − ℎ0 − ℎ1 −
ℎ2 − ℎ3 at 𝑡 = 4𝑐 + 3𝑑. 

 Thus, the displacement 𝑧ሺ𝑡ሻ for the interval 𝑡 ∈ [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐] is 

𝑧ሺ𝑡ሻ = ℎ −෍ℎ𝑗 −
𝑔

𝑘
ሺ𝑡 − 𝑖ሺ𝑐 + 𝑑ሻሻ +

1

𝑘
[𝑣0 +

𝑔

𝑘
] ൣ𝑒−𝑘ሺ𝑖ሺ𝑐+𝑑ሻሻ − 𝑒−𝑘𝑡൧

𝑖−1

𝑗=0

 

=
𝑔

𝑘
[𝑖ሺ𝑐 + 𝑑ሻ − 𝑡] +

1

𝑘
[𝑣0 +

𝑔

𝑘
] ൣ𝑒−𝑘ሺ𝑖−1ሻሺ𝑐+𝑑ሻ + 𝑒−𝑘[ሺ𝑖−1ሻሺ𝑐+𝑑ሻ+𝑐] + 𝑒−𝑘𝑖ሺ𝑐+𝑑ሻ − 𝑒−𝑘𝑡൧, 

where  

ℎ𝑖 = ℎ −෍ ℎ𝑗 −
𝑔𝑐

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ𝑒−𝑘𝑖ሺ𝑐+𝑑ሻ

𝑖−1

𝑗=0

=
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ𝑒−𝑘ሺ𝑖−1ሻሺ𝑐+𝑑ሻ[𝑒−𝑘ሺ𝑐+𝑑ሻ − 1] 

for all 𝑖 = 0,1,2,⋯ with ℎ0 = ℎ −
𝑔𝑐

𝑘
+

1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ and the displacement 𝑧ሺ𝑡ሻ for the interval 𝑡 ∈

[0, 𝑐] is 

𝑧ሺ𝑡ሻ = ℎ −
𝑔𝑡

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑡ሻ. 

In this case, 𝛥𝑧ሺ𝑖ሺ𝑐 + 𝑑ሻ + 𝑐ሻ = 0 for 𝑖 = 0,1,2,⋯. 

Second Case: Let us assume that the particle stops at the end of each interval [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐] for all 

𝑖 = 0,1,2,⋯ by a force. 

 In this case the initial velocity at the beginning of each interval changes but the final velocities will be zero. 

Let the initial velocities at the beginning of each interval 𝑡 ∈ [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐] be 𝑣ሺ𝑖ሺ𝑐 + 𝑑ሻሻ = 𝑣𝑖. 
Let us find the solution interval by interval. 

For the interval 𝑡 ∈ [0, 𝑐], we have 

𝑑𝑣

𝑑𝑡
= −𝑔 − 𝑘𝑣, 

𝑣ሺ0ሻ = 𝑣0 

and the solution becomes 

𝑣ሺ𝑡ሻ = 𝑒−𝑘
𝑃 ሺ𝑡, 0ሻ [𝑣0 +

𝑔

𝑘
] −

𝑔

𝑘
= 𝑒−𝑘𝑡 [𝑣0 +

𝑔

𝑘
] −

𝑔

𝑘
 

where 𝑒𝛼
𝑃ሺ𝑡, 𝑡0ሻ is exponential function for ℙ𝑐,𝑑 defined by 𝑒𝛼

𝑃ሺ𝑡, 𝑡0ሻ = 𝑒𝛼ሺ𝑡−𝑡_0ሻ. 

 For the interval 𝑡 ∈ [𝑐 + 𝑑, 2𝑐 + 𝑑], we have 

𝑑𝑣

𝑑𝑡
= −𝑔 − 𝑘𝑣, 
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𝑣ሺ𝑐 + 𝑑ሻ = 𝑣1 

and the solution becomes 

𝑣ሺ𝑡ሻ = 𝑒−𝑘ሺ𝑡−𝑐−𝑑ሻ [𝑣1 +
𝑔

𝑘
] −

𝑔

𝑘
. 

 For each interval 𝑡 ∈ [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐], we have 

𝑑𝑣

𝑑𝑡
= −𝑔 − 𝑘𝑣, 

𝑣ሺ𝑖ሺ𝑐 + 𝑑ሻሻ = 𝑣𝑖 

and we can find the solution as 

𝑣ሺ𝑡ሻ = 𝑒−𝑘
𝑃 ሺ𝑡, 𝑖ሺ𝑐 + 𝑑ሻሻ [𝑣𝑖 +

𝑔

𝑘
] −

𝑔

𝑘
= 𝑒−𝑘[𝑡−𝑖ሺ𝑐+𝑑ሻ] [𝑣𝑖 +

𝑔

𝑘
] −

𝑔

𝑘
 

for the initial velocity of each interval 𝑣𝑖 at the point 𝑡 = 𝑖ሺ𝑐 + 𝑑ሻ for all 𝑖 = 0,1,2, . ... 

 In this case at the points when 𝑡 = 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐, we have 

𝛥𝑣ሺ𝑖ሺ𝑐 + 𝑑ሻ + 𝑐ሻ = 𝑣ሺሺ𝑖 + 1ሻሺ𝑐 + 𝑑ሻሻ − 𝑣ሺ𝑖ሺ𝑐 + 𝑑ሻ + 𝑐ሻ = 𝑣ሺሺ𝑖 + 1ሻሺ𝑐 + 𝑑ሻሻ = 𝑣𝑖+1 

 Let us consider the displacement of the particle. Different than the other time scales, in this case, 𝑧 does not 

denote the vertical distance but it denotes the displacement of the particle. For the interval 𝑡 ∈ [0, 𝑐], we have 

𝑑𝑧

𝑑𝑡
= 𝑣 = 𝑒−𝑘𝑡 [𝑣0 +

𝑔

𝑘
] −

𝑔

𝑘
, 

𝑧ሺ0ሻ = ℎ 

and the solution becomes 

𝑧ሺ𝑡ሻ = ℎ −
𝑔𝑡

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑡ሻ 

which shows the displacement of the particle over the first 𝑐 seconds. For the displacement of the particle at 

the point when 𝑡 = 𝑐, we need to compute 

𝑧ሺ𝑐ሻ = ℎ −
𝑔𝑐

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ = ℎ0. 

 Hence, the particle is falling from the point 𝑧 = ℎ and stops at the point 𝑧 = ℎ − ℎ0 at 𝑡 = 𝑐. 

 For the interval 𝑡 ∈ [𝑐 + 𝑑, 2𝑐 + 𝑑], we have 

𝑑𝑧

𝑑𝑡
= 𝑣 = 𝑒−𝑘𝑡 [𝑣1 +

𝑔

𝑘
] −

𝑔

𝑘
 

𝑧ሺ𝑐 + 𝑑ሻ = ℎ − ℎ0, 

and the solution becomes 
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𝑧ሺ𝑡ሻ = ℎ − ℎ0 −
𝑔

𝑘
ሺ𝑡 − 𝑐 − 𝑑ሻ +

1

𝑘
(𝑣1 +

𝑔

𝑘
) ሺ𝑒−𝑘ሺ𝑐+𝑑ሻ − 𝑒−𝑘𝑡ሻ 

which shows the displacement of the particle over the interval [𝑐 + 𝑑, 2𝑐 + 𝑑]. For the displacement of the 

particle at the point when 𝑡 = 2𝑐 + 𝑑, we need to compute  

𝑧ሺ2𝑐 + 𝑑ሻ = ℎ − ℎ0 −
𝑔𝑐

𝑘
+
1

𝑘
(𝑣1 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ𝑒−𝑘ሺ𝑐+𝑑ሻ =

1

𝑘
ሺ1 − 𝑒−𝑘𝑐ሻ [− (𝑣0 +

𝑔

𝑘
) + (𝑣1 +

𝑔

𝑘
) 𝑒−𝑘ሺ𝑐+𝑑ሻ] = ℎ1. 

 Hence, the particle is falling from the point 𝑧 = ℎ − ℎ1 and stops at the point 𝑧 = ℎ − ℎ0 − ℎ1 at 𝑡 = 2𝑐 + 𝑑. 
For the interval 𝑡 ∈ [2𝑐 + 2𝑑, 3𝑐 + 2𝑑], we have 

𝑑𝑧

𝑑𝑡
= 𝑣 = 𝑒−𝑘𝑡 [𝑣2 +

𝑔

𝑘
] −

𝑔

𝑘
 

which shows the displacement of the particle over the interval [2𝑐 + 2𝑑, 3𝑐 + 2𝑑]. For the displacement of 

the particle at the point when 𝑡 = 3𝑐 + 2𝑑, we need to compute 

𝑧ሺ3𝑐 + 2𝑑ሻ = ℎ − ℎ0 − ℎ1 −
𝑔𝑐

𝑘
+
1

𝑘
[𝑣2 +

𝑔

𝑘
] ሺ1 − 𝑒−𝑘𝑐ሻ𝑒−𝑘ሺ2𝑐+2𝑑ሻ 

=
1

𝑘
൫1 − 𝑒−𝑘𝑐൯ [−(𝑣1 +

𝑔

𝑘
) 𝑒−𝑘ሺ𝑐+𝑑ሻ + (𝑣2 +

𝑔

𝑘
) 𝑒−2𝑘ሺ𝑐+𝑑ሻ] = ℎ2 

 Thus, the particle falls from the point 𝑧 = ℎ − ℎ1 and stops at the point 𝑧 = ℎ − ℎ0 − ℎ1 − ℎ2 at 𝑡 = 3𝑐 +
2𝑑. For the interval 𝑡 ∈ [3𝑐 + 3𝑑, 4𝑐 + 3𝑑], we have 

𝑑𝑧

𝑑𝑡
= 𝑣 = 𝑒−𝑘𝑡 [𝑣3 +

𝑔

𝑘
] −

𝑔

𝑘
 

𝑧ሺ3𝑐 + 3𝑑ሻ = ℎ − ℎ0 − ℎ1 − ℎ2 

and the solution becomes 

𝑧ሺ𝑡ሻ = ℎ − ℎ0 − ℎ1 − ℎ2 −
𝑔

𝑘
ሺ𝑡 − 3𝑐 − 3𝑑ሻ +

1

𝑘
(𝑣3 +

𝑔

𝑘
) ሺ𝑒−𝑘ሺ3𝑐+3𝑑ሻ − 𝑒−𝑘𝑡ሻ 

which shows the displacement of the particle over the interval [3𝑐 + 3𝑑, 4𝑐 + 3𝑑]. For the displacement of 

the particle at the point when 𝑡 = 4𝑐 + 3𝑑, we need to compute 

𝑧ሺ4𝑐 + 3𝑑ሻ = ℎ − ℎ0 − ℎ1 − ℎ2 −
𝑔𝑐

𝑘
+
1

𝑘
(𝑣3 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ𝑒−𝑘ሺ3𝑐+3𝑑ሻ 

=
1

𝑘
ሺ1 − 𝑒−𝑘𝑐ሻ [−(𝑣2 +

𝑔

𝑘
) 𝑒−2𝑘ሺ𝑐+𝑑ሻ + (𝑣3 +

𝑔

𝑘
) 𝑒−3𝑘ሺ𝑐+𝑑ሻ] = ℎ3. 

Therefore, the particle is falling from the point 𝑧 = ℎ − ℎ1 − ℎ2 and stops at the point 𝑧 = ℎ − ℎ0 − ℎ1 −
ℎ2 − ℎ3 at 𝑡 = 4𝑐 + 3𝑑. Thus, the displacement 𝑧ሺ𝑡ሻ for the interval 𝑡 ∈ [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐] is  

𝑧ሺ𝑡ሻ = ℎ −෍ℎ𝑗 −
𝑔

𝑘
ሺ𝑡 − 𝑖ሺ𝑐 + 𝑑ሻሻ +

1

𝑘
[𝑣𝑖 +

𝑔

𝑘
] ൣ𝑒−𝑘ሺ𝑖ሺ𝑐+𝑑ሻሻ − 𝑒−𝑘𝑡൧

𝑖−1

𝑗=0

 

=
𝑔

𝑘
[𝑖ሺ𝑐 + 𝑑ሻ + 𝑐 − 𝑡] −

1

𝑘
൫1 − 𝑒−𝑘𝑐൯ [𝑣𝑖−1 +

𝑔

𝑘
] 𝑒−ሺ𝑖−1ሻ𝑘ሺ𝑐+𝑑ሻ +

1

𝑘
[𝑣𝑖 +

𝑔

𝑘
] ൣ𝑒−𝑘𝑖ሺ𝑐+𝑑ሻ − 𝑒−𝑘𝑡൧, 
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where 

 ℎ𝑖 = ℎ − σ ℎ𝑗 −
𝑔𝑐

𝑘
+

1

𝑘
(𝑣𝑖 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑐ሻ𝑒−𝑘𝑖ሺ𝑐+𝑑ሻ𝑖−1

𝑗=0 =
1

𝑘
ሺ1 − 𝑒−𝑘𝑐ሻ [− (𝑣𝑖−1 +

𝑔

𝑘
) 𝑒−ሺ𝑖−1ሻ𝑘ሺ𝑐+𝑑ሻ + (𝑣𝑖 +

𝑔

𝑘
) 𝑒−𝑖𝑘ሺ𝑐+𝑑ሻ] 

for all⁡𝑖 = 0,1,2,⋯ with⁡ℎ0 = ℎ −
𝑔𝑐

𝑘
+

1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ𝑣_0 + ሺ1 − 𝑒−𝑘𝑐ሻ and the displacement⁡𝑧ሺ𝑡ሻ for the 

interval 𝑡 ∈ [0, 𝑐] is 

𝑧ሺ𝑡ሻ = ℎ −
𝑔𝑡

𝑘
+
1

𝑘
(𝑣0 +

𝑔

𝑘
) ሺ1 − 𝑒−𝑘𝑡ሻ. 

In this case, 𝛥𝑧ሺ𝑖ሺ𝑐 + 𝑑ሻ + 𝑐ሻ = 0 for 𝑖 = 0,1,2,⋯. In Figure 7 and Figure 9, the velocity and distance graph 

for the first case of ℙ5,2 is drawn and in Figure 8 and Figure 10, their behaviors are given in the graph for the 

second case of ℙ5,2. 

  

Figure 7. Velocity graphs for first case of ℙ5,2 Figure 8. Velocity graphs for second case of ℙ5,2 

  

Figure 9. Distance graphs for first case of ℙ5,2 Figure 10. Distance graphs for first case of ℙ5,2 

4. DISCUSSIONS AND CONCLUSIONS 

In Newtonian physics, free fall is any motion of an object in which the only force acting on it is gravity. Gravity 

reduces to the curvature of space-time in general relativity context, there is no force acting on a freely falling 

object and gravity acts almost equally in a roughly uniform gravitational field on every part of an object. When 

the object starts to move, it encounters a resistance force that opposes the relative motion by which the particle 

moves relative to the air.  
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In this study, we have mainly concentrated on the falling body motion in different kind of time scales. We 

obtained the above results for each of them. Additionally, numerical simulation of these results was obtained 

by using determined coefficients.  

We have compared velocity and distance in ℝ with the results obtained in 2ℤ, 0.1ℤ and ℤ. Based on the 

findings, the results of the discrete model on 0.1ℤ yield the best fit to that of ℝ. We can conclude that the time 

scale hℤ with 0 < ℎ < 1 provides the best approximation to ℝ, as expected. Moreover, in the time scale ℙ𝑐,𝑑 

if the particle stops at the end of each interval [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐] for all 𝑖 = 0,1,2,⋯ automatically, i.e 

without a force, the initial velocity at the beginning of each interval is the same and the velocity function is 

periodic. In the second case where the particle stops at the end of each interval [𝑖ሺ𝑐 + 𝑑ሻ, 𝑖ሺ𝑐 + 𝑑ሻ + 𝑐] for all 

𝑖 = 0,1,2,⋯ by a force, the initial velocity at the beginning of each interval changes and the velocity function 

is decreasing and not periodic. The distance functions for both cases show similar behaviors. 

Considering falling body motion under different kind of time scales, helps us to evaluate this physical event 

under different kind of media. In other words, different kind of time scales can explain the different media in 

real-world applications. As a result, these kinds of results can be useful for the media with different kind of 

physical properties, which shows the importance of this study. 
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