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Abstract 

 

Forecasting future capacities and estimating the remaining useful life, while incorporating uncertainty 

quantification, poses a crucial yet formidable challenge in the realm of battery health diagnosis and 

management. In this study, a data-driven model based on artificial neural networks (ANN) and signal 

decomposition techniques including Empirical Mode Decomposition (EMD), Ensemble Empirical Mode 

Decomposition (EEMD), and Empirical Wavelet Transform (EWT) is presented to predict the capacity 

value of lithium-ion batteries. Signal decomposition was performed using the discharge voltage values for 

four different batteries. A total of 22 features were obtained. The features of the signal decomposition 

methods were evaluated separately as well as hybrid approaches. Mean Squared Error (MSE), Mean 

Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) performance metrics are used in 

the proposed method and the values obtained are 3.67×10-6, 0.001351 and 0.002311, respectively. 

According to the findings, the hybrid model proposed demonstrated positive results in terms of accuracy, 

adaptability, and robustness. 
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1. Introduction 

  

Lithium-ion batteries stand out among the secondary 

batteries known for their remarkable energy density, and 

they find widespread application in today's energy 

storage landscape [1]. Their prominence extends to 

diverse sectors, including transportation, 

communication, aviation, and military defense, owing to 

their advantageous attributes such as lightweight design, 

robust safety features, and elevated voltage levels in 

comparison to alternative battery technologies [2]. 

Notably, as the electric vehicle market continues to 

expand and the prevalence of mobile phones and personal 

mobility devices rises, the prudent management of 

energy resources and the establishment of dependable, 

enduring battery solutions have assumed heightened 

significance [3]. 

 

Against this backdrop, the imperative to assess battery 

health becomes paramount. A pivotal threshold in this 

evaluation lies in the battery's capacity, where a decline 

below 80% signifies the completion of its operational 

lifespan. Critical factors that impinge upon battery 

longevity encompass charge-discharge cycles, 

overcharging, discharging under strenuous conditions, 

and exposure to high currents. Anticipating battery 

longevity carries profound implications, underpinning 

efficient resource allocation, stable management 

practices, and the uninterrupted operation of devices. 

 

Estimation techniques for assessing the Remaining 

Useful Life (RUL) of lithium-ion batteries can be broadly 

categorized into model-based, data-driven, and hybrid 

methods that combine aspects of both. Among the model-

based approaches, two prominent methods are the 

utilization of electrochemical models and equivalent 

circuit models. However, within the realm of model-

based techniques, the challenge lies in acquiring a 

suitable model that can effectively encapsulate the 

intricate dynamic behaviors of the system. This challenge 

arises from the intricate physical and chemical intricacies 
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inherent to batteries, coupled with the presence of 

numerous parameters that exert influence upon battery 

performance parameters such as charge/discharge 

currents, voltage, temperature, and internal impedance 

[4]. 

 

Forecasting the remaining lifespan of lithium-ion 

batteries through data-driven techniques proves to be 

notably more straightforward compared to model-based 

approaches. This avenue circumvents the necessity for 

specialized expertise, offering enhanced flexibility and 

practicality. Within data-driven methodologies, the 

demand for explicit mathematical formulations to 

articulate the deterioration trajectory of batteries over 

time, as seen in model-based methodologies, is obviated. 

Instead, this approach hinges on the foundation of 

historical degradation data, harnessing machine learning 

algorithms like Support Vector Machines (SVM), 

Logistic Regression, and Artificial Neural Networks 

(ANN) for prognosticating the RUL of lithium-ion 

batteries [5]. To illustrate, exemplar studies conducted 

with data-driven strategies further underscore the 

viability of this approach. 

 

The data-driven approach disregards the intricacies of the 

battery's internal reactions and parameters, instead 

focusing on extracting vital insights from the battery's 

historical data to assess its capacity degradation pattern 

[6]. Unlike traditional approaches that rely on specific 

physical models, data-driven methods leverage extensive 

historical battery measurement data to construct pertinent 

models through the use of machine learning techniques. 

This inherent flexibility and versatility make these 

methods highly promising for various applications [7]. 

The crux of data-driven methods lies in the careful 

selection and processing of data to establish the intricate 

relationships between parameters and State of Health 

(SOH). Commonly employed data-driven techniques 

encompass Neural Networks (NNs) [8], Relevance 

Vector Machines [9], Autoregressive Moving Average 

models [10], Support Vector Regression (SVR) [11], and 

SVM [12]. For instance, Li et al. [13] employed SVR to 

predict SOH for two batteries under different aging 

conditions, implementing filtering technology to refine 

capacity curves and enhance model accuracy. 

Meanwhile, Fei et al. [14] meticulously crafted six 

machine learning models to forecast battery life, 

conducting a thorough comparison of each model's 

distinctive characteristics. Notably, battery prediction 

models founded on neural networks have recently 

garnered increasing interest within the research 

community. 

 

However, there is room for improvement in current 

forecasting models. Signal decomposition methods are 

typically applied in isolation, and the preference for a 

hybrid approach is underrepresented in the literature. In 

this paper, we introduce a novel RUL forecasting 

approach based on neural networks, which leverages 

hybrid decomposition methods. 

 

This study introduces a data-driven model that employs 

artificial neural networks, built upon the foundations of 

Empirical Mode Decomposition (EMD), Ensemble 

Empirical Mode Decomposition (EEMD), and Empirical 

Wavelet Transform (EWT) signal processing techniques. 

The objective is to anticipate the capacity levels of 

lithium-ion batteries. The efficacy of this approach was 

evaluated using a dataset sourced from the NASA Ames 

Prognostics Center of Excellence (PCoE), focusing on 

lithium-ion batteries [15]. 

Contributions of this study are as follows. 

• Expanded feature set with 22 features in total 

obtained from residues of EMD, EEMD, EWT, 

and different combinations of them.  

• Then the hybrid models are composed of 

Multilayer Perceptron (MLP) and different 

combinations for different scenarios. 

• Performance Comparison for different 

mentioned hybrid models. 

• Performances Comparison for different 

batteries comparatively.  

• The best results in terms of mean values for the 

EMD-EEMD model  

• More effective performance than similar studies  

 

The rest of the paper is organized as follows. Section 2 

describes in detail the EMD, EEMD, EWT, and MLP 

methods used in the proposed hybrid forecasting model. 

In Section 3, battery capacity forecasting is performed 

with the proposed hybrid model and the prediction results 

and model performance are presented. The last section 

summarizes the results of the study.  

 

2. Materials and Methods 

 

2.1. Dataset 

 

The data for this study originates from the NASA 

Prognostic Center of Excellence (PCoE). Detail of the 

data acquisition is given in Table 1 as follows. The raw 

dataset from NASA has a range of datasets for different 

battery types with different time ranges. Also, most of the 

time series (T.S.) capacity signals have some missing 

data. For these causes, similar to the other studies on 

lithium-ion batteries, B5, B6, B7, and B18 T.S. capacity 

signals which are more stable than the others are selected. 

We employed four distinct sets of NASA Lithium-Ion 

Batteries denoted as B0005, B0006, B0007, and B0018, 

each boasting a 2 Ah rated capacity. These batteries 

underwent a meticulous testing regimen conducted at 

room temperature. Initially, the charging process 

involved a constant current of 1.5 A, followed by 

charging under a constant voltage of 4.2 V. Subsequently, 

discharging commenced with a consistent 2 A current 

until the voltage levels for B0005, B0006, B0007, and 

B0018 reached 2.7 V, 2.5 V, 2.2 V, and 2.5 V, 
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respectively. The experiment was concluded once the 

actual battery capacity fell below a predetermined usage 

threshold [15, 16]. Visualization of the capacity 

degradation curves for B0005, B0006, B0007, and B0018 

is encapsulated in Figure 1. 

 

Table 1. Data Acquisition details 

Number of Lithium-ion batteries 18,650  

Manufacture LG Chem 

Chemistry Lithium cobalt 

oxide vs graphite 
Number of cells 28 

Nominal capacity 2.10 Ah 

Capacity range 2.10 Ah → 0.80 Ah 

Voltage range 4.2–3.2 V 

Cycling protocols 7 

Sampling Frequency 10 Hz 

 

 

Figure 1. NASA Lithium-ion battery capacity 

degradation curves 

 

2.2. Data pre-processing 

 

Signal preprocessing refers to an important stage in the 

analysis of signals, where raw data undergoes a series of 

computational techniques aimed at improving its quality, 

extracting relevant features, and reducing unwanted 

artifacts or noise. This preparatory phase is fundamental 

in various fields such as signal processing, 

communications, and data analysis, as it forms the basis 

for subsequent analytical tasks. Data interpolation is one 

of the common preprocessing methods. Therefore, the 

interpolation method is applied to each T. S. signal to 

equalize each other in each cycle and to analyze with 

signal processing methods easily. 

 

2.3. Empirical mode decomposition (EMD) 

 

Empirical Mode Decomposition (EMD) stands as a 

versatile multiresolution technique, purpose-built to 

dissect data and unveil its intricate constituents. EMD 

operates as a powerful tool for scrutinizing non-linear 

and non-stationary signals, unraveling their complexities 

by fragmenting them into distinct layers of varying 

resolutions. The core tenet of EMD involves the 

meticulous breakdown of temporal sequences into a 

compact set of intrinsic modes, each accompanied by a 

residual remainder. These distinctive modes, aptly 

dubbed Intrinsic Mode Functions (IMFs), encapsulate the 

essence of the signal's dynamic behavior [17]. 

 

The EMD methodology follows a systematic course: 

initially, it identifies local extrema peppered throughout 

the temporal sequence. Correspondingly, it constructs 

upper and lower envelopes, employing interpolation 

techniques like cubic splines. Subsequently, the average 

of these envelopes is differentially subtracted from the 

original signal, birthing a local intrinsic mode function. 

This twofold process iterates until certain conditions 

converge: 

The mean of the upper and lower envelopes converges 

toward zero. The count of extremal points and zero 

crossings diverge by no more than one. This iterative 

protocol, known as the "elimination" procedure, 

culminates in the generation of a finite array of IMFs, 

complemented by a residual component, illustrated in 

Equation (1): 

 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑅𝑁(𝑡)

𝑁

𝑖=1

 

 

(1) 

Where IMFi(t) represents all potential IMFs, N stands for 

the count of generated IMFs, and RN(t) signifies the 

residual arising from the decomposition. 

 

2.4. Ensemble empirical mode decomposition 

(EEMD) 

 

The EEMD method is a noise-assisted technique that 

aims to reduce mode mixing and improve the separation 

of oscillatory modes. By adding white noise to the input 

signal, the EEMD algorithm generates a set of IMFs that 

have statistical properties that are closer to the true 

intrinsic modes of the signal. The resulting ensemble of 

IMFs obtained from multiple noise realizations improves 

the signal-to-noise ratio and helps in the extraction of the 

underlying signal components [18]. 

 

The intricacies of EEMD are outlined in a sequential 

procedure: the EEMD steps commence with the addition 

of white noise possessing specific amplitude and 

frequency attributes to the input signal. Following this, 

the noisily augmented signal undergoes decomposition 

through the EMD algorithm, yielding IMFs. EMD, a 

data-centric methodology, dissects signals into 

oscillatory IMFs, each characterized by a well-defined 

frequency range. This process of addition and 

decomposition is iteratively undertaken numerous times 
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with distinct noise realizations. Subsequently, the IMFs 

derived from each iteration are amalgamated and 

averaged to form an ensemble. This ensemble then 

undergoes further decomposition via EMD to extract the 

ultimate IMFs, which faithfully portray the underlying 

authentic signal. Finally, the residual of the original input 

signal is computed by subtracting these final IMFs from 

the initial signal [19]. 

 

2.5. Empirical wavelet transform (EWT) 

 

The Empirical Wavelet Transform emerges as a synergy 

of the wavelet transform and EMD techniques, 

presenting an instrumental signal decomposition 

approach that effectively disentangles a provided signal 

into distinct modes. From a Fourier perspective, this 

framework aligns with the architecture of a bandpass 

filter setup, ultimately grounded in the formulation of an 

adaptive wavelet filter bank [20]. This method achieves 

its functionality through the creation of adaptive 

wavelets, dynamically conforming to the informational 

essence embedded within the signal. 

The initial phase of EWT entails an estimation of the 

signal's frequency components, subsequently leading to 

the computation of boundaries which, in turn, facilitates 

the extraction of diverse signal modes based on these 

determined thresholds. When engaging the EWT method, 

the initial step involves the reception of signals followed 

by the computation of the Hurst Exponent value as a 

measure of long-term memory of time series. Through 

the application of specified thresholds, signal frequencies 

are meticulously derived via mathematical computations 

within the Fourier spectrum, thereby establishing precise 

boundaries crucial for subsequent phases. With these 

identified boundaries at hand, the procedure advances to 

the creation of N wavelet filter banks, followed by the 

implementation of pertinent mathematical computations 

employing requisite formulas. This intricate process 

culminates in the extraction of distinct frequency bands, 

executed through meticulous filtering mechanisms [21]. 

 

Positioned as a swift and incredibly adaptive technique 

within the realm of signal analysis, the Discrete Wavelet 

Transform method stands analogous to EWT but boasts 

a robust and comprehensive mathematical foundation. 

This mathematical robustness ensures that both the 

scaling function and wavelets seamlessly conform to the 

information embedded within the analyzed signal, 

obviating the necessity for any a priori knowledge of the 

signal [22]. 

 

2.6. Feature Extraction  

 

Feature extraction involves selecting specific 

characteristics from a dataset to effectively represent it. 

This process plays a crucial role in addressing 

classification and regression challenges. This study 

focuses on estimating battery capacity by utilizing 

voltage, current, temperature, and time data, along with 

attributes derived from various transformation methods. 

The study employs a total of 22 features, organized into 

four distinct sets. The first set (attributes 1-10) comprises 

parameters extracted directly from the dataset without 

any signal processing. It is shown in Table 2. The 

remaining sets encompass attributes derived from 

residual signals resulting from EMD, EEMD, and EWT 

methods applied sequentially to discharge voltage values. 

 

When using the attributes in the above table, the 

following mathematical expressions were used. 

𝑥𝑅𝑀𝑆 = √
1

𝑁
∑|𝑥𝑛|2

𝑁

𝑛=1

 (2) 

𝑥𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = √
1

𝑁
∑ 𝑥𝑛

𝑁

𝑛=1

 (3) 

2.7. Artificial neural networks 

 

Artificial Neural Networks are one of the most widely 

used supervised learning methods for regression and 

classification problems. They are a machine learning 

approach inspired by biological nervous systems. ANNs 

are employed for various tasks, such as processing large 

datasets, recognizing complex patterns, and making 

predictions. The Multilayer Perceptron (MLP) is a widely 

preferred type of ANN and consists of three main layers: 

input, hidden, and output. The input layer contains the 

attributes necessary to achieve the targeted result. The 

hidden layer processes the information through neurons, 

and the output layer predicts continuous values [23]. The 

architecture used in the study is shown in Figure 2. 

 

Table 2. Created set groups and features. 

 Number Feature Name Description 

Set I 

1 MaxVm  Maximum voltage at discharge 

2 MinVm Minimum voltage 

3 AverageVm Average voltage 

4 Vtime Time of occurrence for minimum voltage 

5 MinCurrent Lowest current value 

6 CurrentTime Time of occurrence for lowest current 

7 MaxTemperature Highest temperature 

8 MinTemperature Lowest temperature 

9 AverageTemperature Average temperature 
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10 TempTime Time of occurrence for the highest temperature 

Set II 

11 Max_Vmres_Emd  

Max, min, average, and RMS values of residue signal obtained by 

taking EMD components of discharge voltage values 

12 Min_Vmres_Emd 

13 Average_Vmres_Emd 

14 RMS_Vmres_Emd 

Set III 

15 Max_Vmres_Eemd  

Max, min, average, and RMS values of residue signal obtained by 

taking EEMD components of discharge voltage values 

16 Min_Vmres_Eemd 

17 Avarage_Vmres_Eemd 

18 RMS_Vmres_Eemd 

Set IV 

19 Max_Vmres_Ewt  

Max, min, average, and RMS values of residue signal obtained by 

taking EWT components of discharge voltage values 

20 Min_Vmres_Ewt 

21 Avarage_Vmres_Ewt 

22 RMS_Vmres_Ewt 

2.7. Artificial neural networks 

 

Artificial Neural Networks are one of the most widely 

used supervised learning methods for regression and 

classification problems. They are a machine learning 

approach inspired by biological nervous systems. ANNs 

are employed for various tasks, such as processing large 

datasets, recognizing complex patterns, and making 

predictions. The Multilayer Perceptron (MLP) is a widely 

preferred type of ANN and consists of three main layers: 

input, hidden, and output. The input layer contains the 

attributes necessary to achieve the targeted result. The 

hidden layer processes the information through neurons, 

and the output layer predicts continuous values [23]. The 

architecture used in the study is shown in Figure 2. 

 

 
Figure 2. ANN architecture used in the study. 

 

The basic unit of an artificial neural network is called an 

artificial neural cell or neuron. A neuron receives input 

signals, processes these signals, and produces an output 

signal. The basic mathematical function of a neuron is 

represented by Equation 4. The connections between 

neurons are represented by weights, and these weights are 

adjusted during the learning process [24]. 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

× ( 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ×  𝑖𝑛𝑝𝑢𝑡𝑠

+ 𝑏𝑖𝑎𝑠) 

(4) 

The MLP conducts the learning process by assigning 

weights to the connections between the layers during 

training. This is achieved by utilizing the dataset and 

comparing the network's predictions with the actual 

results. A loss function quantifies the degree of 

agreement between the network's predictions and the 

actual results. The weights are subsequently updated 

using a backpropagation algorithm. This iterative process 

enables the network to improve its predictions [25]. 

The MLP conducts the learning process by assigning 

weights to the connections between the layers during 

training. This is achieved by utilizing the dataset and 

comparing the network's predictions with the actual 

results. A loss function quantifies the degree of 

agreement between the network's predictions and the 

actual results. The weights are subsequently updated 

using a backpropagation algorithm. This iterative process 

enables the network to improve its predictions [25]. 

 

2.8. Performance evaluation 

 

In this study similar to other studies on RUL prediction, 

performance evaluations stemming from capacity value 

estimations were conducted using widely employed 

regression metrics: Mean Square Error (MSE), Mean 

Absolute Percentage Error (MAPE), and Root Mean 

Square Error (RMSE). The mathematical formulations 

for these performance metrics are provided below. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (5) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖 − 𝑦̂𝑖|

𝑦𝑖

𝑁

𝑖=1

 (6) 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑁

𝑖=1

 (7) 

Where y is the actual battery value, ŷ is the prediction 

value and N is the number of predicted data. 

 

2.9 Proposed methodology 

 

In order to evaluate the efficacy of the proposed hybrid 

prediction algorithm, a series of methods were 

implemented. These methods detailed within this paper 

pertain to forecasting the future capacity of batteries. The 

precise procedural steps for these methodologies can be 

found in Figure 3, and they are elaborated upon in the 

following section.
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Figure 3. Proposed capacity estimation methodology. 

 

Table 3. Feature sets used in the study. 

Scenario number Methods Features sets 

I 

EMD 

EEMD 

EWT 

Set I and Set II 

Set I and Set III 

Set I and Set IV 

II 

 

 

EMD-EEMD 

EMD-EWT 

EEMD-EWT 

EMD-EEMD-EWT 

Set I, Set II, and Set III 

Set I, Set II, and Set IV 

Set I, Set III, and Set IV 

Set I, Set II, Set III, and Set IV 

In this study, data from NASA's battery database was 

utilized, specifically focusing on batteries labeled B0005, 

B0006, B0007, and B0018. The dataset encompasses 

various parameters in both charge and discharge states, 

including temperature, current, and voltage values during 

the discharge phase. To standardize the data before the 

feature extraction process, the spline command in 

MATLAB was employed to ensure an equal number of 

data points for each cycle. 

 

As demonstrated in Table 3, four distinct feature sets 

were generated using signal processing techniques, 

including EMD, EEMD, and EWT. The study can be 

divided into two fundamental sections, each examining 

distinct strategies. 

 

The common feature set used in both parts of the study is 

denoted as Set I. In Scenario I, each method is 

individually analyzed, facilitating a comparative 

discussion of their performance. Meanwhile, in Scenario 

II, the study delves into the impact of combining these 

methods, exploring the performance of a hybrid system 

encompassing all three approaches. 

In the study focused on estimating capacity values, the 

data were partitioned into two distinct groups: training 

and test sets. The training dataset comprised roughly the 

initial 65%, while the test dataset encompassed 

approximately the remaining 35%. Specifically, for 

batteries B0005, B0006, and B0007, the initial 110 data 

points were designated as the training data, while the 

subsequent 58 data points were allocated to the test set. 

As for battery B0018, the first 86 data points were 

assigned to the training set, with the last 46 data points 

designated for the test set. 

 

In this study, MLPs are utilized to predict battery 

capacity. The MLP architecture consists of a single 

hidden layer with 3 neurons. After conducting various 

tests, it was determined that this architecture produced 

the best results. The Levenberg-Marquardt algorithm was 

employed in the training process, as it is commonly used 

in the literature and is known for its speed compared to 

other algorithms. The training and test phases were 

conducted five times, and performance evaluation was 

based on average values.
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 Table 4. Options of Proposed MLP Model 

Options Abbreviation in MATLAB Value 

Maximum number of epochs MaxEpochs 30 

Size of mini-batch MiniBatchSize 128 

Option for data shuffling Shuffle once 

Number of epochs for dropping the learning rate LearnRateDropPeriod 10 

Factor for dropping the learning rate LearnRateDropFactor 0.1 

Contribution of previous step Momentum 0.9 

Decay rate of gradient moving average GradientDecayFactor 0.9 

Denominator offset Epsilon 1e-8 

Maximum number of iterations MaxIterations 1000 

Frequency of neural network validation ValidationFrequency 50 

Factor for L2 regularization L2Regularization 0.0001 

Mode to evaluate statistics in batch normalization layers BatchNormalizationStatistics moving 

Gradient threshold GradientThreshold Inf 

Gradient threshold method GradientThresholdMethod l2norm 

Option to pad or truncate sequences SequenceLength longest 

Direction of padding or truncation SequencePaddingDirection right 

Value to pad sequences SequencePaddingValue 0 

 

The options of the MLP consist of performance to 

normalization criteria are set as default and details are 

given in Table 4. 

 

3. Results and discussion 

 

In this section, we present the experimental results for 

battery test sets B0005, B0006, B0007, and B0018, 

respectively. The features in Table 2 extracted using 

EMD, EEMD, and EWT signal decomposition 

techniques were utilized to predict the capacity values 

over the battery's lifetime through MLP neural networks. 

The methodology proposed in Figure 3 was employed, 

and the performance was assessed using MSE, MAPE, 

and RMSE metrics. The analysis in this study was 

conducted using the Matlab programming language. 

 

Analyses were conducted for four different batteries, and 

the results are depicted in Figures 4-7 and Tables 3-7. 

Figure 4 and Table 5 display the prediction results for 

battery B0005. The models were analyzed individually, 

as well as in their binary and ternary combinations. It can 

be observed from the figure and the values in the table 

that all methods yielded results close to the capacity 

value. When analyzing the methods individually, EEMD 

produced the best results, while the error values were the 

lowest in the EMD-EEMD-EWT combination. Figure 5 

and Table 6 display the prediction values for Battery 6. It 

is evident that the predicted values from the models 

closely match the actual battery values. Notably, these 

predictions exhibit a strong alignment with the actual 

values during the training phase and the initial segments 

of the test phase; however, they start to diverge 

noticeably after the 150th data point. In contrast to 

Battery 5, for this particular battery, the model based on 

the EEMD method outperformed other single models and 

binary-ternary combinations. Figure 6 and Table 7 

contain the predictions for battery 7. Among the 

individual models, EWT appears to perform the best, 

exhibiting the lowest MSE, MAPE, and RMSE values, 

which signify its accuracy in predicting battery capacity 

values. When considering binary combinations of 

models, EMD-EEMD-EWT emerges as the top-

performing combination, boasting the lowest MSE, 

MAPE, and RMSE values among the binary pairs. This 

suggests that integrating EMD, EEMD, and EWT 

decomposition techniques into a single model yields the 

most precise predictions for battery capacity values. 

Therefore, in the context of this dataset and analysis, the 

EMD-EEMD-EWT combination model demonstrates 

superior predictive capabilities compared to the 

individual models and other binary combinations.

  

Table 5. Performance evaluations of B0005 battery. 

 
Model MSE MAPE RMSE 

EMD 5.29×10-6 0.001434 0.002301 

EEMD 3.70×10-6 0.001163 0.001922 

EWT 8.48×10-6 0.001810 0.002913 

EMD-EEMD 4.83×10-6 0.001346 0.002199 

EMD-EWT 8.70×10-6 0.001841 0.002949 

EEMD-EWT 7.96×10-6 0.001734 0.002822 

EMD-EEMD-EWT 1.35×10-6 0.000703 0.001160 
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Figure 4. B0005 battery prediction results. 

 

 
 

Figure 5. B0006 battery prediction results. 
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Table 6. Performance evaluations of B0006 battery. 

Model MSE MAPE RMSE 

EMD 5.96×10-5 0.004619 0.007721 

EEMD 4.34×10-6 0.001254 0.002083 

EWT 7.31×10-5 0.005011 0.008548 

EMD-EEMD 6.41×10-6 0.001646 0.002533 

EMD-EWT 6.48×10-6 0.001612 0.002546 

EEMD-EWT 1.39×10-5 0.002235 0.003729 

EMD-EEMD-EWT 1.63×10-5 0.002574 0.004041 

 

 
 

Figure 6. B0007 battery prediction results. 

 

Table 7. Performance evaluations of B0007 battery. 

 

Model MSE MAPE RMSE 

EMD 2.72×10-5 0.002539 0.005218 

EEMD 1.23×10-5 0.002001 0.003509 

EWT 8.47×10-6 0.00133 0.00291 

EMD-EEMD 3.94×10-5 0.003155 0.006279 

EMD-EWT 6.56×10-5 0.00467 0.008101 

EEMD-EWT 2.03×10-5 0.002203 0.004507 

EMD-EEMD-EWT 8.29×10-6 0.001666 0.00288 

 

Among the individual models, EMD shines as the 

standout performer, boasting the lowest MSE, MAPE, 

and RMSE values, underscoring its remarkable precision 

in forecasting battery capacity according to Figure 7 and 

Table 8. When exploring the realm of binary model 

combinations, EMD-EEMD takes center stage as the top-

performing duo, displaying the most favorable MSE, 

MAPE, and RMSE values among the  

 

binary pairs. This underscores the efficacy of 

amalgamating EMD and EEMD decomposition 

techniques into a singular model, yielding the utmost 

accuracy in predicting battery capacity values. For this 

battery, the EMD model in isolation and the EMD-

EEMD combination model emerge as the optimal 

choices for predicting battery capacity values, as 

substantiated by the provided metrics. 
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 Figure 7. B0018 battery prediction result

 

Table 8. Performance evaluations of B0018 battery. 

 

Model MSE MAPE RMSE 

EMD 7.15×10-6 1.58E-03 2.67E-03 

EEMD 1.78×10-5 0.002442 0.004223 

EWT 4.06×10-5 0.00339 0.006369 

EMD-EEMD 1.49×10-5 0.002107 0.003864 

EMD-EWT 3.34×10-5 0.003411 0.005783 

EEMD-EWT 3.30×10-5 0.003307 0.005741 

EMD-EEMD-EWT 4.33×10-5 0.003401 0.006581 

 

Table 9 shows the performance metric values of the 

lithium-ion batteries according to the features obtained 

from different decomposition models. Lower values of 

MSE, MAPE, and RMSE indicate better model 

performance. Among the batteries analyzed, Battery 

B0005 demonstrates the most favorable results across all 

three metrics with the EMD-EEMD-EWT model, which 

boasts the lowest MSE, MAPE, and RMSE values, 

making it the optimal choice. Battery B0006, on the other 

hand, showcases distinct performance characteristics. 

The EEMD model stands out with the lowest MSE and 

RMSE values, while the EMD-EEMD  

model achieves the lowest MAPE value. Consequently, 

both the EMD-EEMD model and the EEMD model 

exhibit commendable performance across all three 

evaluation criteria for Battery B0006. When examining 

Battery B0007, the EMD-EEMD model emerges as the 

top performer, displaying the lowest MSE and RMSE 

values. Meanwhile, the EWT model secures the lowest 

MAPE value. Notably, both the EMD-EEMD model and 

the EWT model consistently perform well across all three 

metrics for Battery B0007. Lastly, for Battery B0018, the 

EMD-EEMD-EWT model excels, recording the lowest 

MSE, MAPE, and RMSE values. This establishes it as 

the preeminent model in this context. 

In addition to utilizing various established datasets for 

validation, we assessed the accuracy of our proposed 

technique by comparing it to other conventional, model-

based, and intelligent approaches, as detailed in Table 10. 

  

 

Table 9. Performance evaluations of models’ mean values. 

 

Model MSE MAPE RMSE 

EMD 3.96×10-5 0.002288 0.004815 

EEMD 2.42×10-5 0.001965  0.003128 

EWT 4.82×10-5 0.003881 0.006438 

EMD-EEMD 3.67×10-6 0.001351 0.002311 

EMD-EWT 5.53×10-6 0.001741 0.002825 

EEMD-EWT 9.37×10-6 0.002620 0.004026 

EMD-EEMD-EWT 1.64×10-5 0.002211 0.003756 
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To ensure a fair and meaningful comparative analysis, we 

employed the same battery type and NASA datasets. Our 

comprehensive study considered key factors pertaining to 

the prediction of RUL for lithium-ion batteries, including 

input features, capacity, battery type, and error metrics. 

For example, in the work by Li et al. [26], a Particle 

Filtering (PF)-based technique for RUL prediction 

achieved an RMSE of 0.04408. Furthermore, Gao and 

Huang [12] introduced a hybrid approach using SVM and 

Particle Swarm Optimization (PSO) for RUL prediction, 

yielding RMSE values of 0.0213 and 0.0514, 

respectively. Additionally, the model developed by Zhou 

and Huang [24], based on EMD and Auto-Regressive 

Integrated Moving Average (ARIMA), achieved an 

RMSE below 1%. In the case of the Relevance Vector 

Machine (RVM) [27], the relative error remained below 

1%. On the contrary, the MLP-based hybrid EMD-

EEMD-EWT model, incorporating 22 input parameters, 

delivered favorable outcomes in terms of accuracy, 

adaptability, and robustness. 

 

 

Table 10. Comparison with existing studies. 

Reference Feature parameter Algorithms Performance 

[26] Impedance, aging, number of charging cycle PF RMSE: 0.2902 

[12] Discharge cycle data PSO and SVM MSE: 0.0213 

[28] 
Voltage, current, temperature, capacity and 

time 
SVM RMSE: 0.2159, 0.3108 

[27] Capacity EMD and RVM 
MSE: 4.4972×10−5, 

1.6437×10−5 

[29] Voltage FFNN MAE: 29.4218 

[30] Voltage, current, temperature, capacity 
Deep neural 

network 
RMSE: 3.427 

[31] Voltage, current, temperature, capacity BPNN 
RMSE: 0.0819 

MSE: 6.7114×10−5 

This study Voltage, current, temperature 
EMD, EEMD, 

EWT, and MLP 

MSE: 3.67×10-6 

MAPE: 0.001351 

RMSE:0.002311 

PF: Particle Filtering; PSO: Particle Swarm Optimization; SVM: Support Vector Machine; 

RVM: Relevance Vector Regression; FFNN: Feed Forward Neural Network;  

BPNN: Back Propagation Neural Network. 

 

Considering the B0005 battery analysis results, the best 

performance values of MSE (1.35×10-6), MAPE 

(0.000703) and RMSE (0.001160) values belong to the 

EMD-EEMD-EWT model. Considering the experiments 

with this model B0005 battery makes it the most suitable 

choice. Considering the results of the B0006 battery, the 

EEMD model gave the most successful results with the 

lowest MSE (4.34×10-6), MAPE (0.001254) and RMSE 

(0.002083) performance values. When the B0007 Battery 

was examined, the EMD-EEMD model emerged as the 

best performing model, showing the lowest MSE 

(8.29×10-6) and RMSE (0.00288) values, and the EWT 

model achieved the lowest MAPE (0.00133) value. It 

does. In particular, both the EMD-EEMD model and the 

EWT model showed close performance for the B0007 

Battery. 

Finally, for Battery B0018, the EMD model highlights 

the lowest MSE (7.15×10-6), MAPE (1.58×10-3)and 

RMSE (2.67×10-6) values. The EMD model showed the 

best results for B0018. 

It can be seen that different models come to the fore for 

different battery groups. In this regard, the fact that the 

data sets of battery groups and especially the voltage 

values have different values can change the effect on the 

estimation algorithm and for batteries 

It can be thought that it gives different results. For this 

reason, the error values were compared by taking the 

average values of the models. The most successful model 

emerged as the EMD-EEMD model with MSE (3.67×10-

6), MAPE (0.001351) and RMSE (0.002311) values. 

Moreover, in the performance comparison with the 

studies in the literature, the proposed method 

outperforms in terms of the three performance metrics. 

Due to the fact that the other studies in the literature 

utilized a few input and basic regression methods, their 

performances of them much lesser than ours. On the other 

hand, the proposed method uses 22 features obtained 

from different signal processing methods and MLP 

models. 

Moreover, it is considered that the preprocessing 

composing elimination of misunderstanding samples and 

interpolation with equal size is effective in this 

performance.  

 

Contributions of the paper are as follows 

 

• This study proposed a RUL prediction method 

based on an expanded feature set with 22 

features in total obtained from residues of EMD, 
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EEMD, EWT, and different combinations of 

them.  

• Then the hybrid models are composed of 

Multilayer Perceptron (MLP) and different 

combinations for different scenarios. 

• Performances of the method are carried out for 

different mentioned hybrid models. 

• Performances of the method are carried out for 

different batteries comparatively.  

• The best results in terms of mean values are 

obtained for the EMD-EEMD model as given in 

Table 9 in the paper.  

• The results show that the value of this model has 

a more effective performance than similar 

studies in the literature like in Table 8. 

In addition, the proposed models can be used to estimate 

the remaining life after pre-processing the data received 

from different sensors of the batteries that are a part of 

electric vehicles. However, it is anticipated that the 

models to be created and their performance may vary 

depending on the battery characteristics. 

 

4. Conclusion 

 

Given the significant influence of capacity regeneration 

on the prediction of Remaining Useful Life (RUL) in 

lithium-ion batteries, we introduce a novel approach to 

enhance RUL prediction accuracy. Our method combines 

decomposition techniques with a focus on the capacity 

regeneration phenomenon. To begin, we employ the 

Empirical Mode Decomposition (EMD), Ensemble 

Empirical Mode Decomposition (EEMD), and Empirical 

Wavelet Transform (EWT) methods to decompose the 

voltage curve's time series into multiple scales. 

Subsequently, we build time series prediction models 

based on Multilayer Perceptron (MLP) neural networks 

for each of these components. Finally, performance 

metrics for the models were calculated. While the 

findings of each method yielded good results, it can be 

stated that the metric values of the hybrid models used 

provide even better results.  

 

In future studies, examining the model with the help of 

features obtained by different signal processing methods 

like CEEMDAN and machine learning methods like 

LightGBM, as well as methods based on deep learning 

like LSTM-based methods, can be explored. 
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