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Özetçe— Görüntüden görüntüye çeviri, farklı alanlardaki görüntüleri dönüştürme sürecidir. Çekişmeli Üretici 

Ağlar (Generative Adversarial Networks - GANs) ve Evrişimsel Sinir Ağları (Convolutional Neural Networks - 

CNNs), görüntü çevirisinde yaygın olarak kullanılan tekniklerdir. Bu çalışma, GAN mimarileri için etkili bir kayıp 

fonksiyonunu bulmayı ve daha kaliteli görüntüler üretmeyi hedeflemektedir. Bu amaçla, temel bir GAN mimarisi 

olan Pix2Pix yöntemindeki kayıp fonksiyonları üzerinde deneysel çalışmalar yapılmıştır. Pix2Pix yönteminde 

kullanılan mevcut kayıp fonksiyonu Mean Absolute Error (MAE) olarak bilinen ℒ1 metriğidir. Bu çalışmada, 

Pix2Pix mimarisinde kayıp fonksiyonuna konvolüsyon tabanlı algısal benzerlik metriklerinin (CONTENT, LPIPS 

ve DISTS) etkileri incelenmiştir. Ayrıca, görüntüden görüntüye çevirme üzerindeki etkiler, orijinal ℒ1 kaybıyla 

birlikte ℒ1_CONTENT, ℒ1_LPIPS ve ℒ1_DISTS algısal benzerlik metrikleri kullanılarak yüzde 50 oranında analiz 

edildi. Yöntemlerin performans analizleri çeştili açık erişimli veri setleri üzerinde gerçekleştirilmiştir. Görsel 

sonuçlar, geleneksel (FSIM, HaarPSI, MS-SSIM, PSNR, SSIM, VIFp ve VSI) ve güncel (FID ve KID) görüntü 

karşılaştırma metrikleri ile analiz edildi. Sonuç olarak, GAN mimarilerinin kayıp fonksiyonu için konvansiyonel 

yöntemler yerine konvolüsyon tabanlı yöntemler kullanıldığında daha iyi sonuçlar elde edildiği gözlemlendi. 

Ayrıca, LPIPS ve DISTS yöntemlerinin gelecekte GAN mimarilerinin kayıp fonksiyonunda kullanılabileceğine 

dair umut verici sonuçlar alınmıştır.  

 

Anahtar Kelimeler : Derin öğrenme, Benzerlik metrikleri, Görüntüden görüntüye dönüşüm, Evrişimli sinir ağ, 

Çekişmeli üretici ağ 

 

Abstract— Image-to-image translation is the process of transforming images from different domains.  Generative 

Adversarial Networks (GANs), and Convolutional Neural Networks (CNNs) are widely used in image translation.  

This study aims to find the most effective loss function for GAN architectures and synthesize better images.  For 

this, experimental results were obtained by changing the loss functions on the Pix2Pix method, one of the basic 

GAN architectures. The exist loss function used in the Pix2Pix method is the Mean Absolute Error (MAE). It is 

called the  ℒ1metric.  In this study, the effect of convolutional-based perceptual similarity CONTENT, LPIPS, and 

DISTS metrics on image-to-image translation was applied on the loss function in Pix2Pix architecture.  In addition, 

the effects on image-to-image translation were analyzed using perceptual similarity metrics ( ℒ1_CONTENT,  

ℒ1_LPIPS, and  ℒ1_DISTS) with the original ℒ1 loss at a rate of 50%.  Performance analyzes of the methods were 

performed with the Cityscapes, Denim2Mustache, Maps, and Papsmear datasets.  Visual results were analyzed 

with conventional (FSIM, HaarPSI, MS-SSIM, PSNR, SSIM, VIFp and VSI) and up-to-date (FID and KID) image 

comparison metrics. As a result, it has been observed that better results are obtained when convolutional-based 

methods are used instead of conventional methods for the loss function of GAN architectures. It has been observed 

that LPIPS and DISTS methods can be used in the loss function of GAN architectures in the future. 

Keywords : Deep learning, Similarity metrics, Image to image translation, Convolutional neural network, 

Generative adversarial networks 
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1. Introduction 

Deep learning-based studies have been advancing rapidly in recent years. One of the evolving methods in this 

field is image synthesis. Image synthesis involves the process of editing, manipulating, translating an image, or 

generating an image from a signal. Convolutional Neural Networks (CNNs) (Zhu et al., 2017) and Generative 

Adversarial Networks (GANs) (Goodfellow et al., 2014) are extensively utilized in research within this domain. 

CNN-based studies in feature extraction processes, such as image synthesis or pattern recognition, surpass 

conventional methods (Karpathy et al., 2014; Koushik et al., 2016; Guo et al., 2016). One of the approaches to 

image synthesis using CNN is PixelRNN, which was proposed by Oord et al. (June 2016). PixelRNN is a deep 

neural network designed to predict output images from input images in the spatial domain, encoding the full set of 

dependencies in the pattern by modeling the discrete probability of raw pixel values (Oord et al., June 2016). The 

dataset used for experimentation is ImageNet, and the results demonstrate the consistency of the method. Oord et 

al. (2016) also introduced another generative model, PixelCNN. PixelCNN employs autoregressive links during 

image synthesis and is faster than PixelRNNs in the training phase. The proposed method proves advantageous as 

dataset patterns increase in complexity during image synthesis. Salimans et al. (2017) proposed the PixelCNN++ 

method. PixelCNN++ is a generative model similar to PixelCNN but simplifies its structure, conditioning all pixels 

instead of R/G/B subpixels. It also incorporates Dropout regularization to regularize the model. Chen et al. (2017) 

presented an image synthesis approach called SCA-CNN. SCA-CNN combines spatial information and image 

color channel information in the image, outperforming current attention-based image synthesis methods. 

Along with the high performance in CNN-based studies, Generative Adversarial Networks (GANs) also exhibit 

superior performance in image synthesis processes (Liu et al., 2017; Liu et al., 2016; Kingma et al., 2013; Wang 

et al., 2018). GANs, a method developed based on deep learning, were proposed by Ian Goodfellow et al. 

(Goodfellow et al., 2014) in 2014. This method comprises two neural networks operating in contention. Numerous 

studies have been conducted on image synthesis with GAN architectures. For instance, Liu et al. (2017) introduced 

the UNIT method, which performs unsupervised image-to-image translation based on GANs (Liu et al., 2017). 

UNIT combines the CoGAN (Liu et al., 2016) and VAE (Kingma et al., 2013) methods to achieve unsupervised 

image-to-image translation. The UNIT method involves six networks: two encoders, generators, and 

discriminators. Input and output images must have similar areas for optimal performance in this model. Wang et 

al. (2018) proposed the Pix2PixHD architecture to address the synthesis problem (Wang et al., 2018). This 

architecture is based on a generator network and three scaled discriminators. Output images have dimensions of 

2048×1024. Liu et al. (2020) proposed a model that synthesizes representation content by separating it from 

domain attributes. Named GMM-UNIT, this model uses the Gaussian mixture model (GMM) for the hidden field 

attribute. GMM-UNIT has two main advantages: it allows translation in multiple fields and enables interpolation 

between fields and extrapolation within invisible fields. Royer et al. (2020) introduced the XGAN model based on 

the loss of semantic consistency. This model is a binary contention autoencoder capturing the shared feature 

representation of both areas to learn standard feature-level information rather than pixel-level information. It 

utilizes the loss of semantic consistency in both domains to preserve the image's semantic content across domains. 

In 2018, Frid-Adar et al. created synthetic medical images using GAN in image synthesis. It was observed that the 

produced images can be used in data augmentation and medical image classification, thereby improving the 

performance of CNN. Today, various GAN architectures are employed in multiple areas, as highlighted by Isola 

et al. (2017) and Zhu et al. (2017). 

One of the major challenges in image-to-image translation lies in the insufficient evaluation of the similarity 

between the original and the generated image. As a result, multiple studies have been conducted to address the 

issue of assessing image quality, which falls under the domain of Image Quality Assessment (IQA). IQA aims to 

measure various aspects of image quality, including structural, textural, diversity, and signal strength. LPIPS 

(Zhang et al., 2018), DISTS (Ding et al., 2020), and CONTENT (Gatys et al., 2015) methods can be employed 

both within IQA frameworks and as loss functions during image synthesis. Given that these three methods are 

based on convolutional neural networks, they are examined within a CNN context in this study. For the comparison 

of image synthesis outputs, traditional methods such as FSIM (Zhang et al., 2011), HaarPSI (Reisenhofer et al., 

2018), PSNR (Fardo et al., 2016), MS-SSIM (Wang et al., 2003), SSIM (Wang et al., 2004), VIFp (Sheikh and 

Bovik, 2006), and VSI (Zhang et al., 2014), as well as modern FID (Heusel et al., 2003) and KID (Bin´kowski et 

al., 2003) IQA methods, were utilized. Numerous studies in the literature explore IQA methods and leverage them 

in image analysis (Heusel et al., 2003; Bin´kowski et al., 2003; Choi et al., 2020; Ding et al., 2021; Sim et al., 

2020; Borasinski et al., 2022; Peng et al., 2022). 

This study examined the impact of altering the loss function in a fundamental MMS architecture on image 

synthesis. The architecture is based on the Pix2Pix method (Isola et al., 2017), which utilizes supervised learning 

techniques introduced by Isola et al. in 2017. In supervised synthesis, the loss is calculated as the distance between 

the estimated output (y) generated from the input and the real image (x). This loss value is then utilized to update 

both the generator (G) and discriminator (D) networks. The original Pix2Pix method employs the mean absolute 

error (MAE) loss function. In this study, the influence of using LPIPS, DISTS, and CONTENT methods as loss 
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functions in GANs was investigated. These methods are CNN-based and can serve as measures of similarity 

between images. Additionally, these methods are founded on the VGG (Simonyan and Zisserman, 2014) network. 

The recently proposed LPIPS method encourages reverse mapping to learn while emphasizing perceptual 

similarity between fake and real images reconstructed by the generator network. It also gauges average feature 

distances between synthesized samples. A higher LPIPS score indicates greater diversity among rendered images. 

This method assesses structure and tissue similarity akin to SSIM. Suzuki et al. (2021) observed in their study that 

utilizing this method yielded results equivalent to visual outputs (Suzuki et al., 2021). Chuan et al. (2018) 

investigated a hybrid content similarity metric, using the CONTENT method as an example. The study analyzed 

four different datasets with various visual characteristics (Chuan et al., 2018). 

The goal is to identify a continuous and highly accurate loss function. In the analysis of results, both traditional 

and contemporary image comparison metrics were employed. The image synthesis outcomes of the methods are 

presented in both visual and tabular formats based on these metrics. The primary contributions of favoring modern 

CNN-based methods over conventional loss functions can be summarized as follows: 

• It has been demonstrated that it can be utilized as a general loss function in GAN methods. 

• It has been observed to positively influence the results of image synthesis. 

• It has been investigated and found that it leads to better synthesis of textural structures in the image. 

The study’s most significant contribution to the literature has been the determination of the loss function and 

similarity metric,  which  maximizes  the  accuracy  of  the  image  synthesis  process  made  with  the  GAN 

approach.  It is predicted that the ease of use instead of most loss functions will guide most research in the future. 

The remainder of the manuscript follows;  details of materials and methods explained in Section 2. Experimental 

results explained in Section 3. Finally, the conclusion is given in Section 4. 

2. Materials and Methods 

2.1.  Pix2Pix 

One of the extensively employed GAN architecture methods is Pix2Pix, based on DCGAN (Radford et al., 

2015). This method comprises a generator and a discriminator network. The generator utilizes the U-Net 

architecture (Ronneberger et al., 2015), while the discriminator network employs PatchGAN (Li and Wand, 2016). 

The loss functions for the generator and discriminator in the Pix2Pix method are provided in Eq. (1, 2, 3). 

 

𝐿𝐷 = ‖𝐷(𝑋, 𝑌) − 1‖2 + ‖𝐷(𝑋, 𝐺(X))‖2 (1) 

𝐿𝐺 = ‖𝐷(𝑋, 𝐺(X)) − 1‖2 (2) 

ℒ𝐺𝐴𝑁(𝐺, 𝐷, 𝑋, 𝑌) = 𝐿𝐺 + 𝐿𝐷  (3) 

It has been observed that the blur level is high in the images synthesized with Pix2Pix. Isola et al. (2017) added 

the ℒ1 regularization term to the loss of the generator architecture to remove some fuzziness. The loss function of 

the updated Pix2Pix is as follows Eq. (4): 

𝐺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷

ℒ𝐺𝐴𝑁(𝐺, 𝐷, 𝑋, 𝑌) + 𝜆ℒReg (4) 

ℒReg = ‖𝑌 − 𝐺(𝑋)‖1  

2.2. CNN-Based Loss Function 

There are three commonly used measures in the literature that employ trained CNN architectures to generate 

similarity metrics between pairs of images: CONTENT, LPIPS, and DISTS. While statistical methods focus on 

pixel values, convolutional methods concentrate on image content (Zhang et al., 2018; Ding et al., 2020; Gatys et 

al., 2015; Zhang et al., 2011). Therefore, in this study, the performance of CNN-based architectures in image 

synthesis was analyzed using these loss functions. These three CNN-based methods share similarities and utilize 

trained VGG networks. Although they have demonstrated significant success as image benchmarks, the high 

computational cost and lack of interpretability may potentially hinder their practical applicability (Ding et al., 

2021). In this study, the VGG19 network was employed to calculate the loss for CONTENT, LPIPS, and DISTS. 

The VGG19 network consists of 16 convolutional layers and 5 pooling layers (Simonyan and Zisserman, 2014), 

organized into five blocks concluding with a pooling layer. Figure 1 illustrates which blocks the CNN-based loss 

functions utilize the outputs from the VGG19 network. Additionally, specific weights of the VGG19 network 

trained according to the datasets from the original studies of each method were employed. 
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Figure 1. CNN-based CONTENT, LPIPS and DISTS methods with VGG19 network. 

 

 

2.2.1.  CONTENT 

The concept of CONTENT loss originated from the Neural Style Transfer study by Gatys et al. (2015). The 

value of this cost function is computed between the output of each block by providing both the content and target 

(synthesized) images to the VGG networks. The CONTENT cost aims to preserve the essential characteristics of 

the content display, as proposed by Gatys et al. (2015). This loss function is illustrated in Figure 1 on the VGG19 

network. The similarity value is calculated between the outputs in the fifth block, denoted as F5, of the network as 

shown in the figure. After the outputs of the blocks pass through the Rectified Linear Unit (ReLU) activation 

function, they are subtracted from each other using the Mean Squared Error (MSE) method (Mihelich et al., 

2020).The main formula of this metric is shown in Eq. (5). In the equation, the content image (x), the target image 

(y), and the list of block outputs (n) are expressed. 

𝐶𝑂𝑁𝑇𝐸𝑁𝑇(𝑥, 𝑦) = 1 −∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 
  

(5) 

2.2.2. LPIPS 

 LPIPS (Learned Perceptual Image Patch Similarity) is one of the most recent metrics used to measure 

perceptual similarity between pairs of images (Zhang et al., 2018). Simultaneously, this metric employs deep 

attributes that mimic human perception (Ding et al., 2021). Figure 1 illustrates the activation outputs on which the 

LPIPS function is computed using the VGG19 network. Accordingly, the outputs of same-level layers (F1-4, F6) 

for the x and y images in the VGG19 network are normalized and subtracted from each other. The resulting data 

is scaled, and the outputs are transformed into a single vector form (Zhang et al., 2018). The loss is obtained by 

calculating the vector norm using the Mean Squared Error (MSE) method. 

The numerical representation of this method is given in Eq. (6). The wi coefficient in the equation shows the 

perceptual importance of each layer. 

 

𝐿𝑃𝐼𝑃𝑆(𝑥, 𝑦) = 1 −∑𝑤𝑖 ∗ (𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 
 

(6) 

 

2.2.3. DISTS 

The DISTS (Deep Image Structure and Texture Similarity) function uses VGG network (Ding et al., 2020). 

This method uses l2 pooling instead of general max pooling in the VGG network. The DISTS function consists of 
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a combination of structure and texture similarity. It resists slight geometric distortions and performs well on 

textural images (Ding et al., 2020; Ding et al., 2021). DISTS distance between the x and y input images over the 

block outputs (F0-4, F6) in Figure 1. The main formula of this metric is shown in Eq.  (7).  The coefficients  (𝛼)  

and  (𝛽)  in the equation are previously trained particular values from the original run of the DISTS function. In 

equation include the structural(s) and textural(t)  functions. 

𝐷𝐼𝑆𝑇𝑆(𝑥, 𝑦) = 1 −∑𝛼𝑖 ∗ 𝑠(𝑥𝑖 − 𝑦𝑖) + 𝛽𝑖 ∗ 𝑠(𝑥𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 
 

 

𝑠(𝑥𝑖 − 𝑦𝑖) =
2 ∗ 𝑚𝑒𝑎𝑛(𝑥𝑖) ∗ 𝑚𝑒𝑎𝑛(𝑦𝑖) + 𝑐1
𝑚𝑒𝑎𝑛(𝑥𝑖)

2 +𝑚𝑒𝑎𝑛(𝑦𝑖)
2 + 𝑐1

 
 

(7) 

𝑡(𝑥𝑖 − 𝑦𝑖) =
2 ∗ 𝑐𝑜𝑣(𝑥𝑖 , 𝑦𝑖) + 𝑐2

𝑣𝑎𝑟(𝑥𝑖) + 𝑣𝑎𝑟(𝑦𝑖) + 𝑐2
 

 

 

2.2.4. Use of metrics with   𝓛𝟏 

While calculating the smoothing term, the effects on image-to-image translation were analyzed using 

perceptual similarity metrics ( ℒ1_CONTENT, ℒ1_LPIPS, and ℒ1_DISTS) with the original ℒ1 loss at a rate of 

50%.  The generator network loss of Pix2Pix is updated as follows Eq. (6). 

 

𝐺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷

ℒ𝐺𝐴𝑁(𝐺, 𝐷, 𝑋, 𝑌) + 𝜆{0.5 ∗ ℒ1 + 0.5 ∗ ℒ{𝐿𝑃𝐼𝑃𝑆,𝐷𝐼𝑆𝑇𝑆,𝐶𝑂𝑁𝑇𝐸𝑁𝑇}(𝑌, 𝐺(𝑋))} (8) 

2.3. Image Comparison Metrics 

2.3.1. Conventional methods 

In this section, brief definitions of conventional image comparison metrics are provided. More detailed 

information can be obtained from the cited resources if desired. 

Feature-Based Similarity Index Measurement (FSIM): Compares the phase coherence and gradient 

magnitude properties of image pairs (Zhang et al., 2011). 

Haar Wavelet-Based Perceptual Similarity Index (HaarPSI): Based on comparing local wavelet coefficients 

extracted from image patches (Reisenhofer et al., 2018). 

Structural Similarity Index Metric (SSIM): Utilizes simple statistical moments, such as mean (µ) and standard 

deviation (σ), to determine the similarity score of image pairs (Wang et al., 2004). 

Multi-Structural Similarity Index Metric (MS-SSIM): Combines SSIM results calculated at different 

resolution levels (Wang et al., 2003). 

Peak Signal Noise Ratio (PSNR): Widely used objective image signal quality metric. However, PSNR values 

may not correlate well with perceived image quality due to the complex, highly nonlinear nature of the human 

visual system (Fardo et al., 2016). 

Visual Information Fidelity (VIF): Uses natural scene statistical models (NSS) with a distortion model to 

measure information shared between fake and original images (Sheikh and Bovik, 2006). 

Visual Saliency-Induced Index (VSI): Assumes that a disturbance in one area that attracts the observer's 

attention is more disturbing than in another area. It aims to weigh local distortions with a local clarity map 

(Zhang et al., 2014). 

In this section, brief definitions of conventional image comparison metrics are given. If desired, more 

comprehensive information can be obtained from the given resources.  Feature-Based Similarity Index 

Measurement (FSIM) compares image pairs’ phase coherence and gradient magnitude properties (Zhang et al., 

2011).  Haar Wavelet-Based Perceptual Similarity Index (HaarPSI) is based on comparing local wavelet 

coefficients extracted from image patches (Reisenhofer et al., 2018). In the Structural Similarity Index Metric 

(SSIM), a few simple statistical moments, such as mean (µ ) and standard deviation (σ ) are used to obtain the 

similarity score of the image pairs (Wang et al., 2004). In the Multi-Structural Similarity Index Metric (MS-SSIM), 
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SSIM results calculated at different resolution levels are combined (Wang et al., 2003).   Peak Signal Noise Ratio 

(PSNR) is the most widely used objective image signal quality metric. 

However, the PSNR values do not correlate well with perceived image quality due to the complex, highly 

nonlinear nature of the human visual system (Fardo et al., 2016). Visual Information Fidelity (VIF) utilizes natural 

scene statistical models (NSS) along with a distortion model to measure information shared between fake and 

original images (Sheikh and Bovik, 2006). The Visual Saliency-Induced Index (VSI) assumes that a disturbance 

in one area that attracts the observer’s attention is more disturbing than in another area. It attempts to weigh local 

distortions using a local clarity map (Zhang et al., 2014). 

 

2.3.2. Up-to-date methods 

 In this section, brief definitions of contemporary image comparison metrics are provided. 

Fréchet Inception Distance (FID): A performance measure used to assess the quality of images generated 

from GANs. FID compares the distribution of generated and real images (Heusel et al., 2017). 

Kernel-Inception Distance (KID): A metric similar to FID that utilizes the squared Maximum Average Error 

(MAE) between images. It offers an advantage over the FID metric as it does not assume a parametric form in 

the distribution of activations and incorporates the ReLU activation function (Bin´kowski et al., 2018). 

 

2.4. Datasets 

Image synthesis analysis of the original and updated architectures was conducted using four different datasets. 

Cityscapes Dataset: This dataset comprises video images of varying lengths captured from city streets (Cordts 

et al., 2016). It is commonly employed for evaluating the performance of partitioning algorithms. The dataset 

labels objects such as cars, roads, lanes, and traffic lights. 

Denim2Mustache Dataset:This dataset contains 950 image pairs (denim-mustache) (Şahin and Talu, 2021). 

The images include front and back photos of three different denim products (trousers, skirts, and shorts), with 

mustache mask images overlaid on them. Each image has a size of 256 × 256 × 3. 

Maps Dataset: The Maps dataset (Isola et al., 2017) is a large collection of real-world images obtained from 

Google Maps. It includes labels for objects such as roads, parking areas, and grass areas in these images. 

Papsmear Dataset: The Papsmear dataset (Altun and Talu, 2022) consists of 450 Papsmear-Mask image pairs. 

The images in the dataset depict cytoplasm, nucleus, white blood cell, bacillus, and speckle objects along with 

masks for these objects. The image dimensions are 256 × 256 × 3. 

 

3.  Results 

In order to understand the effect of the Pix2Pix method when used with different loss functions, the images in 

the Cityscapes dataset were used first.  The translation results from this dataset are shown in Figure 2.  The 

similarity values obtained as a result of the process are shown in Table  1.  When the results of conventional 

similarity metrics were examined, it was observed that the LPIPS loss function was successful in MS-SSIM, SSIM, 

and VIFp similarity metrics. It is seen that the ℒ1_CONTENT function provides high success in FSIM, HaarPSI, 

PSNR, and VSI similarity metrics.   These results mean high-fidelity translation can be made in Cityscapes images 

using LPIPS and ℒ1_CONTENT functions. When the FID and KID results from the up-to-date metrics in the 

Cityscapes dataset are examined, it is seen that the translation result of the DISTS function is adequate. 

The second dataset analyzed in the article is Denim2Mustache.  It is seen that the regression process is 

performed with the Denim2Mustache dataset while the classification is made in the Cityscapes, Maps, and 

Papsmear datasets. The performances of the proposed translation methods in both classification and regression 

processes are evaluated.  The Denim2Mustache dataset contains only images of jeans objects; the output is a 

grayscale image (Mustache motifs).  The results obtained for this dataset are shown in Figure 3.  Numerical 

similarity results are given in Table 1. When looking at the conventional similarity measurement metrics in the 

Denim2Mustache dataset, it has been observed that the CONTENT method gives better results than FSIM, 

HaarPSI, MS-SSIM, PSNR, SSIM, and VSI. For VIFp. It was observed that the LPIPS function gave better results 

than the other methods and is more efficient than the up-to-date FID and KID metrics in Table 1. 

The third dataset analyzed in the article is Maps. One image of the Maps dataset contains objects such as roads, 

parks, rivers, and houses, while the other image contains these objects’ graphical (partitioned) form.  The visual 

results of the Maps dataset are given in Figure 4.   According to these images, the performance of  the ℒ1_DISTS 

function is apparent. In Table  1, according to the conventional similarity metrics FSIM, HaarPSI, PSNR, SSIM, 
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VSI for the MAPS dataset, the ℒ1_LPIPS function has observed that the LPIPS function gives better results than 

MS-SSIM, VIFp. When the up-to-date FID and KID similarity metrics are examined in Table  1, the DISTS 

function was successful. 

Table 1. Performance comparison of architectures in image synthesis. (Rows: CNN-based loss functions and 

datasets, Columns: conventional and up-to-date similarity metrics) 

Similarity Metrics 

Dataset Loss function Conventional Up-to-date 

  FSIM HaarPSI MS-

SSIM 

PSNR SSIM VIFp VSI FID KID 

 

 

 

Cityscapes 

ℒ1 0.631 0.344 0.414 15.53 0.387 0.033 0.860   5.41 0.053 

LPIPS 0.645 0.353 0.438 15.81 0.416 0.039 0.869   3.23 0.045 

ℒ1_LPIPS 0.642 0.352 0.435 15.77 0.408 0.038 0.866   3.19 0.044 

DISTS 0.630 0.338 0.399 15.38 0.389 0.032 0.862   7.77 0.036 

ℒ1_DISTS 0.636 0.346 0.422 15.82 0.399 0.035 0.866   9.08 0.038 

CONTENT 0.644 0.348 0.414 15.39 0.402 0.036 0.869   16.5 0.097 

ℒ1_CONTENT 0.649 0.359 0.430 16.04 0.409 0.038 0.872 107.6 0.086 

           

 

 

 

D2M 

ℒ1 0.824 0.561 0.854 16.96 0.842 0.287 0.928 207.0 0.121 

LPIPS 0.824 0.559 0.855 16.87 0.846 0.303 0.927   30.7 0.042 

ℒ1_LPIPS 0.822 0.556 0.852 16.84 0.843 0.292 0.926   57.7 0.058 

DISTS 0.825 0.551 0.847 16.84 0.839 0.278 0.925   49.7 0.052 

ℒ1_DISTS 0.826 0.557 0.852 16.91 0.844 0.291 0.927 133.9 0.043 

CONTENT 0.848 0.565 0.858 17.05 0.849 0.298 0.930 165.8 0.075 

ℒ1_CONTENT 0.824 0.562 0.855 17.01 0.846 0.296 0.929 176.8 0.086 

           

 

 

Maps 

ℒ1 0.687 0.515 0.728 20.24 0.623 0.083 0.885 169.1 0.084 

LPIPS 0.686 0.517 0.731 20.26 0.628 0.086 0.885 163.1 0.079 

ℒ1_LPIPS 0.693 0.518 0.728 20.28 0.631 0.085 0.888 162.8 0.081 

DISTS 0.674 0.487 0.710 20.03 0.607 0.078 0.880 144.4 0.067 

ℒ1_DISTS 0.682 0.509 0.724 20.27 0.621 0.083 0.883 147.3 0.068 

CONTENT 0.685 0.497 0.701 19.75 0.619 0.082 0.878 174.1 0.093 

ℒ1_CONTENT 0.689 0.516 0.725 20.16 0.622 0.082 0.885 171.3 0.093 

           

 

 

 

 

Papsmear 

ℒ1 0.832 0.581 0.917 20.85 0.874 0.121 0.886 72.36 0.036 

LPIPS 0.841 0.576 0.922 20.82 0.877 0.144 0.886 39.41 0.002 

ℒ1_LPIPS 0.840 0.592 0.924 20.85 0.879 0.148 0.887 47.91 0.013 

DISTS 0.832 0.589 0.913 20.83 0.869 0.110 0.886 45.80 0.009 

ℒ1_DISTS 0.831 0.601 0.912 20.85 0.868 0.110 0.888 46.57 0.003 

CONTENT 0.824 0.568 0.910 20.90 0.863 0.107 0.891 75.94 0.041 

ℒ1_CONTENT 0.818 0.581 0.911 20.88 0.858 0.102 0.886 82.47 0.049 
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The fourth dataset analyzed in the article is Papsmear. That is a medical dataset.   It differs from the Cityscapes 

and Maps datasets.  The objects (nucleus, cytoplasm, etc.)  in the images in the Papsmear dataset are partitioned 

interconnectedly.  Figure 5 presents the visual results of the Papsmear dataset to understand the outcome of the 

other losses of the Pix2Pix. Looking at the up-to-date similarity metrics for the Papsmear dataset in Table 1, it is 

observed that the LPIPS function gives better results than other methods. Looking at the conventional similarity 

metrics FSIM, MS-SSIM, SSIM, and VIFp in Table 1, the ℒ1_LPIPS function shows; the ℒ1_DISTS function in 

HaarPSI; It has been observed that the CONTENT function gives good results in PSNR and VSI. 

As a result, when the translation results in the datasets are evaluated in general, it is seen that DISTS and LPIPS 

functions provide adequate accuracy compared to the other metrics.   It has been observed thatconventional 

similarity measures cannot provide sufficient accuracy. In contrast, up-to-date similarity measures give better 

results in the DISTS function for the Cityscapes and Maps datasets and the LPIPS function for the 

Denim2Mustache and Papsmear datasets. Consistent similarity results from DISTS and LPIPS functions are 

similar to the study results (Ding et al., 2021). Thus, it has been seen that DISTS and LPIPS functions can be used 

for loss measurement for GANs architectures. Up-to-date similarity metric have been studied in detail as they give 

more accurate results. In the Cityscapes dataset, the DISTS function showed success with 67.77 FID and 0.036 

KID values. In the Maps dataset, the DISTS function achieved an FID of 144.4 and a KID of 0.067. For the 

Denim2Mustache dataset, the LPIPS function demonstrated success with an FID of 130.7 and a KID of 0.042. 

Notably, in the Papsmear dataset, the FID and KID results were 39.47 and 0.002, respectively, and it was observed 

that the LPIPS function outperformed the other functions. 

In this study, the original ℒ1 loss function has been added to some Convolutional Neural Network methods in 

addition to the standard Generative Adversarial Network (GAN) architectures, specifically the Pix2Pix method. 

The purpose of keeping the GAN method constant is to observe the impact of the ℒ1 loss function on Convolutional 

Neural Networks. When the ℒ1 function is added, the model is tested on the Pix2Pix method, which is a fixed 

GAN architecture. When the proposed methods, namely ℒ1_DISTS and ℒ1_LPIPS, are examined metrically, they 

are observed to achieve better performance. These methods are advantageous as they reach the result faster and 

more accurately. In summary, the addition of the ℒ1 loss function leads to higher performance. It has been observed 

that in the future, the ℒ1 loss function may be used in addition to other methods. In some cases, such as variations 

in the dataset, visual observations indicate that there is variability in the results, and in certain situations, the ℒ1 

loss function is visually observed to be less successful. 

4.  Conclusion 

The aim of this study is to evaluate the performance of loss function on the Pix2Pix architecture for GANs. 

CNN-based loss functions (CONTENT, DISTS, and LPIPS) were used instead of Pix2Pix’s original ℒ1 loss.  Four 

different datasets were used to examine the effect of the loss function. The effects of adding CNN-based structures 

to the contentious loss term and regularization terms in the loss function are analyzed.  As a result of the training 

and testing process, translation accuracies were transferred to tables with conventional and up-to-date metrics.  

When the experimental results were examined, it was seen that the LPIPS and DISTS method had the best synthesis 

performance according to the up-to-date similarity metrics (FID and KID). It seems that conventional similarity 

measures do not give consistent results in the translating accuracy. It is seen that the DISTS function in datasets 

with high complexity Cityscapes, Maps, and the LPIPS function with less complexity. Denim2Mustache and 

Papsmear give better results compared to other methods. As a result, it can be said that using DISTS and LPIPS 

functions in image-to-image translation architectures positively effects the translating accuracy. 
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Figure 2. Synthesis results of the Cityscapes dataset. Rows: Real image, Ground-truth, ℒ1 , LPIPS, 

ℒ1_LPIPS, DISTS,ℒ1_DISTS,   CONTENT, ℒ1_CONTENT 
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Figure 3. Synthesis results of the Denim2Mustache dataset. Rows: Real image, Ground-truth, ℒ1 , LPIPS, 

ℒ1_LPIPS, DISTS,ℒ1_DISTS,   CONTENT, ℒ1_CONTENT 
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Figure 4. Synthesis results of the Denim2Mustache dataset. Rows: Real image, Ground-truth, ℒ1 , LPIPS, 

ℒ1_LPIPS, DISTS,ℒ1_DISTS,   CONTENT, ℒ1_CONTENT 
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Figure 5. Synthesis results of the Denim2Mustache dataset. Rows: Real image, Ground-truth, ℒ1 , LPIPS, 

ℒ1_LPIPS, DISTS,ℒ1_DISTS,   CONTENT, ℒ1_CONTENT 
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