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ABSTRACT

Objective. Prostate cancer is currently the most frequently diagnosed malignant neoplasm and the second
leading cause of cancer related mortality in men over the age of 50 years in the developed countries.
MicroRNA-33a (miR-33a), localized within the intron 16 of SREBF2, has been reported to have tumor
suppressive properties in some cancers including prostate cancer, whereas its host gene, SREBF2, has been
shown to be elevated in prostate cancer and to act as an oncogene. Due to the paradoxical expression of an
oncogene and a tumor suppressor from a single genetic locus, there is a need for evaluation of miR-33a and
SREBF2 expression status in prostate cancer cells to help understanding their roles in prostate carcinogenesis.
Methods. In this study, we aimed at investigating the link between the expressions of miR-33a and its host
gene SREBF2 and its isoforms in prostate cancer cell lines using quantitative real time PCR. We evaluated the
relative expression levels with using 2- 22T method and tested the correlations of microRNA and gene
expressions with Pearson’s Correlation test using GraphPad Prism 6. Results. Our results demonstrated variable
expression levels for SREBF2 mRNA and miR-33a expression levels in prostate cancer cell lines, with some
decreased, some increased and some unchanged. Further analysis showed a strong correlation among
expressions of SREBF2 isoforms though we could not find a significant association between levels of SREBF2
isoforms and miR-33a expression. Conclusion. This data suggest possible posttranscriptional regulation of
miR-33a expression in prostate cancer.
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Introduction

Prostate cancer (PCa) is the most commonly Yyears in the developed countries [1]. Emerging
diagnosed non-skin cancer and the second leading evidences suggest a high-cholesterol Western diet as
cause of cancer deaths in males over the age of 50 an importantrisk factor for several solid tumors
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including PCa [2]. Although contradictory findings are
present about the link between serum cholesterol
levels and PCa risk, accumulating data supports a
critical role for HDL, LDL and, total cholesterol in
PCa development and progression [3-6]. In line with
those studies, prostate tumor cells have been
postulated to acquire castration-resistance via
reactivating intrinsic androgen biosynthesis pathway,
which might be through acquisition ofthe ability to
synthesize androgens from its precursor, cholesterol
[7].

The sterol regulatory element-binding protein
(SREBP) transcription factors, SREBP1 and SREBF2,
are among the crucial modulators of cholesterol/lipid
homeostasis, and of those, SREBF2 upregulate genes
associated with cholesterol synthesis (e.g. HMGCR)
and cholesterol uptake (e.g. LDLR) [8]. In addition,
microRNA-33a (miR-33a), localized within the intron
16 of the SREBF2 gene (Figure 1), which encodes
SREBF2 protein, has been also reported to play
important roles in cholesterol synthesis and uptake
through targeting 3’ untranslated regions of ABCAI,
a cholesterol efflux protein, and several other mRNAs
for proteins implicated in B-oxidation of fatty acids
including CPT1A and HADHB [9].

Paradoxically, increase in SREBF2 but decrease
in miR-33a level lead to increased cholesterol
synthesis and uptake, although their expressions are
controlled by the same promoter. Furthermore,
SREBP2 has been reported to be increased in PCa and
our recent findings imply tumor suppressive activities
for miR-33a with decreased expression in PCa tissues
[10]. Therefore, a comprehensive evaluation of this
paradoxical expression pattern of miR-33a and
SREBF?2 in prostate cancer cells is necessary to help
understanding their roles in prostate carcinogenesis.
In this study, we aimed at investigating the link
between the expressions of miR-33a and its host gene
SREBF2 and its isoforms in PCa cell lines.

Methods

Cell Culture

Immortalized non-tumorigenic prostate cell line
PNTIla cells, LNCaP, DU145, 22RV1 and PC3 cells
were grown using RPMI medium (GenDepot)
containing 10% fetal bovine serum (FBS, Gibco) and
1% penicillin/streptomycin (Invitrogen). VCaP cells
were grown in Dulbecco’s Modified Eagle Medium
(DMEM, Invitrogen) supplemented with 10% FBS
and 1% penicillin/streptomycin. All cell lines were
cultured at 37°C in a humidified and 5% CO2
incubator. Cell lines were obtained from American
Type Culture Collection and routinely authenticated
by STR analysis at MD Anderson Cancer Center
Characterized Cell Line Core Facility.

c¢DNA Synthesis and Quantitative Real-Time PCR

For microRNA first strand DNA (cDNA)
synthesis, equal amounts of total RNA were reverse
transcribed using microRNA specific primers
(Applied Biosystems) and TagMan MicroRNA reverse
transcription Kit (Applied Biosystems) following the
manufacturer’s instructions. cDNA synthesis from
mRNA was carried out with “amfiRivert cDNA
Synthesis Platinum Master Mix” (GenDepot)
following the manufacturer’s protocol.

For microRNA expression analysis, microRNA
specific probes (Applied Biosystems) and TagMan
Fast Advanced Master Mix (Applied Biosystems)
were used. MicroRNA expression data were
normalized to RNU43. For gene expression analysis,
SYBR Green PCR Master Mix (Applied Biosystems)
was used. Expression data were normalized to b-actin.
Primer sequences used for quantitative real time PCR
(qRT-PCR) are provided in Supplementary Tablel.

gRT-PCR was performed in a StepOnePlus™ real-
time thermal cycler (Applied Biosystems) using
standard parameters. Each experiment was performed

SREBP2

«— Intronlf ——»

— eonstae —ED——— Exons1719 —

i

CTGTGGTGCATTGTAGTTGCATTGCATGTTCTGGTGGTACCCATGCAATGTTTCCACAGTGCATCACAGA

Figure 1. Schematic representation of the localization of miR-33a within 16th intron of SREBF2
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in triplicates and the differences in expression levels
were evaluated using 2-2A¢T method.

Statistical Analysis

Data were plotted as mean + standard error and
statistical significances were evaluatedusing Student’s
t test. Correlations of microRNA and gene expressions
were analyzed with Pearson’s Correlation testusing
GraphPad Prism 6. A p value of 0.05 or below was
accepted as significant.

Results

MiR-33a and SREBF?2 have variable expression in
PCa cell lines

To evaluate the correlation of miR-33a and
SREBF?2 expression, we initially measured their levels
in PNT1a and PCa cell lines using qRT-PCR. MiR-33a
expression was significantly reduced in LNCaP and
VCaP cells and was significantly increased in 22RV1
and PC3 cells (Figure 2A). Its expression in DU145
cells was similar to that of PNT1a cells (Figure 2A).
We also found variable expression levels for SREBF2
mRNA in PCa cell lines, with some decreased (PC3;
Figure 2B), some increased (VCaP, DU145, and
22RV1; Figure 2B) and some unchanged (LNCaP;
Figure 2B). However, there was no correlation of
SREBF2 and miR-33a levels in the same cancer cell
lines (Table 1; p >.1, Pearson).

Expression of MiR-33a and SREBF2 isoforms do not
correlate in PCa cell lines

We then examined the expression levels of
SREBF2 isoforms (See Supplementary Table 1),
which include intron 16 in their premature unspliced
forms, in PCa cells lines to look for a specific isoform,
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Figure 2. Relative expression of (A) miR-33a and (B)
SREBF2 in PCa cells. Mean +/- SEM is shown.*p < 0.05

whose expression might be correlated with miR-33a
expression. These isoforms represented similar
expression profiles with total SREBF2 level (compare
Figure 2B and Figure 3) and correlation analysis
demonstrated that the levels of SREBF2 isoforms
strongly related with each other in the same cancer cell
lines, although they lack a significant correlation with
miR-33a (Table 1).

Furthermore, we searched for the retained introns
that include intron 16 and analyzed the expression
level of a retained intron in PCa cell lines (See
Supplementary Table 1). We designed a primer pair

Table 1. Correlation of SREBF2 mRNA and miR-33a levels

sREpr2  SREBFZ  SREBFZ  SREBF2 SREBF2 Retained
001 002 005 001+201 Intron

233 R=-0616 R=-0.662 R=-0450 R=-0671 R=-0617  R=-0.648
fis-2a p=0192 p=0.151  p=0369  p=0.144 p=0.191 p=0.163
SREBF2 R=-0970 R=-0933 R=-0957 R=-0993  R=-0.959
p=0.001  p=0006 p=0.002  p=0.0001 p=0.002
R=-0950 R=-0.997 R=-0.993 R=-0.959

SREBE2 001 p=0003 p=00001 p=0.0001 p=0.002
R=-0935 R=-0.949, R=-0.945

SREBF2 002 p=0006  p=0.003 p=0.004
R=-0980  R=-0.999

SREBF2 0035 p=00005  p=0.0001
R =-0.982
SREBF2 0014201 = 0.0005
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targeting intron 1 as control to exclude the possibility
of amplifying genomic DNA. qRT-PCR results
demonstrated no correlation of the retained introns
expression to miR-33a levels (Figure 4).

Our overall results demonstrated a strong
correlation among expression of SREBF2 isoforms
althoughthere was nolink between expressions of
SREBF2 isoforms and miR-33a level (Figure 5),
which  suggested possible posttranscriptional
regulation of miR-33a expression in PCa.
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Discussion

Numerous studies suggest a critical role for
cholesterol in PCa development and progression in
recent years [3-6]. In advanced prostate tumors,
castration-resistance of tumor cells might occur via
reactivation of intrinsic androgen biosynthesis
pathways, where cholesterol might serve as an
important precursor for synthesis of androgens [7].

There is strong evidence that in normal tissues,
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Figure 3. Relative expression of (A) SREBF2 001, (B) SREBF2 002, (C) SREBF2 005, and (D) SREBF2 001+201 in PCa cells.

Mean +/- SEM is shown. *p < 0.05
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miR-33a levels are elevated in parallel to increased
SREBF2 transcription, leading to collaborative
regulation of cholesterol and other lipid levels by
SREBF2 and miR-33a [11]. In contrast to this finding,
miR-33a, localized within the intron 16 of SREBF2,
has been reported to have tumor suppressive properties
in some cancers including PCa [10, 12-18], whereas
its host gene, SREBF2, has recently been shown to be
increased in PCa and to act as an oncogene [19]. Due
to these paradoxical findings, there is a need for
evaluation of miR-33a and SREBF2 expression status
in PCa cells to help understanding their roles in
prostate carcinogenesis.

Therefore, in this study, we investigated the
association between the levels of miR-33a and its host
gene SREBF2 and its isoforms in PCa cell lines and
found that there is no correlation of SREBF2 isoform
mRNA levels with its intronic microRNA miR-33a in
PCa unlike the correlation seen in normal tissues.

In normal tissues, SREBF?2 increase cholesterol by
increasing transcription of multiple genes that increase
levels of cholesterol. Elevated levels of SREBF2 in
cancer tissues more profoundly induce upregulation
of those genes associated with cholesterol synthesis
and cholesterol uptake. Increased synthesis and uptake
of fatty acids can pave the way for reactivation of
intrinsic androgen biosynthesis pathways but also
provide an energy source for PCa, which are known
to have low glucose uptake. Besides, apart from lipid
biogenesis, SREBP-2 was found to induce c-Myc
expression via directly interacting with c-Myc
promoter region to drive stemness and metastasis [19].
In addition, downregulation of miR-33a allows both
upregulation of oncogenic genes such as PIM1 [10]
and promotes B-oxidation of fatty acids through
overexpression of genes like HADHB and CPT1A [9].
Such increased B-oxidation might contribute to
providing of energy to PCa cells. Another potential
association of miR-33a to cholesterol metabolism is
its targets that are involved in cholesterol transport
such as ABCA1, ABCGI1, and NPC1 [9]. Several
studies showed that upregulation of miR-33a in vitro
profoundly suppressed cholesterol export in various
cell culture models [20-23]. Further in vivo studies
also demonstrated significant elevation in serum HDL
cholesterol in miR-33a -/- mice [21]. However, it is
worth mentioning that ABCAI, a cholesterol efflux
protein, which is targeted by miR-33a, is significantly
methylated in PCa [24], which would abolish the
potential deleterious effects of elevated cholesterol
efflux secondary to reduced miR-33a.

Furthermore, interestingly in 2 of the androgen
receptor positive cell lines tested, LNCaP and VCaP
cells, miR-33a expressions were lower compared to
that of PNT1a. On the other hand, its expression was
either unchanged or elevated in androgen receptor
negative DU-145 and PC3 cells, implying a possible
androgen receptor related mechanism for differential
expression of miR-33a in PCa cells.

The Limitations of the Study

Our study focuses on the cell lines for the
evaluation of miR-33a and SREPF2 isoforms’
expression. Lack of the correlation of miR-33a and
SREPF2 isoforms’ expression in tumor and normal
prostate samples obtained from PCa patients is one of
the important limitations of our study. In addition,
SREBF2 expression in protein was not evaluated in
regards to its correlation with miR-33a expression.

Conclusions

The potential expression of an oncogene and a
tumor suppressor from a single genetic locus creates
a paradox in PCa. In this study, we show that miR-33a
expression is not correlated with SREBF2 mRNA
levels, implying post-transcriptional mechanisms of
control of miR-33a levels in PCa, leading to decreased
miR33a levels. We demonstrated a strong correlation
among expressions of SREBF2 isoforms though we
could not find a significant correlation between
expressions of SREBF2 isoforms and miR-33a
expression, which suggested possible post-
transcriptional regulation of miR-33a expression in
PCa. Further studies should be carried out to better
understand the possible mechanisms of differential
expression of miR-33a and SREPF2 isoforms in PCa
cells although transcribed from a single locus. Also,
further in vivo research is needed to clarify the roles
of miR-33a and SREBF2 in PCa tumorigenesis
process.
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Supplementary Table 1. QRT-PCR primer sequences and PIM1 3’UTR cloning and mutagenesis

primer sequences

Primer Ensembl Transcript ID Sequence

Beta-actin-F 5’-GCCTCGCCTTTGCCGATC-3’

Beta-actin-R 5’-CCCACGATGGAGGGGAAG-3’

SREBF2-F 5’-CAGCCTCAAGTCCAAAGCCT-3’

SREBF2-R 5-TGTCTTGATGATCTGAGGCTGG-3’

SREBF2-001-F 5’-CTCGCCAGAGGAGATTTTGC-3’
ENST00000361204

SREBF2-001-R 5-TGGAAGACTTTCTTGAGCAGC-3’

SREBF2-002-F 5. TGTGCGCTCTCATTTTACCA-3’
ENST00000424354,

SREBF2-002-R 5’-CGCAGACATGAATCTCCAAA-3’

SREBF2-005-F 5-GTCCAGGGCTTTCTTGTCAC-3’
ENST00000435061

SREBF2-005-R 5-CAGGCTGTGTTCCAGCAG-3’

SREBF2-001 + 201-F ENST00000361204 + 5’-TGGAAGTGACAGAGAGCCC-3’

SREBF2-001 + 201-R ENST00000612482 5’-GTTGAGGGCAGGGTCAGAG-3’

Retained Intron-F 5-GGCACACAAACAGAGCTGAA-3’
ENST00000490262

Retained Intron-R
Control Intron-F
Control Intron-R

5’-CCTTCAGTCAGGGCAGTCTC-3’
5’-GGCGGTCCTCAACCCTTC-3”
5’-AGAGCGGACCACGGAAAC-3’
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