
Research Article                                 Eur J Forest Eng 2024, 10(1):54-66. 
https://doi.org/10.33904/ejfe.1430606 

© Copyright 2024 by Forest Engineering 
and Technologies Platform on-line at 

https://dergipark.org.tr/en/pub/ejfe 

 

 

*Corresponding Author: Tel: + 7 9604500405  E-mail: pdmitriev@sfedu.ru  

Received: 02 February 2024; Accepted: 26 April 2024     This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License 

54 

Abstract  

The aim of the research was to evaluate a group of vegetation indices (VIs) for identifying the leaves of some 

species including Ulmus pumila L., Tilia cordata Mill. and Acer campestre L. Hyperspectral imaging (HSI) was 

carried out under artificial lighting in laboratory conditions using a Cubert UHD-185 hyperspectral camera. A 

technique was developed for the automated selection of pure spectral profiles from hyperspectral images by setting 

a double barrier specified by intervals of PSSR and NDVI VIs. A total of 80 VIs was calculated. A statistical 

analysis of the data was carried out to determine their representativeness. The VIs that were most dependent on 

the species characteristics of the trees were determined using analysis of variance (ANOVA) and principal 

component analysis (PCA) methods. Research has shown that the PCA method is effective and sufficient to 

identify the group of VIs characterized by the highest dispersion related to tree species. The PCA carried out for 

pairs of tree species made it possible to identify a group of vegetation indices, the value of which to the greatest 

extent depends on species characteristics. These VIs are Carter2, CI2, CRI4, GMI2, mSR2, NDVI2, OSAVI2, SR1, 

Carter4, Datt2, SR6, Datt, DD, Maccioni, MTC. 

Keywords: Hyperspectral imaging, Principal component analysis, Region of interest, Species classification, 

Woody plants.

1. Introduction 

Natural and artificial forests, urban green spaces, and 

protective forest belts need regular monitoring to assess 

their resources, ecological state, and presence of invasive 

species. On a regional scale, this is possible only with the 

help of Unmanned Aerial Vehicles (UAV) and various 

remote sensing tools. The first problem to be solved is to 

identify the species. In some cases, for example, when 

identifying alien species invasions, it is important to have 

a method for identifying plants in real-time for their 

subsequent destruction. The problem of identifying 

species has been successfully solved for agricultural 

crops (Heupel et al., 2018; Saeed et al., 2021), which are 

represented over large areas by single species 

agrocenoses. Remote forest inventory and monitoring 

still have many limitations. The main limitation is the 

complexity of forest structure and composition 

(Fassnacht et al., 2024). According to a modern review 

of sources on this issue (Dainelli et al., 2021), tree 

identification and mapping using remote sensing data is 

an active area of research. Progress has been made in 

identifying tree species using spectral characteristics 

obtained from satellites and UAVs (Modzelewska et al., 

2020; Sothe et al., 2020; Egli and Höpke, 2020; Grabska  

 

et al., 2020; Onishi and Ise, 2021; Hermosilla et al., 

2022). Spectral characterization sensors include not only 

spectroradiometers and multispectral cameras but also 

hyperspectral cameras. (Cao et al., 2018; Dmitriev et al., 

2022a; 2022b). Several studies have demonstrated that 

spectral characteristics alone are inadequate for 

accurately identifying forest species. Therefore, it is 

necessary to combine them with textural characteristics 

(Zhang et al., 2023; Zhong et al., 2022; Chen et al., 

2023). Furthermore, there is an issue with the 

repeatability of spectral values over time (van der Werff 

et al., 2022). In general, the use of plant spectral 

characteristics as taxonomic traits requires evidence. 

In the context of this problem, it is proposed to test 

the following hypothesis: in a laboratory experiment 

(with maximum control of external factors) for tree 

species that differ significantly in morphological and 

ecological characteristics from each other (for example; 

Ulmus pumila, Tilia cordata, and Acer campestre), it is 

possible to determine a group of vegetation indices (VIs) 

and the mathematical interpretation of the values that can 

be used for their species identification. 
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2. Materials and Methods 

The research was conducted in the Botanical Garden 

of the Southern Federal University (SFedU Botanical 

Garden), Rostov-on-Don, Russia (Figure 1). Coordinates 

of the study area: 7°16′25.63′′N; 39°19′13.59′′E. The 

climate of Rostov-on-Don is temperate continental, and 

arid, with moderately mild winters and hot summers. The 

sum of active temperatures is 3200-3400 °C. The average  

 

annual air temperature is +9.2 °C. During the year, the 

average monthly air temperature ranges from −5 °С in 

January to +23.2 °С in July. The absolute minimum 

temperature is −31.9 °C, and the absolute maximum 

temperature is +40.1 °C. The average annual rainfall is 

569 mm. The total precipitation for the frost-free period 

is 323 mm (Panov et al., 2006). 

 

 
Figure 1. Research region (a) and measurement system (b). 

 

The leaves of Ulmus pumila L., Tilia cordata Mill. 

and Acer campestre L. were identified as these are large 

trees widespread in the region and grow naturally and are 

widely used for landscaping settlements. All 

experimental plants are of similar age, at the same stage 

of ontogeny (young generative specimens), and grow 

under similar conditions in the park of the SFedU 

Botanical Garden, located in the floodplain of the 

Temernik River. Each of the three species was 

represented in the experiment by three samples. From 

each sample, five leaves were selected in a circle from 

their crown from the base of the shoot of the current year. 

Hyperspectral imaging (HIS) was carried out under 

artificial lighting in laboratory conditions using a Cubert 

UHD-185 hyperspectral camera (Aasen et al., 2015; 

Bareth et al., 2015). Four halogen and one blue LED 

lamp were used to illuminate the object. 

A leaf was placed on a black tracing paper. The 

camera lens was located 70 cm from the leaf blade and 

directed perpendicular to it. HSI of each leaf was carried 

out five times. The pixel size was about 35 mm2. This 

survey technique gives a stable result, which can be 

demonstrated by the example of the change in the NDVI 

value in a series of five images of one leaf (Figure 2). 

 

 
Figure 2. Boxplots of NDVI values in a series of four images of an A. campestre leaf, specimen 1 (HSI date: Aug 26). 

 

 Based on the HSI data, 80 VIs were calculated 

(supplementary Table 1). Visualization of VIs values 

with reference to spectral profiles in the HSI data was 

implemented in the R programming environment (R 

Core Team). This makes it possible to visualize the 

results of manipulations with spectral profiles in the 

image and to identify VIs that «do not read» the plant 

object (supplementary Table 2). Statistical and 

mathematical analysis was carried out in the R 

programming environment.

https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3702688/download
https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3702690/download


 Eur J Forest Eng 2024, 10(1):54-66. 

 

56 

3. Results and Discussion 

For analysis, the selection of the spectral profiles 

from HSI data by the operator is a problem. This process 

is not only labor-intensive and time-consuming but also 

subjective. This underscores the urgent need to develop 

an automated method for selecting «pure» spectra based 

on a unified approach. Our proposed technique involves 

selecting and processing all the spectral profiles, and 

then based on the value of the «green indices», choosing 

only those that corresponded to the green leaf. This 

principle, similar to determining crop yields using 

NDVI, excludes index values below 0.2 from the 

calculations (Vannoppen et al., 2020). The technique was 

tested on the data of spectral imaging of leaf blades of U. 

pumila, T. cordata and A. campestre, obtained in 

laboratory conditions (Figure 3).  

The task was to separate the background and mixed 

spectra, simultaneously capturing the leaf and the 

background. The presence of mixed spectra in the sample 

set can lead to the accumulation of a systematic error in 

calculating of VI values because their number       

depends on the size and shape of the leaf blade. Thus, the  

 

proportion of mixed spectra increases from simple to 

lobed leaves and large to small leaves. NDVI was chosen 

as such an index. This index gives reliable results and is 

widely used. The operator selected «pure» spectra from 

the hyperspectral images and calculated the NDVI range 

corresponding to the green leaf. It amounted to an 

interval of 0.5 – 1.0. A preliminary analysis of 

histograms of the magnitude distribution of other 

«green» VIs from the sets of spectra that give NDVI 

values in the range of 0.5 – 1.0, showed that they are 

close to a normal distribution (Figure 4). 

However, with this approach, the distribution of the 

NDVI itself becomes asymmetric (Figure 5). Therefore, 

it was decided to select «pure» spectra based on the 

ranges of two VIs. To search for the second VI, 

regressions of the values of other VIs from the NDVI 

value were constructed. As an illustration, the regression 

of VI values from the NDVI value of the leaves of A. 

campestre, sample № 1, survey date Aug 26, is shown 

(Figure 6, supplementary Table 3). 

 

 
Figure 3. Hyperspectral images of leaves A. campestre (a), U. pumila (b) and T. cordata (с). 

 

 
Figure 4. VIs PSSR and PSND distributions for leaves of A. campestre (Aug 26, sample № 1) by value, obtained from a set of 

spectra with an NDVI value in the range from 0.5 to 1.0. 

https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3702693/download
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Figure 5. The distribution of NDVI in the range from 0.5 to 1.0 for the leaves of A. campestre (Aug 26, sample № 1). 

 

 
Figure 6. Regression of VIs PSSR and PSND values from NDVI value for leaves of A. campestre (Aug 26, sample № 1). 

 

Of interest are indices for which the regressions of their 

values from the NDVI value are curvilinear, such as PSSR, 

MCARI2, MTVI, or are presented as two clearly delimited 

fields (background and leaf) such as PSND, CARI, CRI2 

(supplementary Table 3). When calculating these VIs, 

combinations of spectral bands are used other than those 

used for NDVI, so the use of these indices in pairs can 

increase the reliability of selecting «pure» spectra. Indices 

that give linear regressions with NDVI with a close 

relationship close to functional are not suitable for solving 

the problem since the same channels are used in their 

calculation; for example, DWSI4, SAVI, PRI_norm, and 

SR. (supplementary Table 3). 

PSSR was chosen as the second VI, which sets an 

additional boundary for forming a set of «pure» spectra 

(Figure 6). The range of values of this index, 

corresponding to a green leaf, lies from 5 to 10. It was 

calculated based on data received by the operator. Thus, 

for VI calculations, spectra were selected that give NDVI 

values of more than 0.5 with a PSSR value of more than 5. 

An exception was made for NDVI and PSSR – the NDVI 

value was calculated from a set of spectra that give PSSR 

values greater than 5, and the PSSR value was calculated 

from a set of spectra that give NDVI values greater than 

0.5. The results of the selection of spectra by this technique 

can be demonstrated in Figure 7. In contrast to the known 

methods for selecting objects by SB, selecting a region of 

interest by a threshold of two VIs is simpler, does not 

require large computing resources, and corresponds to the 

task posed in the study. 

 

 

https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3702693/download
https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3702693/download
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Figure 7. Carter2 and SR1 VIs values linked to specific spectra in the hyperspectral image before and after «cleaning». 

 

In particular, it should be noted that in several works, 

attention is not paid to the analysis of the nature of the 

distribution of sets of VIs values. The choice of approach 

to mathematical data processing depends on the type of 

distribution; the distribution indirectly indicates the 

representativeness of the sample. Thus, a serious 

question about the representativeness of the sample 

arises with an asymmetric distribution. Therefore, sets of 

VI values were tested for normal distribution according 

to four criteria: Shapiro-Wilk, Pearson, Lilliefors, and 

Cramer-Mises. The results of testing the distribution of 

the spectrum sets of samples of all three tree species as 

of the survey date of August 26 in terms of VIs values 

are presented in supplementary Table 4. In most cases, 

the distribution of the spectra of a leaf blade in terms of 

VIs value does not follow a normal distribution. The 

largest number (approaching 50%) of populations 

distributed according to the normal law was noted for the 

indices CI2, ClAInt, Gitelson2, mSR2, NDVI2, 

OSAVI2, SR1, TCARI2/OSAVI2, TGI, Vogelmann, 

Vogelmann2. An analysis of the VIs distributions showed 

that the curve describing them is a bell-shaped shape and 

gradually approaches the abscissa axis along the edges. 

The dynamics of changes in the nature of the distribution 

of NDVI and PSSR of A. campestre from image to 

species on the HSI date of August 26 are presented in 

Table 1 and Figures 8 and 9. It should be noted that in 

this sequence, the general patterns of distribution (the 

direction of kurtosis and asymmetry) do not change. The 

resulting distributions have an average skewness index 

(0.1 ≤ |As| ≤ 0.6) and a large positive kurtosis coefficient 

(Еx ˃ 1). The mode (Mo) and median (Me) values are very 

close. 

 
Table 1. Statistical characteristics of samples of NDVI and PSSR values for A. campestre in dynamics from one snapshot to all 

snapshots of species. 

VI NDVI PSSR 

Object snapshot leaf sample species snapshot leaf sample species 

Me 0.606 0.611 0.605 0.602 7.143 6.974 6.444 6.571 

Mo 0.601 0.606 0.603 0.600 7.786 6.938 6.972 6.741 

Еx 3.156 3.205 3.063 2.969 2.273 2.562 2.623 2.924 

As −0.560 −0.599 −0.361 −0.341 −0.132 0.145 0.202 0.382 

 

 
Figure 8.  A. campestre NDVI magnitude distribution obtained from a set of spectra with PSSR values ranging from 5 to 10 in 

sequence from one snapshot to all snapshots of species. a – snapshot; b – leaf; c – sample; d – species. 

https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3702694/download
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Figure 9. A. campestre PSSR distribution by magnitude obtained from a set of spectra with NDVI values ranging from 0.5 to 

1.0 in sequence one snapshot to all snapshots of species. a – snapshot; b – leaf; c – sample; d – species. 

 

Analysis of variance was used to determine the 

contribution of experimentally controlled factors («leaf», 

«sample», «species») to the VI value. The use of the 

parametric method for data analysis with the established 

nature of the distribution of index values is due to its 

closeness to the normal type, large sample size, 

coincidence of mode and median values. The results of a 

three-way analysis of variance for the NDVI value in the 

first period of the experiment (Aug 26) are shown in 

Table 2.  All other VIs in supplementary Table 5. 

 
Table 2. Results of a three-way ANOVA of the «species-sample-leaf» statistical complex for the NDVI value. 

ANOVA Df  Sum Sq Mean Sq F value Pr(>F) 

Species 2 7.040 3.520 2662.44 <2e−16* 

Sample 6 4.872 0.812 614.23 <2e−16* 

Leaf 54 4.106 0.076 57.52 <2e−16* 

Intragroup variance 6002 7.935 0.001   

Note: * significance level < 0.001 

 

VI satisfies the problem of species identification well 

if, according to the results of ANOVA Sum. Sq. factor 

«Species» is greater than the factor «Sample», Sum. Sq. 

factor «Sample» is greater than the factor «Leaf», Sum. 

Sq. factor «Species» is greater than the intra-group 

variance. It means that the value of the index depends 

more on species characteristics than on other factors. 

These VIs include Datt2", "Datt", "Maccioni", "CRI2", 

"SR6", "mSR2", "CARI", "REP_Li", "CRI4", "Carter4", 

"CI2", "DD ", "SR", "Vogelmann", "NDVI2", 

"OSAVI2", "MCARI", "GMI2". It should be noted that 

the value of almost all VIs is more dependent on the 

«Leaf» factor than on the «Sample» factor. Thus, we 

believe that we have a representative set of data formed 

per the task set – the identification of woody plant 

species based on hyperspectral survey data. 

Our next step involved the use of principal 

component analysis (PCA)to establish the relationship 

between 80 VIs values and experimental species. The 

PCA results, depicted in Figure 10, Are particularly 

reassuring. They showed that the location of the species 

on the projection remains consistent over time, 

indicating the stability of the findings. Additionally, the 

dispersions of the first and second principal components, 

as shown in Table 3, do not exceed 0.70. This suggests 

that, the influence of subsequent components on the total 

variance is negligible, further bolstering the reliability of 

our results. 

 

 
Figure 10. Projection of Vegetation Index Values A. campestre (2), T. cordata (5) and U. pumila (7). Sampling dates: Aug 26 

(a), Sept 02 (b), Sept 09 (c), Sept 15 (d). 

https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3702695/download
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Table 3. The value of the variances attributable to the first and second principal components of the projection of 80 VIs values 

for A. campestre, T. cordata, U. pumila on different sampling dates. 

Statistics 
Aug 26 Sept 02 Sept 09 Sept 15 

Comp.1 Comp. 2 Comp. 1 Comp. 2 Comp. 1 Comp. 2 Comp. 1 Comp. 2 

Standard deviation 5.600 4.334 5.838 4.030 5.285 4.483 5.779 4.080 

Proportion of Variance 0.392 0.234 0.426 0.203 0.349 0.251 0.417 0.208 

Cumulative Proportion 0.392 0.627 0.426 0.629 0.349 0.600 0.417 0.625 

 

Therefore, it was decided to divide the species into 

pairs. Determine the VIs that mainly contribute to the 

variance of the first principal component for each pair of 

species. Then combine all the established VIs into one 

group and try to separate all three types simultaneously 

by their values. Visualization of the projection of 80 VIs 

values for a pair of A. campestre and U. pumila shows a 

clear separation of these species (Figure 11). 

In this case, the Proportion of Variance for the first 

and second principal components is only 0.616. In total, 

there are 10 significant components in accordance with 

the Kaiser criterion (the number of factors is equal to the 

number of components whose Proportion of Variance is 

greater than 0.01) (Table 4). It cannot be considered 

satisfactory for such experiments. 

Based on factor loads (supplementary Table 6), the 

most informative VIs were selected – Carter2, CI2, 

CRI4, GMI2, mSR2, NDVI2, OSAVI2, and SR1. Table 

5 shows the value of the values of these indices for A. 

campestre and U. pumila. In that case, it was possible to 

obtain the maximum range of variability along the axis 

of the first component, while minimizing it along the axis 

of the second component (Figure 12). 

The value of the Proportion of Variance, which falls 

on the first principal component, is 0.979. The number of 

significant components in accordance with the Kaiser 

criterion was reduced to two. The reliability of the results 

confirms their repeatability in terms of sampling 

(supplementary Table 7).The factor loadings of the 

selected VIs on the first significant component became 

higher in Table 6. 

 

 
Figure 11. Projection of 80 VIs values of A. campestre and U. pumila (Aug 26). The first digit in the number indicates the 

species number (A. campestre – 2, U. pumila – 7), the second – the sample number, the third – the leaf number. 

 
Table 4. The value of the variance of the main components of the projection of the values of vegetation indices for A. 

campestre and U. pumila (Aug 26). 

Statistics / Component 1 2 3 4 5 6 7 8 9 10 

Standard deviation 5.466 4.402 2.763 2.349 1.689 1.607 1.222 1.176 1.099 1.041 

Proportion of Variance 0.374 0.242 0.095 0.069 0.036 0.032 0.019 0.017 0.015 0.014 

Cumulative Proportion 0.374 0.616 0.711 0.780 0.816 0.848 0.867 0.884 0.899 0.913 

 
Table 5. The value of the variance of the main components of the projection of the values of the Carter2, CI2, CRI4, GMI2, 

mSR2, NDVI2, OSAVI2, SR1 VIs values for A. campestre and U. pumila (Aug 26). 

Statistics Comp. 1 Comp. 2 

Standard deviation 2.797 0.304 

Proportion of Variance 0.978 0.011 

Cumulative Proportion 0.978 0.990 

https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3849630/download
https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3849631/download
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Figure 12. Projection of Carter2, CI2, CRI4, GMI2, mSR2, NDVI2, OSAVI2, SR1 index values for A. campestre and U. 

pumila (Aug 26). The first digit in the number indicates the species number (A. campestre – 2, U. pumila – 7), the second – the 

sample number, the third – the leaf number. 

 

Table 6. Factor loadings obtained using the PCA method. 

VI Carter2 CI2 CRI4 GMI2 mSR2 NDVI2 OSAVI2 SR1 

Comp.1 0.345 −0.355 0.354 −0.356 −0.354 −0.354 −0.354 −0.356 

 

The visualization of the projection of 80 VIs values 

for the T. cordata and U. pumila pair onto the first two 

principal components (Figure 13), as well as for the A. 

campestre and U. pumila pair, shows a good separation 

of these species. However, in this case, the Cumulative 

Proportion of the first and second principal components 

is less than 0.70. Further, they acted following algorithm 

applied to the pair of A. campestre and U. pumila. For 

the T. cordata and U. pumilа pair, the maximum factor 

load in the first component is Carter4, Datt2, mSR2, 

NDVI2, OSAVI2, and SR6. Figure 14 visualizes the 

projection of the Carter4, Datt2, mSR2, NDVI2, 

OSAVI2, and SR6 VI values for T. cordata and U. 

pumila. 

The value of the Proportion of Variance, which falls 

on the first principal component, is 0.986. For the second 

component, it is already below 0.01 (Table 7). The 

reliability of the results confirms the repeatability of the 

results over the timing of sampling (supplementary Table 

7).  

 

 
Figure 13. Projection of values of 80 vegetation indices of T. cordata and U. pumila (Aug 26). The first digit in the number 

indicates the species number (T. cordata – 5 and U. pumila – 7), the second – the sample number, the third – the leaf number. 

 

 

https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3849631/download
https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3849631/download
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Figure 14. Projection of index values Carter4, Datt2, mSR2, NDVI2, OSAVI2, SR6 T. cordata (5) and U. pumila (7) (Aug 26). 

The first digit in the number indicates the species number (T. cordata – 5 and U. pumila – 7), the second – the sample number, 

the third – the leaf number. 

 
Table 7. The value of the dispersion of the main components of the projection of the Carter4, Datt2, mSR2, NDVI2, OSAVI2, 

SR6 VI values for A. campestre and U. pumila (Aug 26). 

Statistics Comp. 1 Comp. 2 

Standard deviation 2.432 0.215 

Proportion of Variance 0.986 0.007 

Cumulative Proportion 0.986 0.993 

 

Visualization of the projection of the values of 80 VIs 

of A. campestre – T. cordata on the first two principal 

components (Figure 15), as well as for the previous ones, 

satisfactorily separates these species. However, in this 

case the Cumulative Proportion of the first and second 

principal components is less than 0.65. It has been 

established that for the A. campestre – T. cordata pair, 

Carter4, Datt, DD, Maccioni, MTCI, SR6 have the 

maximum factor load in the first component. The 

projection of their magnitude is shown in Figure 16. The 

Proportion of Variance value, which falls on the first 

principal component, is 0.935. The reliability of the 

results, as for the previous pairs of species, confirms the 

repeatability of the results over the timing of sampling 

(Table 8, supplementary Table 7). 

 

 
Figure 15. Projection of the values of 80 vegetation indices A. campestre – T. cordata (Aug 26). The first digit in the number 

indicates the species number (T. cordata – 5 and A. campestre – 2), the second – the sample number, the third – the leaf number. 

https://dergipark.org.tr/tr/journal/277/article/1430606/file/article-file/3849631/download
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Figure 16. Projection of Carter4, Datt, DD, Maccioni, MTCI, SR6 A. campestre and T. cordata indices (Aug 26). The first digit 

in the number indicates the species number (T. cordata – 5 and A. campestre – 2), the second – the sample number, the third – 

the leaf number. 

 
Table 8. The value of the variance of the principal components of the projection of the Carter4, Datt, DD, Maccioni, MTCI, 

SR6 CI values for A. campestre and T. cordata (Aug 26). 

Statistics Comp. 1 Comp. 2 Comp. 3 

Standard deviation 2.368 0.430 0.314 

Proportion of Variance 0.935 0.030 0.016 

Cumulative Proportion 0.935 0.966 0.982 

 

Further, all VIs selected for three pairs were 

combined into one group. These are Carter2, CI2, CRI4, 

GMI2, mSR2, NDVI2, OSAVI2, SR1, Carter4, Datt2, 

SR6, Datt, DD, Maccioni, and MTCI. Projections of the 

magnitude of these VIs belonging to A. campestre, U. 

pumila and T. cordata for four sampling periods are 

shown in Figure 17. 

 

 

 
Figure 17. Projection of index values Carter2, CI2, CRI4, GMI2, mSR2, NDVI2, OSAVI2, SR1, Carter4, 

Datt2, SR6, Datt, DD, Maccioni, MTCI A. campestre (2), T. cordata (5), U. pumila (7).  

Sampling dates: Aug 26 (a), Sept 02 (b), Sept 09 (c), Sept 15 (d). 

 

The technique used made it possible not only to 

concentrate practically the entire dispersion in one plane, 

but also to stretch it as much as possible along the axis 

of the first principal component. All projections are 

characterized by a large Proportion of Variance for the 

first principal component (more than 0.90) and, 

accordingly, a small Proportion of Variance for the 

second principal component (Table 9). The Proportion of 

Variance values of the subsequent components are not 

significant. It should be especially noted that the 

arrangement of species along the axis of the main 

component remains constant in all four periods. Since the 

results obtained at different times of leaf sampling are 

independent, we can talk about their certain 

convergence. The factor load on the first significant 

component, although increased, remains low after 

selection of VI (Table 10). 
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Table 9. The value of the variance attributable to the first and second principal components of the projection of the values of 

the vegetation indices Carter2, CI2, CRI4, GMI2, mSR2, NDVI2, OSAVI2, SR1, Carter4, Datt2, SR6, Datt, DD, Maccioni, 

MTCI for A. campestre, T. cordata, U. pumila at different sampling dates. 

Statistics / Сomponent 
Aug 26 Sept 02 Sept 09 Sept 15 

1 2 1 2 1 2 1 2 

Standard deviation 3.756 0.713 3.792 0.540 3.710 0.837 3.781 0.599 

Proportion of Variance 0.941 0.033 0.959 0.019 0.917 0.046 0.953 0.023 

Cumulative Proportion 0.941 0.974 0.959 0.978 0.917 0.964 0.953 0.977 

 
Table 10. VI factor loads on the first component. 

VI / Date of sampling Aug 26 Sept 02 Sept 09 Sept 15 

Carter2 0.249 0.251 0.243 0.250 

CI2 −0.261 −0.260 −0.262 −0.260 

CRI4 0.260 0.260 0.260 0.260 

GMI2 −0.261 −0.260 −0.262 −0.260 

mSR2 −0.264 −0.262 −0.266 −0.262 

NDVI2 −0.264 −0.262 −0.266 −0.263 

OSAVI2 −0.264 −0.262 −0.266 −0.263 

SR1 −0.261 −0.260 −0.262 −0.260 

Carter4 0.264 0.261 0.265 0.262 

Datt2 −0.257 −0.258 −0.253 −0.254 

SR6 −0.264 −0.262 −0.266 −0.262 

Datt −0.252 −0.255 −0.247 −0.252 

DD −0.253 −0.255 −0.253 −0.256 

Maccioni −0.251 −0.256 −0.252 −0.256 

MTCI −0.245 −0.248 −0.246 −0.251 

 

None of the VIs is significantly distinguished by its 

value, therefore, when identifying tree species, it is 

necessary to use a group of VIs, the number of which is 

to be determined. We assume that it is possible to 

determine the VI most significant for identifying tree 

species only under the conditions of a strictly set 

laboratory experiment. It seems almost impossible to do 

this based on field HSI of crowns from the ground or air, 

individual shoots, and leaves, subject to the 

superposition of uncontrolled factors (illumination, 

distance to the object, the nature of the leaf mosaic of the 

crown, etc.). It is indicated by the data of the analysis of 

variance, according to which (even in the conditions of a 

laboratory experiment) the shares in the total variance of 

the factors «Sample» and «Leaf» are very significant. 

Intragroup variability is also of high importance. 

Research showed that the PCA method is effective 

and sufficient to identify the group of VIs characterized 

by the largest dispersion in relation to tree species. 

Carrying it out in stages (by pairs of researched species) 

made it possible to identify a group of Vis whose value 

depends most on species characteristics. These are 

Carter2, CI2, CRI4, GMI2, mSR2, NDVI2, OSAVI2, 

SR1, Carter4, Datt2, SR6, Datt, DD, Maccioni, and 

MTC. This set of VIs will be used to identify tree species 

from crown images. 

 

4. Conclusion 

A technique has been developed to automatically 

select pure spectral profiles from hyperspectral images 

of plant objects. The selection is implemented by setting 

a double barrier, determined by the interval values of the  

PSSR and NDVI indices. The study has not only 

determined the main characteristics and assessed the 

representativeness of the sample datasets obtained from 

processing hyperspectral images of plant species but also 

found that the sample populations have a symmetrical 

distribution with high kurtosis based on their statistical 

characteristics. The aggregates are highly suitable for 

processing by both parametric and non-parametric 

methods, thereby providing implications for future 

research in this field. Principal component analysis, a 

crucial tool in our research, was used to identify the most 

informative VIs, including Carter2, CI2, CRI4, GMI2, 

mSR2, NDVI2, OSAVI2, SR1, Carter4, Datt2, SR6, 

Datt, DD, Maccioni and MTCI. These VIs not only allow 

the identification of woody species but also offer the 

possibility of repeating the effect over time, significant 

finding in our study. Currently, there is no clear answer 

to whether the unsatisfactory reproducibility of spectral 

remote sensing results in time and space is an 

insurmountable technological barrier or if it can be 

resolved through improved techniques and modeling 

processes. The answer to this question can be found by 

analyzing the results of laboratory experiments that use 

detailed time series of the spectral characteristics of 

various plant species throughout their growing season. 

Hyperspectral cameras are necessary equipment for such 

studies. Further research should be conducted to address 

this question. 
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