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Abstract : This paper aims to revisit the bidirectional walking of pedestrians to contribute to a more
realistic definition of the case of the presence of impatient pedestrians and to depict the effect of including
impatient walkers in the pure bi-directional system of ‘‘normal’’ walking pedestrians. It is found that when
a trace amount of impatient pedestrians is added to the system, it affects traffic in a disruptive way at low
densities, however, it affects constructively at medium and high densities interestingly. In addition, when
adding a comparable amount of impatient pedestrians to the system, it is seen that at low andmedium densities,
the flux of motion and the order parameter change in parallel. In contrast, at high densities, the high number
of impatient pedestrians positively affects lane formation, so pedestrian mobility remains high despite high
density and disorder. As a result, more impatient pedestrians may not always mean more congested traffic.
Sometimes, a certain density of impatient pedestrians can positively affect the bi-directional pedestrian traffic
flow.
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1 Introduction
In the literature, pedestrian dynamics have been investigated using several methods. The most frequently used ones are the
social force model (SFM), continuum model (CM), and cellular automaton model (CA). The SFM is based on Newtonian
mechanics and is one of the well-known microscopic simulation models for describing pedestrian dynamics [1]–[7]. The model
that describes specific situations, like arching, lane formation, clogging, and the faster-is-slower effect was first introduced by
Helbing. One of the social insects, as known, are ants that communicate with each other by a hormone called pheromone while
they forage for food. Recently, it was shown that human travel behaviors seem to carry some similarities with those of ants [8].
So, one can use the ant communication path in the pedestrian movement in such a manner that each person will drop a ‘‘visual
pheromone’’ to communicate with other ones [9]–[11]. As known, the pheromone dropped by an ant evaporates with time.
Similarly, our visual pheromone does the same: The commonly preferred routes will be preferred again with a great probability
by pedestrians as we know our daily observations. This means that the visual pheromone will be refreshed if pedestrians keep
using the same routes. The non-preferred or less preferred ones will vanish due to evaporating of the visual pheromone. As
an example, for this analogy, the collective behavior of other biological entities to design a safe evacuation scenario has been
studied in the literature: a mathematical model is proposed based on the approach that is used to describe animal dynamics to
simulate the collective traffic [12], [13] .
Some ant species, for example, Pharaoh’s ants drop repelling pheromone to warn others that there is no entry [14]. This
keeps other forager ants away from unrewarding paths. The lane formation phenomenon in pedestrian movement includes
two behavioral elements known as ‘‘following’’ and ‘‘avoidance’’ that may correspond to the visually attractive and repellent
pheromones, respectively [15], [16].
In literature, a theoretical model for ant trail traffic was studied including two distinct types of ant species one of which ‘‘smells’’
reasonably good than the other [17]. The flux vs evaporation rate of pheromone was investigated comprehensively. In another
study, the traffic on a unidirectional ant trail was investigated theoretically on the base of CA by mixing good-smelling and poor-
smelling ants on the trail. In the study, ants were thought of as vehicles that travel, and TASEP (Totally Asymmetric Simple
Exclusion Principle) was employed, known as Nagel-SchreckenbergModel (NaSchModel) in traffic modeling [18]. In addition,
the unidirectional ant traffic flows with a U-turn in an ant trail was studied by using a one-dimensional CA model [19], [20].
All these similarities between movement rules given above have been a motivating point to examine the bi-directional pedestrian
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traffic by imposing ant algorithm. A study has been done in this context where pedestrians decide to move according to the
amount of visual pheromone. The movement probabilities are calculated as a function of repellent and attractive pheromones.
This work is an extended version of the study performed earlier [21]. All the movement rules in this reference are valid, but in
this study, all pedestrians are not identical, some of those are ‘‘impatient’’ and tend to move two times faster. A similar study has
been done very recently, in which the Kinetic Monte Carlo method was employed [22]. In there, the bi-directional pedestrian
flows with different walk speeds are studied in the CA context choosing Moore neighborhoods. Very recent studies, ‘‘the phase
behaviors of counterflowing stream of pedestrians’’ and, ‘‘the pedestrian evacuation model of impatient queueing’’ have been
examined, respectively [23], [24].

2 The Model
The system is constructed as a two-dimensional cell grid with the size of L×L, where L defines here system size. In the work, L
is taken as 50. The cells may be occupied by just one pedestrian or may be empty. All pedestrians move synchronously in a time
step. If a pedestrian is an ‘‘impatient’’ one and if there are two empty cells in his/her neighborhood then he/she is permitted to
move double cells per time step, which may be introduced as an extension of Von Neumann neighborhood1, else he/she obeys
ordinary Von Neumann neighborhood rules of motion in CA (Fig.1). Moving backward is not allowed. The simulations are

Figure 1: An extended version of Von Neumann neighborhood for a pedestrian who is represented as a red full circle. The
green cells are empty, and the pedestrian can move to them in next time step.

performed in a square corridor, which is populated by two species of pedestrians, i.e., the top-down walkers and the bottom-up
walkers who also include the ‘‘impatient’’ population (Fig. 2). The numbers of top-down and bottom-up walkers are set to be
equal. At initial, they are randomly distributed in the corridor. The periodic boundary conditions are applied at the bottom and
the top boundaries. While the top-down walkers arrive at the bottom, they continue the movement and enter the corridor from
the upper boundary. When the bottom-up walkers arrive at the top boundary, they continue to move and enter the corridor from
the bottom boundary. The right and left boundaries are assumed to be walls, so pedestrians are not allowed to cross; the closure
boundary conditions are applied to the right and left boundaries. The colored arrows shown in Fig. 2 represent pedestrians

Figure 2: A Schematic diagram to illustrate the bottom-up and top-down walkers in two opposite main directions
(south-north and north-south). The different colored arrows stand to distinguish the impatient pedestrians.

1. A discussion about the extended version of Von Neumann and Moore neighborhoods can be found in [25].
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Table 1: The bottom-up walker updating rules. The dark cells are occupied. The impatient walker prefers to move with
vmax = 2 if the neighboring two adjacent cells are empty; if not, it obeys the updating rules corresponding to the ordinary

Von Neumann neighboring (vmax = 1). The top-down walker updating rules, which are not presented here, are the same but
the reverse movement direction must be held.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

moving in two specific directions i.e., south-north and north-south. In the south-north direction, the bottom-up walkers are
represented by yellow-and blue-colored arrows, whereas in the north-south direction, the top-down walkers are represented
by orange- and purple-colored arrows. Yellow arrows stand for patient bottom-up walkers while blue ones stand for impatient
bottom-up walkers, conversely, orange arrows stand for top-down patient walkers while purple arrows for top-down impatient
walkers. All pedestrians/walkers are assumed to drop visual pheromones according to the direction they move. The pheromone
dropped from a bottom-up walker is attractive for the same kind of walker but is repellent for a top-down walker, and vice versa.

At each time step, the update of the state of the system is carried out synchronously in two stages, as follows: In the first stage,
all the pedestrians are sequentially moved by imposing the rules that have been mentioned above, and the new configuration
(W (t + 1), p(t + 1)) is composed of the old configuration (W (t), p(t)) at time t , where W and p refer to pedestrian and
pheromone states, respectively. In the second stage, the pheromone is allowed to evaporate for updating of p(t).

The updating rules are given in Table1 for a bottom-upwalking pedestrian. In the table, an impatient bottom-upwalker moves
to another cell according to the updating rule corresponding to the extended Von Neumann neighborhood. This updating rule is
one of the updating rules of the Nagel-Schreckenberg traffic model with vmax = 2 [18], [21]. The impatient bottom-up walker
primarily prefersto move to the second neighboring cell in front (Table 1(a)), if the first and second two adjacent neighboring
cells in front are simultaneously empty. Namely, a transformation, when

t → t + 1; (Wi,j(t) = 1,Wi+2,j(t) = 0) → (Wi,j(t + 1) = 0,Wi+2,j(t + 1) = 1)

takes place with a probability where i,j refer to the coordinates of the current cell. If a cell is empty at time t , the state of the cell
is Wi,j(t) = 0 or if occupied by a pedestrian, it is Wi,j(t) = 1. The bottom-up walker may also move right and left neighboring
empty cells if the up-neighboring cell is occupied at time t , which means the transformation

(Wi,j(t) = 1,Wi±2,j(t) = 0) → (Wi,j(t + 1) = 0,Wi±2,j(t + 1) = 1)

takes place with a probability as t → t+1(Table 1(h)). In cases (i) and (j), it is seen that the bottom-up walker makes the decision
likely to move to the side where the two adjacent empty cells exist. If only one neighboring cell is empty as shown in cases (e)
and (f) in Table 1, the walker moves to the empty cell with a probability. In (e) and (f), the second neighboring empty cell is
visited with a probability if two adjacent left/right cells are empty at time t . The probability of the movement is determined fully
by the visual pheromone concentration left by pedestrians in cells. The net pheromone concentration is obtained by subtracting
pheromone 2 from pheromone 1, where pheromones 1 and 2 indicate attractive and repellent visual pheromones, respectively.
Namely,

phnet = ph1 − ph2 (1)

For both walker types, the first pheromone i.e., pheromone 1 is attractive and pheromone 2 is repellent. That is, when
investigating the movement of the bottom-up walkers, pheromone 1 belongs to the bottom-up walkers and pheromone 2 to
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the top-down walkers, but when investigating the movement of the top-down walkers, pheromone 1 belongs to the top-down
walkers and pheromone 2 to the bottom-up walkers. Pheromone concentrations are chosen as 0.0, 0.5, and 1.0. Thus, the net
pheromone may be negative, meaning that it is not permitted to move, and if it equals 0.0 the probability to move is only 5%.

Table 2: Movement probabilities according to the net pheromone concentration in a cell.
phnet Probability to move
< 0 0.00
=0.0 0.05
+ 0.5 0.15
+ 1.0 0.80

In Table 2, all the movement probabilities are given. It seems that the most probable motion occurs when the net pheromone

Table 3: The visual pheromone updating rules. When a cell is occupied by a pedestrian at the end of the first stage, a
pheromone is leaved. If the cell is empty, the pheromone concentration will gradually decrease by 0.5 with the probability f .
Probability of Evaporation Wi,j(t + 1) pi,j(t) pi,j(t + 1)

− 1 1.0 1.0
1− f 0 1.0 1.0
f 0 1.0 0.5

1− f 0 0.5 0.5
f 0 0.5 0.0

concentration is +1.0 in a cell. When the concentration is +0.5, the probability of motion for a walker decreases to 15%.
Pheromones evaporate over time, thus in a cell, the concentration of pheromone decreases with the evaporation rate f which is
also a probability and f ?[0, 1]. If a cell is occupied by a pedestrian then the pheromone concentration is set to 1.0 for all types
at the end of the first stage, namely if Wi,j(t + 1) = 1 then pi,j(t + 1) = 1.0. But, if the cell is empty i.e., Wi,j(t + 1) = 0 then
the pheromone concentration decreases with the probability of evaporation. The pheromone updating rules are summarized in
Table 3.

3 The Order Parameter and Flux and Velocity
The order parameter is a useful value that enables us to follow a system ordering degree. The evolution of a stochastic system
can be followed by a few parameter sets; for example, the order parameter and the flux of the system. To calculate the order
parameter, it is proposed to use, [15], [21], [26]

ϕn =

[
Njn ↑ −Njn ↓
Njn ↑ +Njn ↓

]2
(2)

where N up
jn and N down

jn stand for the number of bottom-up and top-down walkers at the corresponding column, jn respectively.
The calculation is performed over the column jn. Then the global order parameter Φ is calculated over all pedestrians from the
formula

Φ =
1

N

N∑
n=1

ϕn, (3)

where ϕn is being individual order parameter described in Eq.(2) and N is the number of whole pedestrians.

Another parameter is the flux of the movement defined as < J >= ρ < v > where < v > is the total velocity calculated
over the Metropolis Monte Carlo (MMC) cycles as an average can carry important information about the phase transformation
points of the bi-directional system. Also, the speed of the walkers v is known as one of the features of pedestrian traffic. Indeed,
the velocity and flux for top-down and bottom-up walkers are calculated separately (without distinguishing as patient-impatient)
as v ↑= N ↑ /N , v ↓= N ↓ /N and J ↑, J ↓, respectively. Then, the total velocity is calculated as

< v >= (N ↑ +N ↓) /N (4)

and the total flux is calculated as

< J >= (N ↑ +N ↓) /L2, (5)

where ρ = N/L2. In the following section, these observables are calculated as the average values over the Metropolis Monte
Carlo (MMC) cycles for studying the pedestrian movement where half of the walkers are let walk from the top to the bottom
and vice versa.
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4 Results and Discussion
In this section, the results of the MMC simulations are given. In each simulation, the data is taken after 2×105 MMC cycles and
the system is assumed to reach equilibria in which all the mentioned observables has no longer large fluctuations. The results
are given in two sections: In the first section, the bi-directional walking system is simulated so that the impatient pedestrian
population number is set fairly low. In the beginning, the system consists of a pure patient pedestrian population. Then, a trace
amount of the impatient pedestrian population is added increasingly at every three stages which are explained below. In the
second section, simulations are performed with comparable amounts of the impatient pedestrian population. This population is
added to the bi-directional walking system at two stages. In the first stage, the impatient pedestrian population size is selected
as small, while the patient pedestrian population size is selected as large. Subsequently, in the second stage, these population
amounts are exchanged.

4.1 Adding Trace Amount of the Impatient Pedestrians (ImP) to the Bi-Directional Pedestrian Movement
Firstly, it is aimed to study how pedestrian walking behavior is affected by ‘‘adding’’ a few ‘‘impatient’’ walkers labeled as ImP
into both walking directions. The patient pedestrians walking at normal or average speed are labeled as PaP. If there is no ImP
as a walker in the system, this state is labeled as the initial pure state of the system. In the pure state, where all pedestrians are
patient (PaP), the situation is equivalent to that of in [21] except for some rules, therefore the simulation results have similar
patterns.

If a certain amount of ImP is added, the system has an impure state. The inserted ImP walkers affect the system so that the
observed phenomena such as ‘‘faster is slower’’ and ‘‘lane formation’’ in the initial pure state are deformed. The simulations
are reperformed in each case and, the average values of observables (velocity, flux, and order parameter) are calculated over
the last 103 MC cycles. In Fig. 3, the order parameter Φ0 that changes by the density ρ and evaporation rate f is given. The
subscript ‘‘0’’ in Φ0 and in J0 stands for indicating the pure state where no ImP does exist.

• Inserting ImP as 1% of patient pedestrians (PaP): In this case, a few numbers of walkers that make 1% of PaP are
inserted as ‘‘impatient walkers (ImP)’’ into the system to create impurity in the pedestrian walking. This is similar to
‘‘introducing impurities’’ in a pure crystal structure to alter the conducting properties. In an oppositely walking pedestrian
system, the amount of flux may correspond to the conductivity or resistivity of a semiconductor. The order parameter
here is Φ1, and the flux is J1.

• Inserting ImP as 2% of patient pedestrians (PaP): As in the previous case, 2% of PaP is inserted as ImP into the
system to simulate. The rate is now two times bigger. The 3rd row in Fig. 3, the change of the order parameter Φ2 and
flux J2 vs. the density ρ are given.

• Inserting ImP as 4% of patient pedestrians (PaP): In the last case, ImP is 4% of PaP. In the last row of Fig. 3, the
simulation results for order parameter and flux are plotted vs. the density ρ.

It is seen from Fig. 3 that a discontinuous phase transition at ρ ≈ 0.30 for f = 0.01 (red-colored) and for all percentage
values of ImP has been clearly observed. This means that the transition does not depend on the change of the percentage of
ImP, but depends on the change of f , which pertains to the motivation level to move. Moreover, the order parameters Φk and
fluxes Jk , (n = 1, 2, 4) both decrease smoothly for each fixed f value smaller than 0.01, which indicates second-order phase
transitions. All transitions that occur take place from the ordered phase to the disordered phase. The less f value does not always
result in more flux or mobility of the pedestrians, contrarily, it is observed from the simulations that it causes congestion in the
bi-directional motion. The decomposition of the order parameters is less because contributions of regular flow on the remaining
lanes to the order parameter still exist. Some snapshots in Fig. 4 are given, where the colored small squares represent pedestrians
moving. Results shown in Figs. (4-8) are done by averaging over the last 103 MMC simulation cycles. The orange squares are
bottom-up walkers and the light brown squares are top-down walkers, as shown in (a), (c), and (e) parts of the figure, where no
ImP exists. In (b), (d), and (f), ImP is added to the motion as 1% of PaP. In each case, the simulation starts at the beginning. The
ImP are colored purple for bottom-up walkers and burgundy for top-down, respectively. The walls of the corridor are colorized
yellow and the empty squares are seen as black. The evaporation rate is taken as f = 0.0001.
The first two snapshots of Fig. 4 belong to the case that ρ = 0.13 and N = 300. For the Fig. 4(a), the lanes are seen in both
directions in the corridor. The total flux J1 calculated is 0.0017 and the average velocity v is 0.63 where Φ1 = 0.78. When
1% of N is added, the number of lanes decreases, and some small clusters appear as seen in 4(b). And flux, velocity, and order
parameters both decrease to the values J1 = 0.0013, v = 0.57, and Φ1 = 0.57 respectively. In 4(c) the density is ρ = 0.21
and N = 500 where J1 = 0.0012, v = 0.36 and Φ1 = 0.44. The values surprisingly increase when N → (1 + 1%)N is held.
The situation is shown in 4(d). The new values are J1 = 0.0019, v = 0.49, and Φ1 = 0.47, respectively. It is observed that the
number of lanes doesn?t change but that of clusters decreases and the size of those becomes narrower. This makes a positive
contribution to the traffic flow in the system in both directions.
In the first part of the last snapshots of Fig. 4, where ρ = 0.39 and N = 900, an aggregation formed by the bottom-up walkers
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Figure 3: When the impatient walkers (ImP) are inserted into the system. The Order Parameter Φk and the flux Jk vs. ρ with
different f values. The subscripts indicate the percentage of ImP.
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Figure 4: Some snapshots about the trace amount of ImP where f = 0.0001 is taken. The bottom-up walkers are colored by
orange and the top-down walkers by light brown. In all cases, half of the population walks oppositely: N/2 ↑,N/2 ↓.
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Figure 5: The total pedestrian number is set to N = 600, 900, 1000, and 1500, respectively where f = 0.001. There are four
successive bar groups illustrated for the case when a comparable amount of ImP is added.

colored by orange is seen in the corridor. This leads to big congestion. In addition, some partially formed lanes and some cluster
formations are observed. In this case, the observables are as follows: total flux is J1 = 0.0012, the average velocity v = 0.27,
and the order parameter is found as Φ1 = 0.23. The second part (i.e., 4(f)) includes slightly different patterns giving those
observables as J1 = 0.0013, v = 0.28, and Φ1 = 0.35. As seen, there is no remarkable change in flux and velocity, but the
order parameter increases fairly, most likely, due to the disappeared blockage when the transformation N → (1 + 1%)N holds.
Similarly, at other ratios (2% and 4) the simulations give roughly the same results as understood while looking at Fig. 3. All
those studies show that such a few ImP addition into a system including a large number of ‘‘normal-speeded’’ pedestrians (PaP)
affects traffic in a disruptive way at low densities, however, it affects constructively at middle and high densities, interestingly.

4.2 Adding Comparable Amount of ImP to the Pedestrian Bi-Directional Movement
Secondly, the simulation of the bi-directional motion of the walkers including comparable amounts of PaP and ImP has been
studied. In this subsection, the number of total pedestrian N is selected arbitrarily as 600, 900, 1000, and 1500, respectively,
and f = 0.001. There are exactly four cases for each density as shown in Fig. 5. Here, a condition is made. The condition is
that the sum of the number of PaP NP and the number of ImP NI equals N which remains constant in each case, where NP
and NI are chosen reciprocally unequal. In the first situation, NP is large which means that the PaP population dominates over
the ImP population ((NP > NI )), and vice versa in the second: ((NP < NI )). Simulations for each case aim to determine how
the movement of walkers walking oppositely is affected under this population size condition. To show this situation, Fig. 5 is
constructed.

In the figure, there are four successive bar groups each of which stands for distinct population size and density and are
colorized blue and orange. At the top of each bar, NP and NI are given. The order parameter values Φ’s are given at the
corresponding grey narrower bars. For example, for ρ = 0.26, there are two bar groups colorized. The blue bar in the first
group indicates the number of PaP as NP = 200 and the orange bar indicates the number of ImP asNP = 400. In the second
group, the blue bar indicates again the number of PaP but as NP = 400, and the orange one indicates again the number of ImP
but this time as NI = 200. It seems that the order parameter Φ takes 0.130 at first and increases then to Φ = 0.257 as the values
NP and NI are exchanged.

The same procedure is valid for other cases as well. The second case is for ρ = 0.39 where N = 900. In this case, NP = 300
and NI = 600 and the corresponding order parameter equals 0.051. The order parameter takes the value Φ = 0.089 when the
values of NP and NI are exchanged and take values 600 and 300. In the third and fourth cases, as in the previous two cases, it
was observed that the order parameter gets higher values when NP < NI → NP > NI holds. That is when the population of
ImP is low relative to that of PaP or, in other words, the population of PaP is high concerning that of ImP, the order parameter
has been found to take high values. This means that a large population of ImP leads to a less ordered system than a system that
dominates with PaP.

The same procedure is valid for other cases as well. The second case is for ρ = 0.39 where N = 900. In this case, NP = 300
and NI = 600 and the corresponding order parameter equals 0.051. The order parameter takes the value Φ = 0.089 when the
values of NP and NI are exchanged and take values 600 and 300. In the third and fourth cases, as in the previous two cases, it was
observed that the order parameter gets higher values when NP < NI → NP > NI holds. That is when the population of ImP is
334 ECJSE Volume 11, 2024
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Figure 6: The snapshots of the simulation of bottom-up and top-down walkers at a square corridor with L = 50. Here,
N = NP + NI = 600, ρ = 0.26, and f is 0.001. In all cases, half of walkers walk oppositely: N/2 ↑, N/2 ↓. The ImP part of

bottom-up walkers are colored by purple while the PaP part of those are colored by orange, however, the ImP part of
top-down walkers are colored by burgundy while PaP part of those are colored by light brown.
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Figure 7: Another snapshot of the simulation of bottom-up and top-down walkers at a square corridor with L = 50. Here,
N = NP + NI = 900, ρ = 0.39 and f = 0.001. In all cases, half of the populations walk oppositely: N/2 ↑, N/2 ↓. The

colorizing rules are also the same as in Fig. 6.

low relative to that of PaP or, in other words, the population of PaP is high concerning that of ImP, the order parameter has been
found to take high values. This means that a large population of ImP leads to a less ordered system than a system that dominates
with PaP. The first snapshots of the simulation of this movement are given in Fig. 6. Here, results are done by averaging over
the last 103 MC simulation cycles as mentioned before. The ImP part of the bottom-up walkers is colored purple while the PaP
part of those is colored orange, however, the ImP part of the top-down walkers is colored burgundy while the PaP part of those
is colored light brown. In the figure, the total pedestrian number is set to N = 600 thus, the density of pedestrians equals 0.26
and f = 0.001. In the first case (a), where the number of PaP is taken as NP = 400 and the number of ImP NI = 200, the
lanes built by the bottom-up and top-down part of PaP are clearly seen, where Φ = 0.257 and flux is J = 0.275. In (b), where
NP ↔ NI exchange is made, both Φ and J get lower values and local clusters emerge in some parts of the corridor: Φ = 0.129
and flux is J = 0.071. In Fig. 7, snapshots of MC simulation of the bottom-up and the top-down walkers at a square corridor are
given. The deformations of the lane formations are seen. In (a), NP > NI andΦ = 0.089, lanes produced by PaP for both walker
types colored light brown and orange are observed. And also, some small full lanes consisting of ImP that intercept mutually
each other’s walk are seen. Here, the flux of the movement is computed as J = 0.150. In (b), on the contrary, NP < NI and
Φ = 0.051, lower than the previous case. The lanes produced by PaP disappear but small ones remain, which give rise to a crowd
at about the center of the corridor. The flux computed is J = 0.036, which is significantly lower. The snapshots for ρ = 0.43
and N = 1000 are given in Fig. 8. In 8(a), lane formations are almost gone relative to Figs. 6 and 7, but a few remain, and a big
ECJSE Volume 11, 2024 335
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Figure 8: Other snapshots of the simulation of bottom-up and top-down walkers at a square corridor with L = 50. Here,
N = NP + NI = 1000, ρ = 0.43 and f is the same. The colorizing rules are also the same as in Fig. 6. In all cases, half of the

populations walk oppositely: N/2 ↑, N/2 ↓.
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Figure 9: The last snapshots of the simulation of bottom-up and top-down walkers at a square corridor with L = 50. Here,
N = NP + NI = 1500, ρ = 0.65 and f is the same. The colorizing rules are also the same as in Fig. 6. In all cases, half of the

populations walk oppositely: N/2 ↑, N/2 ↓.

cluster caused by PaP is seen on the north side of the corridor. The ImP are seen as responsible for this cluster because they force
the PaP to come together. In 8(b), after the exchange of pedestrian numbers, it is seen that the cluster becomes narrower and
spreads out due to the existence of more ImPs who block mutually each other. The last snapshots of the bi-directional walkers’
simulation are given in Fig. 9, where the total number of pedestrians is the largest: N = 1500. The density ρ is 0.65 and the
average speed of walkers along the corridor, unlike the previous ones, almost vanishes. In the first case (a), the number of PaP
is larger than that of ImP: NP = 1000, NI = 500. A crowd, causing congestion is obviously observed along the north side of the
corridor, produced by the top-down and the bottom-up walkers of PaP. Also, the walkers of ImP block themselves oppositely
along the corridor. All these together point out a jammed phase. In case (b), surprisingly, the crowd disappears and clusters
produced by burgundy and purple walkers remain, who are impatient. Another conclusion is that, although the system order
decreases (Φ : 0.049 → 0.030) by taking large number of ImP, the flux increases (J : 0.013 → 0.029). This happens probably
due to the termination of the huge cluster appeared in (a) after exchanging pedestrian numbers of PaP and ImP. This leads to
relatively high pedestrian mobility alongside the corridor which means that after the exchange of numbers, an increase in the
mobility (emerging in the flux) is due to the new lane formations made by the ImP.

5 Conclusion
This work aims to study the effect of the ‘‘modified’’ agents on the bi-directional walking system in general when the interacting
item is a ‘‘visual pheromone’’ that is assumed as the communication tool between humans [8]–[11]. The Metropolis Monte
336 ECJSE Volume 11, 2024
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Carlo (MMC) simulation method with vmax = 2 as hopping speed is performed. The modified Von Neumann neighborhood is
preferred. In this study, the modified agents are considered impatient pedestrians beside the patient pedestrians in the walking
system. It is found that when a trace amount of impatient pedestrians are added to the system, some remarkable differences in
fundamental patterns of pedestrian traffic have been observed with the help of the general observables such as flux and order
parameters. In particular, a few ImP additions into a system including a large number of ‘‘normal speeded’’ pedestrian (PaP)
affects traffic in a disruptive way at low densities. However, it affects constructively at middle and high densities interestingly.
As an ambulance helps manage vehicle traffic in congested areas, some people in pedestrian traffic can play a constructive role
in reordering the walking path.

When adding a comparable amount of impatient pedestrians to the bi-directional walking system it is seen that at low and
middle densities, the flux of motion and the order parameter change in parallel. They both decrease while exchanging the number
of patient and impatient pedestrians, i.e., while the transformation NP > NI → NP < NI is carried out under the same density.
On the other hand, in the case of high densities, the situation is different. Under the above transformation, the flux and the order
parameter do not change in parallel but flux increases while the order parameter decreases. The reason for this is that the high
number of ImP positively affects lane formation, therefore, pedestrian mobility remains high despite high density and disorder.
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