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 Wind energy stands out as a prominent renewable energy source, characterized by its high 
efficiency, feasibility, and wide applicability. Nonetheless, the integration of wind energy into 
the electrical system encounters significant obstacles due to the unpredictability and 
variability of wind speed. Accurate wind speed prediction is essential for estimating the short-
, medium-, and long-term power output of wind turbines. Various methodologies and models 
exist for wind speed time series prediction. This research paper proposes a combination of 
two approaches to enhance forecasting accuracy: deep learning, particularly Long Short-Term 
Memory (LSTM), and the Autoregressive Integrated Moving Average (ARIMA) model. LSTM, 
by retaining patterns over longer periods, improves prediction rates. Meanwhile, the ARIMA 
model enhances the likelihood of staying within predefined boundaries. The study utilizes 
daily average wind speed data from the Gelibolu district of Çanakkale province spanning 2014 
to 2021. Evaluation using the root mean square error (RMSE) shows the superior forecast 
accuracy of the LSTM model compared to ARIMA. The LSTM model achieved an RMSE of 6.3% 
and a mean absolute error of 16.67%. These results indicate the potential utility of the 
proposed approach in wind speed forecasting, offering performance comparable to or 
exceeding other studies in the literature. 
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1. Introduction  
 

In our modern era, energy consumption spans 
various sectors, predominantly reliant on non-renewable 
resources, which are depleting steadily [1]. Traditional 
methods for energy generation predominantly rely on 
non-renewable resources, exacerbating environmental 
concerns and energy security issues [2]. The 
effectiveness of wind energy systems is directly 
contingent upon wind speed, making accurate wind 
speed prediction imperative for efficient wind power 
generation [3]. While statistical methods have 
traditionally been employed for wind speed estimation, 
their adequacy may be compromised due to the 
inherently chaotic nature of wind patterns [4]. 
Consequently, artificial intelligence algorithms have 
emerged as viable alternatives for wind speed prediction 
[5]. Artificial intelligence (AI) technologies offer 
promising solutions [6] to address these challenges by 
optimizing energy generation and consumption, 
particularly in the context of renewable energy sources 
such as wind power [7]. Numerous studies in the 

literature highlight the potential of AI algorithms in 
optimizing wind energy systems, improving efficiency, 
and overcoming the limitations of traditional statistical 
methods. 

Akbulut and Kemal [8] conducted a study on the 
effectiveness of deep learning and machine learning 
models in financial market forecasting. Their research 
revealed that the Long Short-Term Memory (LSTM) 
model outperforms the Instance-Based Learning k-
Nearest Neighbors method in terms of error rate. The 
investigation encompassed an analysis of the correlation 
between commodity and exchange rates as well as stock 
market indices of developing countries. The findings 
suggest that the LSTM model exhibits efficiency as a 
predictive tool. Consequently, it is expected that this 
model could offer valuable assistance to investors in 
anticipating market trends. 

Eşsiz [9] delves into short-term power prediction by 
utilizing daily wind data from the Belen region. The study 
employs analyses employing a radial-basis regressor 
method and the harmony search algorithm. Results 
indicate that predictions generated with the harmony 
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search algorithm exhibit fewer features and errors, 
leading to a notable 7% enhancement in RMSE. These 
findings highlight the efficacy of the harmony search 
algorithm in wind power prediction. 

Balcı et al. [10] introduce a hybrid technique for 
estimating hourly wind speed data collected above 50 m 
in Balıkesir city. This method combines multilayer 
perceptions (MLP) with complete ensemble empirical 
mode decomposition with adaptive noise (CEEMDAN) 
and ensemble empirical mode decomposition (EEMD). 

According to Balti et al. [11], in their quest to 
understand the causes of drought, the study explored the 
predictive abilities of three different methods—ARIMA, 
Prophet, and LSTM—using meteorological variables 
such as the standardized precipitation 
evapotranspiration index (SPEI). The study's results 
indicated that although the ARIMA model performed 
better than the Prophet model, the LSTM model 
outperformed both. This emphasizes the reliability and 
accuracy of the LSTM model in identifying the underlying 
causes of drought. 

Baykal et al. [12] undertook a study to forecast 
meteorological drought in Isparta province over the next 
decade employing the LSTM method. Their research 
unveiled a parallel declining trend in precipitation and 
DEM series, with severe droughts noted between 1982 
and 2011. The study proposes that extending the time 
interval of precipitation data generated by the LSTM 
method could aid in long-term water resource planning 
and the execution of essential measures. 

Canıtez and Savaş [13] conducted a study comparing 
feature-based LSTM and ARIMA methods for predicting 
the market value of cryptocurrency, focusing specifically 
on Bitcoin. The study utilized 10,309 real-time data 
points. Both ARIMA and LSTM techniques were 
employed to generate predictions. The results revealed 
that the MAPE values of both approaches fell within the 
"very good" range. However, upon comparison, it was 
observed that the ARIMA method produced superior 
outcomes, suggesting that the behavior of Bitcoin prices 
is more accurately captured by the ARIMA approach. 

Dave et al. [14] conducted a study focusing on 
forecasting Indonesia exports using a hybrid ARIMA-
LSTM model. Within this study, they assessed a hybrid 
model (LSTM-ARIMA) to establish an integrated machine 
learning model for wind speed prediction. The findings of 
their research revealed that the hybrid model exhibited 
the lowest error metrics compared to all other models 
examined. This underscores the hybrid model's superior 
accuracy and reliability in wind speed prediction. 

Demirtop and Işık [15] introduced a novel 
methodology utilizing artificial neural networks (ANNs) 
to enhance wind energy efficiency. They utilized a 
dataset comprising temperature, pressure, humidity, and 
wind speed data collected from Bozcaada, Çanakkale. 
ANN models were trained using both WEKA and 
MATLAB platforms. Among the methods evaluated, the 
Levenberg-Marquardt algorithm demonstrated superior 
accuracy, with MATLAB exhibiting better performance 
than WEKA. The authors advocate for further research 
utilizing larger datasets and diverse ANN architectures to 
validate the applicability of ANNs in forecasting wind 
energy efficiency. 

Devi et al. [16] utilized the extended Long Short-Term 
Memory network-enhanced Forgetting Gate network 
(LSTM-EFG) model for wind energy prediction. Their 
study involved training the model on sub-series data 
obtained through ensemble empirical mode 
decomposition (EEMD) and refining it with the cuckoo 
search optimization technique (CSO). The research 
demonstrated enhanced prediction accuracy, surpassing 
traditional forecasting approaches. 

Elsaraiti and Merabet [17] conducted a comparative 
analysis of Artificial Neural Networks (ANN), Recurrent 
Neural Networks (RNN), Autoregressive Integrated 
Moving Average (ARIMA), and Long Short-Term Memory 
(LSTM) - a variant of RNN - to determine the optimal 
method for time series forecasting. The findings revealed 
that the LSTM approach outperformed the ARIMA 
method in forecast accuracy. These results underscore 
the superior predictive capabilities of the LSTM method, 
which yields more precise forecasts with fewer errors. 

Erden [18] conducted a comparison between ARIMA 
and deep learning models for forecasting Borsa 
Istanbul's EREGL stock, taking into account the nonlinear 
and complex nature of financial time series data. Through 
data preprocessing, feature extraction, and analysis of 
different time periods, prediction performance was 
enhanced. The Recurrent Neural Network (RNN) 
algorithm exhibited an impressive accuracy rate of 93% 
in this context. 

Ji et al. [19], a model named ARIMA-CNN-LSTM was 
developed to predict the price of carbon futures. In this 
model, long-term relationships in the data are captured 
by LSTM, hierarchical data structures are captured by 
CNN, and linear characteristics are captured by ARIMA. 
The findings of the study demonstrate that the ARIMA-
CNN-LSTM model outperforms the benchmark model in 
terms of prediction accuracy. This outcome illustrates 
that the ARIMA-CNN-LSTM model provides a more 
reliable and accurate method for predicting the price of 
carbon futures. 

Kamber et al. [20] conducted an analysis of hourly 
electricity data within an LSTM-based artificial neural 
network (ANN) framework using Spain's electricity data 
for the years 2015-2016, and compared it with ARIMA 
results. Through this comparison, both forecasting 
models exhibited similar performance. These findings 
indicate that both LSTM and ARIMA models are equally 
effective for hourly electricity forecasting. 

Liu et al. [21] proposed a Seasonal Auto Regression 
Integrated Moving Average (SARIMA) model for 
forecasting hourly observed wind speeds in the 
onshore/offshore area of Scotland. The model was 
trained using three wind speed time series obtained from 
various heights of a coastal measuring mast designed for 
servicing an offshore wind turbine. Test results indicated 
that, compared to the GRU and LSTM models, the SARIMA 
model produced more reliable and accurate predictions. 
This outcome underscores the SARIMA model's utility as 
a valuable tool for forecasting offshore wind speed time 
series. 

Othman [22] utilized Bayesian optimization to 
optimize various parameters, including the number of 
biLSTM layers and units. Among the models evaluated, 
the one utilizing SGDM exhibited the highest 
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performance, as determined by Spearman's Rank 
Correlation (r). The study employed three distinct 
algorithms—SGDM, ADAM, and RMSprop—to train deep 
CNN-biLSTM models. Ultimately, the study highlighted 
the effectiveness of the CNN model with LSTM in 
replicating time series data. 

Sevinç and Buket [23] utilized temperature data from 
the Solhan district of Bingöl province to evaluate the 
forecasting capabilities of LSTM and ARIMA models. The 
findings indicated that the LSTM model achieved a mean 
error (MAE) of 0.73 °C, while the ARIMA model's MAE 
was 0.76 °C. These results suggest that both models 
produce forecasts closely aligned with the actual values, 
indicating their comparable performance. The 
comparison underscores the excellent accuracy of both 
models, as evidenced by the achieved MAE values. 

Shao et al. [24] focused on the development of an 
LSTM neural network model and the optimization of 
hyperparameters for wind speed prediction, which is a 
significant topic of interest. The study's findings 
indicated that the FWA-optimized LSTM model 
outperformed alternative regression techniques 
commonly employed for wind speed prediction. 

Wang and Wang [25] proposed a mixed model 
incorporating Empirical Mode Decomposition (EMD), 
Long Short-Term Memory (LSTM), and Autoregressive 
Integrated Moving Average (ARIMA) for forecasting 
monthly precipitation. The study demonstrated the 
superior forecasting performance of this model 
compared to various combination models and single 
models, including EMD-LSTM, EEMD-LSTM, EEMD-
ARIMA, among others. Additionally, the model exhibited 
a high level of confidence in the predicted precipitation 
results. 

Zhang et al. [26] aimed to identify the most effective 
model for predicting the prevalence of hand, foot, and 
mouth disease (HFMD) in Ningbo. The study evaluated 
two forecasting models, ARIMA and LSTM. According to 
the findings, the multivariate LSTM model provided the 
best fit for the daily incidence of HFMD in Ningbo among 
the four models tested. This multivariate LSTM model 
incorporates factors such as precipitation, humidity, and 
air temperature to enhance the accuracy of HFMD 
incidence prediction. 

Zhang et al. [27] conducted a study yielding 
significant results demonstrating the efficacy of LSTM-
based approaches in time series forecasting. The findings 
indicate that LSTM-based techniques outperform hybrid 
and CNN-based techniques, attributed to their superior 
ability to capture long-term dependencies in time series 
data. Notably, the study's second case study achieves 
longer-term forecasts, with deep learning-based 
techniques outperforming the ARIMA method and 
exhibiting similar performance among themselves. 

Zhao et al. [28] employed ARIMA, LSTM, and various 
machine learning models for demand forecasting using 
sales data from a company in the retail sector. The CRISP-
DM methodology was adopted, encompassing data 
preprocessing, time series analysis, and model 
evaluation stages. According to the findings, machine 
learning models exhibited superior performance 
compared to ARIMA and LSTM models. Specifically, 
within the ARIMA models, the SARIMAX model 

outperformed both ARIMA and SARIMA models, 
attributed to its utilization of independent variables. 

This study contributes to the literature by comparing 
the effectiveness of deep learning models such as LSTM 
with statistical analysis-based ARIMA models in 
predicting future wind speeds using current 
meteorological data from a specific region in Türkiye. 
Particularly, it sheds light on the performance of ARIMA 
alongside LSTM, emphasizing the role of both 
methodologies in wind speed prediction. The findings 
underscore the potential of deep learning techniques, 
represented by LSTM, in outperforming traditional 
statistical approaches like ARIMA in wind speed 
forecasting. Moreover, by evaluating various 
performance metrics of different model approaches, this 
research aims to provide valuable insights into their 
prediction accuracy and implications for practical 
applications. Additionally, the utilization of ARIMA in 
conjunction with LSTM offers a comprehensive 
understanding of the strengths and limitations of both 
approaches, contributing to the advancement of 
knowledge in the field of renewable energy forecasting. 

 
2. Method 

 
2.1. Dataset 
 

Our research area is located in the Gelibolu district, 
situated between the Dardanelles and Saroz Gulf in the 
Marmara Region of northwestern Türkiye. This area 
exhibits seasonal transition characteristics, reflecting the 
typical features of the Mediterranean climate. Due to its 
northern latitude, winter temperatures are relatively 
lower, with August experiencing a maximum 
temperature of +35.8 °C and February reaching a 
minimum of -4.2 °C. Throughout the year, the average 
temperature and humidity are 14.7°C and 72.6%, 
respectively. Additionally, the region is characterized by 
consistent windy conditions throughout the year, 
distinguishing it from other locations [29]. 

In this study, we employed a dataset encompassing 
daily average wind speed records spanning from the 
years 2014 to 2021 for the Gelibolu district of Çanakkale 
province [30]. The dataset comprises 2908 data points, 
each representing a single day, with the wind speed 
measurements ranging from a minimum of 2.88 km/h to 
a maximum of 60.48 km/h. The graph presented in 
Figure 1 illustrates the distribution of these data points, 
with wind speed (measured in km/h) plotted on the 
vertical axis and the total number of days (data points) 
on the horizontal axis. 

The average wind speed across the dataset was 
calculated to be 15.51 km/h. This comprehensive dataset 
allows for a detailed analysis of the wind speed patterns 
and variations observed in the Gelibolu district over the 
specified time period. Such insights are crucial for 
understanding the local wind climate dynamics, which in 
turn can inform various applications, including 
renewable energy resource assessment, environmental 
monitoring, and infrastructure planning. 

Analyzing the graph for the region by years in Figure 
2, it is evident that the average wind speed exhibits 
variations over the years. Specifically, the data indicates 
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that the average wind speed was at its lowest in 2014 and 
reached its peak in 2018. This observation suggests 
temporal fluctuations in wind speed patterns within the 
Gelibolu district over the specified time period. Such 
insights into the interannual variability of wind speeds 

are valuable for understanding long-term trends and can 
inform decision-making processes in various sectors, 
including energy, agriculture, and infrastructure 
planning [5]. 

 

 
Figure 1. Daily average wind speed of the region (km/h). 

 

 
Figure 2. Wind mean speed according to years in the region. 

 
2.2. Analysis models used 
 
2.2.1. Long-short term memory (LSTM) 
 

Recurrent neural networks, including long short-
term memory models (LSTMs), are well-suited for 
processing temporal data due to their ability to capture 
long-term dependencies [31]. LSTMs are particularly 
advantageous in applications such as speech recognition 
and natural language processing, where recognizing 
patterns over extended sequences is essential [32]. Key 
to the effectiveness of LSTMs is their utilization of cell 
states to store information across time [33]. The cell state 
serves as a memory unit within the LSTM, regulating the 
flow of information into and out of the network at each 

time step through controlled updates [34]. This 
mechanism enables LSTMs to effectively retain and 
utilize contextual information over extended sequences, 
facilitating accurate predictions and analysis of temporal 
data. 

Recurrent neural networks, such as long short-term 
memory models (LSTMs), are adept at handling temporal 
data due to their capability to discern long-term patterns 
[35]. LSTMs are particularly favored in applications like 
speech recognition and natural language processing 
owing to their ability to recognize extended sequences 
effectively [36]. LSTMs utilize cell states to retain 
information across time, regulating the flow of data 
throughout the network. This mechanism enables LSTMs 
to maintain and utilize contextual information over 
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prolonged sequences, thereby facilitating accurate 
predictions and analysis of temporal data [37].  

LSTM networks address the vanishing/exploding 
gradient problem by employing gates and a well-defined 
memory cell. These gates regulate the flow of 
information into and out of the cell. The input gate 
determines the amount of data from the previous layer 

that is stored in the cell. The output gate controls how 
much information about the cell's state is passed to the 
next layer. The forget gate manages the retention of data 
stored in the cell. This mechanism enables LSTM 
networks to effectively learn over multiple time steps 
and capture long-term dependencies (Figure 3). 

 
 

 
(a) 

 
(b) 

Figure 3. LSTM and RNN recurrent modules. (a) an RNN's recurrent module has one component. This is the neural 
network stack. (b) An LSTM's recurrent module has four interacting layers [38]. 

 
The design depicts the LSTM with three layers 

stacked, as illustrated in Figure 4. LSTM is a type of 
artificial neural network utilized for capturing long and 
short-term dependencies. The three-layered structure 
indicates a deep architecture, enabling the network to 
learn more complex relationships. 

 

 
Figure 4. Long short-term memory neural network 

(LSTM) design with three layers stacked. 
 
In Table 1, the LSTM model can be trained and 

predicted in three steps as outlined below: 
1. Data Preprocessing: The data undergoes 

preprocessing where it is rescaled and normalized to the 
range of 0 to 1. This step is crucial as LSTM models are 
sensitive to the scale of the input data. 

2. Model Parameter Determination: The univariate 
and multivariate LSTM time steps are adjusted to predict 
the wind speed for the following day using data from the 
preceding 7/30/60/180 days. Each LSTM layer in the 

three-layer stacked LSTM structure consists of a hidden 
layer that is tailored for the LSTM model. Alternative 
optimization functions such as Stochastic Gradient 
Descent (SGD), Adaptive Moment Estimation (Adam), 
and Root Mean Square Prop (RMSProp) are considered. 

3. Model Training: Training is conducted over 200, 
250, 500, and 1000 epochs for each learning procedure. 
The least Root Mean Square Error (RMSE) of each batch 
of 125 epochs is utilized to determine the best-suited 
model. The starting learning rate is set at 0.005. 

 
Table 1. Parameters used in the LSTM structure. 

Time Stages 7/30/60/180 days 

Neurons 4/8/16/32/64/72/128/256 

Optimization Functions Adam/SGD/RMSProp 

Number of Data Iterations (Epoch) 200/250/500/1000 

First Learning Rate 0.005 

Study the Rate Schedule: fragmented 

Learn Rate Decline Time: 125 

Factor for Learning Rate Drop: 0.2 
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2.2.2. Autoregressive integrated moving average 
(ARIMA) 

 
Autoregressive Integrated Moving Average, 

abbreviated as ARIMA, is a statistical model commonly 
employed for time series data forecasting.  ARIMA 
models are based on the premise that data can be 
represented as a linear combination of historical values, 
errors, and moving averages. These models are widely 
utilized for predicting variables such as wind speeds, 
solar radiation levels, stock prices, interest rates, and 
inflation. ARIMA modeling enables analysts to make 
accurate forecasts and projections based on historical 
patterns and trends observed in the data [39]. 

ARIMA models are employed for predicting time 
series data using a methodology known as the Box-
Jenkins method [40], which consists of four stages:  

 
1. Identification: In this stage, the order of the ARIMA 

model is determined. The order is defined by the number 
of autoregressive terms (p), the number of differences to 
be taken (d), and the number of moving average terms 
(q) [40]. 

2. Estimation: Model parameters are estimated using 
the method of maximum likelihood estimation [40]. 

3. Diagnostic check: A diagnostic check is performed 
on the ARIMA model to ensure that the residuals exhibit 
white noise behavior and that the model adequately 
captures the data [40]. 

4. Forecasting: Future values of the time series are 
predicted using the estimated parameters of the ARIMA 
model [40]. 

 
ARIMA models are particularly effective for 

predicting time series data and are commonly utilized in 
short-term forecasting tasks [40]. The notation 
ARIMA(p,d,q) is used to denote an ARIMA model, where: 

- p represents the autoregressive degree (AR), 
- d represents the degree of differencing (I), 

- q represents the moving average (MA). 
 
In ARIMA models, the autoregressive parameters 

represent the lags of the differenced time series, while 
the moving average terms account for the forecast error 
delays [41]. If the time series is non-stationary (or 
seasonal), differencing is applied to make it stationary. 
The resulting integrated series is then modeled using 
ARIMA (p, d, q). In this notation, p, d, and q denote the 
quantities of autoregressive terms, lagged forecast 
errors, and non-seasonal differences, respectively. 
Equation 1 provides the general ARIMA formula. 

 

𝑦𝑡 = 𝑐 + ∑ 𝜙𝑚𝑦𝑡−𝑖 + ∑ 𝜃𝑛𝑒𝑡−𝑗

𝑞

𝑗=0

𝑝

𝑖=1
 (1) 

 

In Equation 1 ϕ_m autoregression coefficient, ϕ_m 
y_(t-i) autoregression lags (at degree p), θ_n moving 
average parameter, e_(t-q) moving average errors (of 
order q) and c is the constant term [40]. 

The linear connection between the time series' lag 
values and the error term determines the degree of 
autoregression [40]. The AR(p) model here is as in 
Equation 2. 

 

𝑦𝑖 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑐 (2) 
 

 

The moving average degree relies on a weighted 
moving average of error values as outlined in the 
literature [40]. Equation 3 provides a general 
representation of the MA(q) model. 

 
𝑦𝑖 = 𝜃0𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 (3) 
 
The fusion of autoregressive (AR) and moving 

average (MA) methodologies constitutes the basis of the 
ARMA (p,q) approach [40]. Equation 4 presents the 
autoregressive moving average (ARMA) model. 

 
𝑦𝑖 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜃0𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 (4) 

 
 

3. Experimental study and findings 
 
3.1. Data analysis 
 

The training dataset comprised data spanning from 
January to December 2016, while the test dataset was 
selected from December 2020 onwards [30]. To forecast 
daily wind speed data, ARIMA and LSTM models were 
trained using the training dataset, both with and without 
incorporating external meteorological factors [16]. 
Three index metrics were identified to evaluate the 
models' performance. The primary performance metric 
for comparing predicted values with actual values is the 
RMSE [42]. It is calculated using the Equation 5. 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑋𝑖

 − 𝑋𝑖
′)2

 
𝑛
𝑖=1

𝑛
 (5) 

 

The mean absolute error (MAE) [42], which is the 
second performance metric, is defined as Equation 6. 

 

𝑀𝐴𝐸 =
∑ | 𝑋𝑖

 𝑛
𝑖=1 − 𝑋𝑖

′ |

𝑛
 (6) 

 
The third performance metric is relative overall 

conformance, quantified by the mean absolute 
percentage error (MAPE) [42]. The formula for 
calculating this metric is presented in Equation 7. 

 

𝑀𝐴𝑃𝐸 =  
∑

|𝑋𝑖 − 𝑋𝑖
′|

𝑋𝑖
× 100𝑛

𝑖=1

𝑛
 

(7) 

 
The RMSE, MAE, and MAPE measures are commonly 

employed to assess the performance of models in time 
series forecasting, including both ARIMA and LSTM 
models [16]. RMSE is particularly suitable for evaluating 
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the accuracy of the forecast, as it provides a measure of 
the average magnitude of the errors between predicted 
and actual values [43].  On the other hand, MAE is 
preferred for evaluating the consistency of the forecast, 
as it calculates the average absolute errors between 
predicted and actual values. Additionally, MAPE can be 
utilized to evaluate both accuracy and consistency, as it 
expresses the average percentage difference between 
predicted and actual values, providing insights into the 
relative performance of the models across different time 
series [42]. 

 
3.2. Forecast verification 

 
The real-world environment is characterized by 

instability and frequent sudden changes, which can 
significantly impact time series data such as wind speed. 
A forecasting model for wind speed must be capable of 
adapting rapidly to these dynamic changes in order to 
remain effective [44].  Therefore, it is imperative for a 
wind speed forecasting model to be flexible and 
responsive to sudden fluctuations in environmental 
conditions. Only by incorporating adaptability into the 
forecasting model can it effectively account for the 
unpredictable nature of the environment and provide 
accurate forecasts even in the face of rapid changes [3]. 

In this study, a rolling prediction scenario, also known 
as forward walking model validation, is utilized. In this 
scenario, the test dataset's time steps are advanced 
incrementally. At each step, the observed value from the 
test set is used to forecast the subsequent time step using 
the model. This process simulates real-world conditions, 
where fresh daily wind speed data is continuously 
collected and utilized to predict wind speed for the 
following day. By employing this approach, the model's 
performance can be evaluated in a dynamic and evolving 
context, mirroring the conditions under which it would 
be utilized in practice [45]. 

The two parameters commonly used to forecast wind 
speed are the MAE and the RMSE, which assess the 
accuracy and precision of the models, respectively. The 
MAE measures the average absolute difference between 
the expected and actual values. On the other hand, the 
RMSE computes the square root of the mean square 
difference between the actual and predicted values, 
providing a measure of the overall deviation between 
them [42]. These metrics are essential for evaluating the 
performance of wind speed forecasting models and 
assessing their effectiveness in providing accurate 
predictions.  

In this study, both an LSTM model and several 
sequential ARIMA models are employed for wind speed 
prediction. Through the utilization of a rolling forecast 
scenario, the LSTM model is demonstrated to outperform 
the other models in terms of accuracy and flexibility. This 
superiority can be attributed to the LSTM model's ability 
to retain and leverage past data over prolonged periods, 
allowing it to make more informed forecasts for future 
time steps. 

RMSE represents the square root of the mean square 
of all errors, providing a comprehensive measure of 
error. Widely acknowledged as a superior error metric 
for numerical predictions, RMSE is commonly employed 

in regression tasks across both statistical and machine 
learning domains [42]. 

The RMSE quantifies the difference between expected 
and actual values, with a larger RMSE indicating greater 
deviations. A notable property of the RMSE is that 
squaring the errors assigns significantly more weight to 
larger errors. Therefore, a mistake with a value of 10 is 
considered 100 times more impactful than a mistake 
with a value of 1 in the context of RMSE calculation. This 
weighting mechanism emphasizes the significance of 
larger errors in the overall evaluation of predictive 
accuracy. While it depends on size, RMSE is a useful 
metric for assessing accuracy. As a result, it can only be 
applied to compare prediction errors within a variable, 
not across variables, between models or model 
configurations [42]. 

The MAE measures the average discrepancy between 
expected and actual values, serving as a metric for error 
assessment. It represents the mean absolute difference 
between these values. The MAE provides insight into the 
average magnitude of errors expected from the forecast. 
Unlike RMSE, the inaccuracy scales linearly with MAE, 
meaning that each error contributes equally to the 
overall measure. Consequently, a deviation of 10 is ten 
times more significant than a deviation of 1 when 
considering MAE calculation [42]. 

 
4. Results  
 
4.1. Prediction model ARIMA 

 
The research period aimed at selecting the ARIMA 

model structure encompasses data gathered by the 
General Directorate of Meteorology spanning from 2014 
to 2021 [30]. Out of a total of 2500 daily average time 
series wind speed data points, the initial 2400 points 
were employed in constructing the models. 
Subsequently, prediction and performance evaluation 
were conducted using the remaining 100 data points. The 
determination of the P and q orders was facilitated 
through an analysis of the autocorrelation function (ACF) 
and partial autocorrelation function (PACF) graphs. 

In this study, the conventional ARIMA modeling 
approach is applied to forecast wind speed, involving the 
derivation of an appropriate model structure and 
parameters based on the collected data. 

Initially, the stationarity of the time series data is 
evaluated utilizing the autocorrelation function (ACF) 
and running order charts. These visual aids assist in 
scrutinizing trends within the data and validating the 
assumption of constant variance. Sequential differencing 
of the data series is conducted based on the observed 
characteristics in the ACF and PACF plots until 
stationarity is confirmed [46]. 

Subsequently, the autoregressive (AR) and moving 
average (MA) terms are determined using the ACF and 
PACF plots. These graphical representations aid in the 
selection of the AR and MA variables for the model [47]. 

Initially, the stationarity of the time series data is 
evaluated utilizing the autocorrelation function (ACF) 
charts. The ACF chart in Figure 5 displays values ranging 
from a maximum of 1.0 to a minimum of -0.2 for lag 
values between 0 and 4, indicating a moderate level of 
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autocorrelation. Sequential differencing of the data 
series is conducted based on the observed characteristics 
in the ACF plots until stationarity is confirmed. 

Subsequently, the autoregressive (AR) and moving 
average (MA) terms are determined using the ACF charts. 
These graphical representations aid in the selection of 
the AR and MA variables for the model. This process 

ensures the accurate modeling and prediction of wind 
speed [47]. 

The series depicted in Figure 6 exhibits clear and 
regularly recurring cyclical activity, suggesting potential 
regularity within the underlying processes of interest. 
Understanding these processes could be facilitated by 
examining the speed or frequency of the oscillations 
observed in the main series. 

 

 
Figure 5. Functions of autocorrelation for observed wind speed data. 

 

 
Figure 6. Functions of partial autocorrelation for data on measured wind speed. 

 
Two primary types of variations are evident in the 

series. Firstly, there are distinct sinusoidal fluctuations 
characterized by dips and peaks. Secondly, there are 
periodically repeated fluctuations occurring at a slower 
frequency. 

Non-stationary data are typically unpredictable and 
challenging to model. However, the periodic behavior 
observed in this series suggests the possibility of 
achieving stationarity. Techniques such as differencing 
can be employed to eliminate the effects of periodicity 
from the data [48]. 

Time series exhibiting frequent cycles and repetitive 
activity are more straightforward to comprehend and 
model. This implies that the underlying processes may 
possess regularity, distinguishable by the frequency or 
speed of oscillations defining the behavior of the parent 
series. 

Non-stationary time series may yield inaccurate 
results, potentially indicating a lack of correlation 
between variables. Transforming non-stationary data 
into stationary data is crucial for obtaining consistent 
and reliable findings. 
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A stationary process consistently reverts to its long-
run mean and maintains a constant variance over time. 
Conversely, a non-stationary process lacks these 
characteristics, exhibiting variable variance, a non-
converging mean, or a lack of return to its long-run mean 
over time. 

The gradual decline in autocorrelation function (ACF) 
values suggests non-stationarity in the data. Thus, 
transforming the data into a stable series is necessary to 
arrest the decline of ACF values [46]. 

 
4.2. Prediction model LSTM 

 
Constructing an LSTM regression network involved 

specifying an LSTM-RNN layer with training options [34]. 
Multiple initial learning rates were tested to identify the 
optimal training parameter that yielded the lowest RMSE 

and loss, specifically at a learning rate of 0.01. Figure 7 
illustrates how the initial learning rate affects training 
time, showing an increase in training time as the learning 
rates decrease. However, achieving the best outcome 
may pose challenges with a limited number of iterations. 
A high learning rate can expedite training but may result 
in divergence or failure to converge if excessively high. 
Moreover, substantial weight changes may enhance 
improvement but could also degrade the loss function. 
Through experimentation with different initial learning 
rates, a 24-step prediction was conducted during time 
step testing, resulting in improved training outcomes and 
a reduction in function loss to a manageable level. These 
findings underscore the efficacy of LSTM for large time 
series datasets and highlight the effectiveness of the 
specified model in minimizing RMSE. 

 
 

 
Figure 7. Process of training as learning rate of 0.01 and time step test of 24. 

 
During LSTM-RNN training, the hidden layer receives 

feedback from the anticipated values of the preceding 
phase [34]. Throughout the validation process, the model 
is fine-tuned to fit all of the training data and then 
updated after each prediction. In this scenario, before 
generating the subsequent forecast, the model 
undergoes two additional training cycles. The prediction 
is then normalized using the previously determined 
mean and standard deviation, after which the RMSE is 
computed [35]. 

The 24-step wind speed forecast results are displayed 
in Figure 8. It can be observed that there are no 
noticeable oscillations, and all of the model's training 
epoch forecast data closely resemble the actual data. 
Furthermore, the model's total test RMSE score is the 
lowest, indicating uncommon occurrences of vanishing 
gradients and gradient bursts for the LSTM algorithm. 

Moreover, the expected outcomes show no significant 
deviation, falling within a reasonable range. 

Both the ARIMA and LSTM models' outputs are 
assessed based on two key metrics: MAE and RMSE. 
These metrics provide insight into the accuracy and 
precision of the forecasts generated by each model. By 
comparing the performance of the ARIMA and LSTM 
models using these metrics, we can determine which 
model is more effective in predicting wind speed. 

Upon analyzing the results presented in Table 2, it 
becomes evident that the LSTM model outperforms the 
ARIMA model in terms of efficiency. This suggests that 
the LSTM model is better able to capture the underlying 
patterns and dynamics in the wind speed data, resulting 
in more accurate and reliable forecasts compared to the 
ARIMA model. 
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Figure 8. RMSE outcome in 24-step stages. 

 
Table 2. Summary of statistical errors of the test data. 

Model RMSE MAE 

ARIMA 3.312 2.682 

LSTM 3.102 2.235 

 
The comparison between the ARIMA and LSTM 

models reveals important insights into their forecasting 
performance. Specifically, the MAE and RMSE values 
offer a quantitative assessment of the accuracy of the 
forecasts generated by each model. 

For the ARIMA model, the MAE value is calculated to 
be 2.682, while the RMSE value is 3.312. In contrast, the 
LSTM model achieves a lower MAE value of 2.235 and a 
lower RMSE value of 3.102. These figures clearly indicate 
that the LSTM model outperforms the ARIMA model in 
terms of forecast accuracy. 

The RMSE metric measures the degree of deviation 
between the expected and actual values, while the MAE 
metric quantifies the average discrepancy between the 
true and predicted values. By evaluating both metrics, we 

gain a comprehensive understanding of the forecast 
accuracy. In this comparison, the LSTM model exhibits a 
lower RMSE value compared to the ARIMA model, 
indicating that its predictions are closer to the actual 
values. Additionally, the LSTM model achieves a lower 
MAE value than the ARIMA model, further highlighting 
the improved accuracy of its forecasts. 

Figure 9 illustrates the 24-step prediction results of 
wind speed time series data, presenting the predictions 
produced by the LSTM deep learning model alongside the 
observed values. 

Upon analysis of the graphs, it becomes apparent that 
the LSTM model's predictions closely track the observed 
values. Specifically, when the observed values decrease, 
the LSTM prediction values also decrease, indicating the 
model's ability to accurately identify trend changes in 
time series data. Likewise, when the observed values 
increase, the LSTM prediction values also increase, 
demonstrating the model's capability to detect seasonal 
changes in the data. 

 

 
Figure 9. Using ARIMA and LSTM models, compare the three-month average wind speed data. 
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While the ARIMA model also yields results close to the 
predicted values, it exhibits discrepancies in trend 
detection. Notably, instances where the actual values 
increase are accompanied by decreases in the prediction 
values from the ARIMA model, despite achieving a lower 
error rate compared to the LSTM model. This suggests 
that the ARIMA model may struggle to accurately identify 
trend changes in time series data. 

In conclusion, the graph in Figure 9 underscores the 
superior effectiveness of the LSTM deep learning model 
in wind speed prediction. Leveraging its ability to discern 
trends and seasonal patterns in time series data, the 
LSTM model produces more precise forecasts compared 
to the ARIMA model. 
 

5. Discussion 
 

Researchers from diverse fields are increasingly 
adopting advanced machine learning techniques, 
particularly deep learning algorithms. It is imperative to 
comprehensively evaluate the effectiveness and 
robustness of these modern methods in comparison to 
traditional approaches [49]. This study focuses on 
assessing the performance of two models with a specific 
emphasis on the Gelibolu district of Çanakkale province: 
a deep learning-based algorithm, the LSTM model, and a 
classical algorithm, the ARIMA model. A review of the 
literature suggests that the ARIMA model may yield 
superior results with limited data, as observed in 
previous academic research. However, the substantial 
amount of data utilized in the models developed for this 
study indicates that LSTM and other deep learning-based 
algorithms outperform traditional techniques like 
ARIMA. This underscores the significant potential of 
deep learning algorithms and approaches, particularly in 
forecasting complex time series data such as wind speed. 

In addition to model performance, it is important to 
acknowledge the challenges and limitations encountered 
during the course of this research. Data availability, 
model selection, parameter tuning, and computational 
resources posed significant challenges throughout the 
study. Despite these challenges, the findings of this 
research provide valuable insights into the effectiveness 
of deep learning techniques in wind speed prediction. 
Future research endeavors should explore the 
application of deep learning techniques to other 
forecasting problems within the domain of wind speed 
prediction. Additionally, a more detailed examination of 
the performance of deep learning techniques across 
different datasets could provide valuable insights into 
this research area. 

 

6. Conclusion  
 

The results of this study demonstrate that the LSTM 
model outperforms the ARIMA model in predicting 
average wind speed in the Gelibolu district of Çanakkale 
province. With an average RMSE of 6.3% and MAE of 
16.67%, the LSTM-based algorithm exhibits greater 
accuracy compared to ARIMA, highlighting its 
effectiveness in forecasting time series data. 

The findings of this research emphasize the 
advantages of utilizing deep learning algorithms, 

particularly LSTM, in wind speed prediction. Despite 
previous studies suggesting superior performance of 
ARIMA with limited data, our results indicate that the 
abundance of data used in this study favors LSTM and 
other deep learning-based techniques. 

Future research directions may involve exploring the 
application of deep learning methodologies to additional 
forecasting challenges within the realm of wind speed 
prediction. Further investigation is warranted to 
ascertain the extent of improvement achievable through 
deep learning approaches across diverse datasets with 
varying features. 
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