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ABSTRACT
In this article, for pedagogical purposes we have discussed the application of nondegenerate perturbation theory up to the third
order to compute energy eigenvalues and wave functions for the quantum anharmonic oscillator. Energy levels of a single quartic
oscillator for 𝜆 values in range of 0.1-1 are given. Perturbed and non-perturbed wave functions of the levels up to the fourth excited
level are compared. Ground, first and second excited energy levels are also calculated by applying finite differences method and,
results are compared with the ones obtained via perturbation theory. It is found that perturbation theory gives comparable results
only for a small 𝜆 parameter and for the ground state. The quartic term in the Hamiltonian of the anharmonic oscillator leads
to a more effective confinement of the particle which is deduced from the plots of wavefunctions and probability distributions.
Meanwhile, the number of zero crossing nodes of the wavefunctions increases as the energy level increases, which is an expected
result for both the harmonic and anharmonic oscillator.
Keywords: anharmonic oscillators; perturbation theory; quantum oscillator

1. INTRODUCTION

The quantum anharmonic oscillator has been analytically stud-
ied in the literature by Bender & Wu (1969, 1973). In their
articles published in 1969, they examined the anharmonic os-
cillator defined by the following differential equation,(

− 𝑑2

𝑑𝑥2 +
1
4
𝑥2 +

1
4
𝜆𝑥4

)
𝜙(𝑥) = 𝐸(𝜆)𝜙(𝑥). (1)

They also investigated the boundary conditions for this oscilla-
tor. Using the Wentzel–Kramers–Brillouin (WKB) approxima-
tion method, they discovered that there are an infinite number
of branch points as a function of 𝜆𝛼 in the limit as 𝜆 ap-
proaches 0. In an article published in 1973, they further studied
the Rayleigh-Schrödinger expansions of energy eigenvalues for
high-order perturbations of the anharmonic oscillator.

In a famous classical problem book of quantum mechanics
Flügge (1999), cubic (𝜆1𝑥

3) and quartic (𝜆2𝑥
4) perturbations are

added to the quantum harmonic oscillator’s Hamiltonian and
energy levels of the anharmonic oscillator are calculated by a
perturbation method in first and second-order approximation.

Turbiner (1981) proposed a new iteration procedure for the
solution of a Schrödinger equation with arbitrary local poten-
tial. With this method, both eigenvalues and eigenfunctions are
represented as a convergent series. Potentials 𝑥𝑛(𝑛 = 2, 3, 4)

type and 𝑚2𝑔2 + 𝑔𝑥4 in one-dimensional space are considered
as examples.

In another article of Turbiner (2005), quantum anharmonic
oscillator was given by the following Schrödinger equation

−𝑑2𝜓

𝑑𝑥2 + 𝑚2𝑥2𝜓 + 𝑔𝑥4𝜓 = 𝐸(𝑚2, 𝑔)𝜓, (2)

which was solved by logarithmic derivation of the eigenfunction
approximation. As a result of his approach, the 𝑦(𝑥) function
has no singularities at real values of 𝑥 and shows asymptotic
behavior as lim |𝑥 |→∞. He defined the simplest interpolation of
𝑦(𝑥) between 𝑥 = 0 and 𝑥 = ∞ as

𝑦0 = 𝑎𝑥 + 𝑏
√
𝑔𝑥 |𝑥 |. (3)

Subsequently, first, second, and third corrections to the energy
for different 𝑎, 𝑏, 𝑐, 𝑚2 values, and the first correction to the
wave function for 𝑚2 = −1 and 𝑔 = 2 were evaluated.

In a further study, Turbiner & del Valle (2021) studied in the
framework of perturbation theory with the logarithmic deriva-
tion of the wave function for the potential

𝑉 = 𝑥2 + 𝑔2𝑥4. (4)

They used Riccati-Bloch equation for perturbation theory in
𝑔2 in 𝑥-space and generalized Bloch equation for semiclassi-
cal expansion in the power of ℎ̄ for energy in (𝑔𝑥)-space. Then
they showed the Riccati-Bloch equation and generalized Bloch
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equations yield the same expansion in powers of 𝜆 for the
energy. The eigenfunctions were expressed in terms of interpo-
lation parameters 𝐴, 𝐵. These parameters are dependent on the
𝑛, 𝑝 quantum numbers. Variational energy was determined for
𝑛 = 0, 1, 2, 𝑝 = 0, 1 and 𝑔2 = 0.1, 1, 10, 20, 100, with plots of
the parameters A and B presented. As summarized above quan-
tum anharmonic oscillator is still an interesting topic and also
finds applications in mathematical physics such as in Gaudreau
et al. (2013, 2015).

In this study, primarily for pedagogical purposes the en-
ergy levels of the quantum anharmonic oscillator and the
corresponding wave functions have been obtained using non-
degenerate perturbation theory up to the third order.

2. PERTURBATION THEORY

When a system’s energy undergoes an external disturbance
i.e., when an effect that changes the system’s energy is ap-
plied, the Hamiltonian of the system changes. For a non-
perturbed system, the Hamiltonian of the system satisfies the
time-independent Schrödinger equation,

𝐻𝜓𝑛 = 𝐸𝑛𝜓𝑛. (5)

For a perturbed system, the Hamiltonian is written within the
framework of perturbation theory as

𝐻 = 𝐻(0) + 𝜆𝐻′. (6)

Here, the parameter 𝜆 is a number between 0 and 1. In this
equation, 𝐻(0) represents the unperturbed Hamiltonian, and 𝐻′

represents the perturbation term. In the framework of pertur-
bation theory, the wave function 𝜓𝑛 and the energies 𝐸𝑛 are
expanded in powers of 𝜆 as follows

𝐸𝑛 = 𝐸
(0)
𝑛 + 𝜆𝐸

(1)
𝑛 + 𝜆2𝐸 (2)

𝑛 + 𝜆3𝐸 (3)
𝑛 + . . . , (7)

𝜓𝑛 = 𝜓
(0)
𝑛 + 𝜆𝜓

(1)
𝑛 + 𝜆2𝜓(2)

𝑛 + 𝜆3𝜓(3)
𝑛 + . . . . (8)

Here, 𝜓(1)
𝑛 represents the first-order correction to the eigenfunc-

tion representing 𝑛th level and 𝐸
(1)
𝑛 represents the first-order

correction to the 𝑛th energy eigenvalue. Similar expressions
hold for higher-order corrections.

In general, when solving physics problems across various
fields, it is often sufficient to compute terms up to the second
order in these series, including the second-degree terms.

2.1. Perturbation Terms for Energy

The first-order energy correction is the expectation value of the
perturbed term that is calculated by using the unperturbed wave
functions.

𝐸
(1)
𝑛 = ⟨𝜓(0)

𝑛 | 𝐻′ |𝜓(0)
𝑛 ⟩. (9)

The second-order energy correction is calculated as

𝐸
(2)
𝑛 =

∑︁
𝑚 ̸=𝑛

|⟨𝜓(0)
𝑚 | 𝐻′ |𝜓(0)

𝑛 ⟩|2

𝐸
(0)
𝑛 − 𝐸

(0)
𝑚

. (10)

This formula involves a sum over all states 𝑚 that is different
from the state 𝑛. The matrix element ⟨𝜓(0)

𝑚 |𝐻′ |𝜓(0)
𝑛 ⟩ is calcu-

lated again by using the wave functions of the unperturbed
harmonic oscillator. For the third-order energy correction, a
more complicated expression is used.

𝐸
(3)
𝑛 =

∑︁
𝑘2 ̸=𝑛

∑︁
𝑘3 ̸=𝑛

⟨𝜓(0)
𝑛 | 𝐻′ |𝜓(0)

𝑘3
⟩⟨𝜓(0)

𝑘3
| 𝐻′ |𝜓(0)

𝑘2
⟩⟨𝜓(0)

𝑘2
| 𝐻′ |𝜓(0)

𝑛 ⟩

(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘2

)(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘3

)

− ⟨𝜓(0)
𝑛 | 𝐻′ |𝜓(0)

𝑛 ⟩
∑︁
𝑘3 ̸=𝑛

|⟨𝜓(0)
𝑛 | 𝐻′ |𝜓(0)

𝑘3
⟩|2

(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘3

)2
.

(11)

2.2. Perturbation Terms for Wave Function

The first-order wave function correction is given by

|𝜓(1)
𝑛 ⟩ =

∑︁
𝑘1 ̸=𝑛

⟨𝜓(0)
𝑘1
| 𝐻′ |𝜓(0)

𝑛 ⟩

𝐸
(0)
𝑛 − 𝐸

(0)
𝑘1

|𝜓(0)
𝑘1
⟩. (12)

This equation involves a sum over all states 𝑘1 that are dif-
ferent from the state 𝑛. The matrix element ⟨𝜓(0)

𝑘1
|𝐻′ |𝜓(0)

𝑛 ⟩ is
computed using the wave functions of the unperturbed har-
monic oscillator. The second and third-order corrections are
more complicated as the following1,

|𝜓(2)
𝑛 ⟩ =

∑︁
𝑘1 ̸=𝑛

∑︁
𝑘2 ̸=𝑛

( ⟨𝜓(0)
𝑘1
| 𝐻′ |𝜓(0)

𝑘2
⟩⟨𝜓(0)

𝑘2
| 𝐻′ |𝜓(0)

𝑛 ⟩

(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘1

)(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘2

)

−
⟨𝜓(0)

𝑛 | 𝐻′ |𝜓(0)
𝑛 ⟩⟨𝜓(0)

𝑘1
| 𝐻′ |𝜓(0)

𝑛

(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘1

)2

)
|𝜓(0)

𝑘1
⟩

− 1
2
∑︁
𝑘1 ̸=𝑛

⟨𝜓(0)
𝑛 | 𝐻′ |𝜓(0)

𝑘1
⟩⟨𝜓(0)

𝑘1
| 𝐻′ |𝜓(0)

𝑛 ⟩

(𝐸 (0)
𝑘1

− 𝐸
(0)
𝑛 )2

|𝜓(0)
𝑛 ⟩,

(13)

1 https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)
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|𝜓(3)
𝑛 ⟩ =

∑︁
𝑘1 ̸=𝑛

∑︁
𝑘2 ̸=𝑛

∑︁
𝑘3 ̸=𝑛

[
−

⟨𝜓(0)
𝑘1
| 𝐻′ |𝜓(0)

𝑘2
⟩⟨𝜓(0)

𝑘2
| 𝐻′ |𝜓(0)

𝑘3
⟩⟨𝜓(0)

𝑘3
| 𝐻′ |𝜓(0)

𝑛 ⟩

(𝐸 (0)
𝑘1

− 𝐸
(0)
𝑛 )(𝐸 (0)

𝑛 − 𝐸
(0)
𝑘2

)(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘3

)

+
⟨𝜓(0)

𝑛 | 𝐻′ |𝜓(0)
𝑛 ⟩⟨𝜓(0)

𝑘1
| 𝐻′ |𝜓(0)

𝑘2
⟩⟨𝜓(0)

𝑘2
| 𝐻′ |𝜓(0)

𝑛 ⟩

(𝐸 (0)
𝑘1

− 𝐸
(0)
𝑛 )(𝐸 (0)

𝑛 − 𝐸
(0)
𝑘2

)

(
1

𝐸
(0)
𝑛 − 𝐸

(0)
𝑘1

+
1

𝐸
(0)
𝑛 − 𝐸

(0)
𝑘2

) −
|⟨𝜓(0)

𝑛 | 𝐻′ |𝜓(0)
𝑛 ⟩|2⟨𝜓(0)

𝑘1
| 𝐻′ |𝜓(0)

𝑛 ⟩

(𝐸 (0)
𝑘1

− 𝐸
(0)
𝑛 )3

+
|⟨𝜓(0)

𝑛 | 𝐻′ |𝜓(0)
𝑘2
⟩|2⟨𝜓(0)

𝑘1
| 𝐻′ |𝜓(0)

𝑛 ⟩

(𝐸 (0)
𝑘1

− 𝐸
(0)
𝑛 )(𝐸 (0)

𝑛 − 𝐸
(0)
𝑘2

)

(
1

𝐸
(0)
𝑛 − 𝐸

(0)
𝑘1

+
1

2(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘2

)
)
]
|𝜓(0)

𝑘1
⟩ +

∑︁
𝑘1 ̸=𝑛

∑︁
𝑘2 ̸=𝑛

[
−

⟨𝜓(0)
𝑛 | 𝐻′ |𝜓(0)

𝑘2
⟩⟨𝜓(0)

𝑘2
| 𝐻′ |𝜓(0)

𝑘1
⟩⟨𝜓(0)

𝑘1
| 𝐻′ |𝜓(0)

𝑛 ⟩

2(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘2

)2(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘1

)

+
⟨𝜓(0)

𝑘2
| 𝐻′ |𝜓(0)

𝑛 ⟩⟨𝜓(0)
𝑘1
| 𝐻′ |𝜓(0)

𝑘2
⟩⟨𝜓(0)

𝑛 | 𝐻′ |𝜓(0)
𝑘1
⟩

2(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘2

)2(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘1

)

+
|⟨𝜓(0)

𝑛 | 𝐻′ |𝜓(0)
𝑘1
⟩|2⟨𝜓(0)

𝑛 | 𝐻′ |𝜓(0)
𝑛 ⟩

(𝐸 (0)
𝑛 − 𝐸

(0)
𝑘1

)3

]
|𝜓(0)

𝑛 ⟩.

(14)

3. THE QUANTUM ANHARMONIC OSCILLATOR

In one dimension the Hamiltonian for the quantum anharmonic
oscillator is given as

𝐻 =
𝑝2

2𝑚
+

1
2
𝑚𝜔2𝑥2 + 𝜆𝑥4, (15)

where 𝐻 includes an additional term to the quantum harmonic
oscillator proportional to 𝑥4. The energy levels of quantum
harmonic oscillator are determined by

𝐸
(0)
𝑛 =

(
𝑛 +

1
2

)
ℎ̄𝜔, (16)

where 𝑛 is the quantum number, which can take on integer
values, including zero. The wave function for the 𝑛th state is
expressed as

𝜓𝑛(𝑥) = 𝐴𝑛𝑎
𝑛
+𝜓0(𝑥), (17)

where, 𝐴𝑛 is a normalization constant, 𝑎+ is the raising operator
and 𝜓0(𝑥) is the ground state wave function. In our work, we
first calculated perturbation terms by using algebraic methods
of the quantum harmonic oscillator. Afterwards, the obtained
ket states were replaced with normalized analytical functions
of the quantum harmonic oscillator.

In the algebraic formalism of the quantum harmonic oscilla-
tor, the following operators are used. Momentum and position

operators, respectively

𝑝 =
ℎ̄

𝑖

𝑑

𝑑𝑥
, 𝑥 =

√︂
ℎ̄

2𝑚𝜔
(𝑎+ + 𝑎−), (18)

and 𝑥2 operator,

𝑥2 =
ℎ̄

2𝑚𝜔
[𝑎2

+ + 𝑎+𝑎− + 𝑎−𝑎+ + 𝑎2
−], (19)

also raising (creation) and lowering (annihilation) operators are
given as

𝑎+ =
1

√
2ℎ̄𝑚𝜔

(−𝑖𝑝 + 𝑚𝜔𝑥), (20)

𝑎− =
1

√
2ℎ̄𝑚𝜔

(+𝑖𝑝 + 𝑚𝜔𝑥). (21)

If we apply the raising and lowering operators to the 𝑛th ket
state, we would obtain the following results.

𝑎+ |𝑛⟩ =
√
𝑛 + 1|𝑛 + 1⟩, (22)

𝑎− |𝑛⟩ =
√
𝑛|𝑛 − 1⟩. (23)

For the quantum anharmonic oscillator, the perturbation term
depending on the 4th power of 𝑥 will be written in terms of
raising and lowering operators as the following

𝐻′ =
ℎ̄2 (𝑎 + 𝑎†

)4

4𝑚2𝜔2 . (24)

3.1. Energy Corrections

The perturbation energy for the anharmonic oscillator is cal-
culated using the perturbation theory formulas presented in
Section 2.1. The terms of the series expansion of the 𝑛th energy
level of the quantum anharmonic oscillator are calculated as
follows,

𝐸
(1)
𝑛 =

3ℎ̄2 (2𝑛2 + 2𝑛 + 1
)

4𝑚2𝜔2 , (25)

𝐸
(2)
𝑛 = −

ℎ̄3 (34𝑛3 + 51𝑛2 + 59𝑛 + 21
)

8𝑚4𝜔5 , (26)

𝐸
(3)
𝑛 =

3ℎ̄4 (125𝑛4 + 250𝑛3 + 472𝑛2 + 347𝑛 + 111
)

16𝑚6𝜔8 . (27)

As anticipated, 𝐸 (1)
𝑛 , 𝐸 (2)

𝑛 , and 𝐸
(3)
𝑛 terms are proportional to ℎ̄2,

ℎ̄3 and ℎ̄4 whereas the unperturbed energy 𝐸
(0)
𝑛 is proportional

to ℎ̄.
The total energy expression is calculated as the series ex-

pansion given by Equation 7. Energy values calculated for the
ground and first two excited states for 𝜆 values ranging from
0.1 to 1 are given in Table 1. When compared to Hioe et al.
(1978)’s work, our power series expansion-based perturbation
theory calculations only give similar results for small pertur-
bation parameter 𝜆 and low-energy states. It might be useful
here to compare perturbation theory calculations with numeri-
cal results obtained by the finite differences method (FDM) as
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Table 1. Energy levels of a single quartic oscillator for various 𝜆 values.

Perturbation Method Finite Differences Method Finite Differences Method
NumPy, SciPy, SymPy Mathematica SciPy, NumPy, finndif

𝜆 𝐸0 𝐸1 𝐸2 𝐸0 𝐸1 𝐸2 𝐸0 𝐸1 𝐸2

0.1 0.5696 1.9134 3.9612 0.5591 1.7694 3.1383 0.5590 1.7688 3.1366
0.2 0.7115 3.3825 11.415 0.6024 1.9504 3.5359 0.6023 1.9497 3.5336
0.3 1.0507 7.3753 32.390 0.6380 2.0945 3.8443 0.6378 2.0936 3.8415
0.4 1.7120 15.360 74.416 0.6687 2.2167 4.1022 0.6686 2.2157 4.0990
0.5 2.8203 28.805 145.02 0.6961 2.3242 4.3268 0.6960 2.3231 4.3232
0.6 4.5005 49.178 251.74 0.7210 2.4208 4.5274 0.7208 2.4195 4.5233
0.7 6.8774 77.947 402.10 0.7439 2.5090 4.7095 0.7437 2.5076 4.7051
0.8 10.076 116.58 603.63 0.7651 2.5904 4.8770 0.7649 2.5890 4.8723
0.9 14.221 166.55 863.86 0.7850 2.6663 5.0326 0.7848 2.6648 5.0275
1.0 19.438 229.31 1190.3 0.8037 2.7376 5.1783 0.8035 2.7359 5.1728

presented in Table 1. In FDM, the second derivative operator
𝑑2

𝑑𝑥2 is replaced with finite differences and expressed as a tridi-
agonal matrix. Moreover, the potential operator is a diagonal
matrix and summation with the tridiagonal matrix leads to the
spatial discretization of the Schrödinger equation on a grid. The
related mathematica code xslittlegras2 which calculates energy
eigenvalues and corresponding wave functions, is provided in
the Supplementary section. FDM gives almost the same results
as given in Table 4 in Hioe et al. (1978)’s work. Another imple-
mentation of FDM is done by using SciPy, NumPy, and findiff
Python libraries Mathcube3 and the obtained results are listed
in Table 1.

3.2. Wave Function Corrections

Using perturbation theory, the terms of the series expansion of
the wave function corresponding to the 𝑛th energy level of the
quantum anharmonic oscillator were calculated as follows,

|𝜓(1)
𝑛 ⟩ =

ℎ̄

16𝑚2𝜔3

( [√︁
𝑛(𝑛 − 3)(𝑛 − 2)(𝑛 − 1)|𝑛 − 4⟩

]
+
[
(8𝑛 − 4)

√︁
𝑛(𝑛 − 1)|𝑛 − 2⟩

]
−
[
(8𝑛 + 12)

√︁
𝑛2 + 3𝑛 + 2|𝑛 + 2⟩

]
−
[√︁

𝑛4 + 10𝑛3 + 35𝑛2 + 50𝑛 + 24|𝑛 + 4⟩
] )

,

(28)

the second and third-order corrections to wave function 𝜓
(2)
𝑛 is

computed as mentioned in Section 2.2. Second-order correction

2 https://mathematica.stackexchange.com/questions/32293/find-eigen-energies-of-time-
independent-schr%C3%B6dinger-equation
3 https://medium.com/@mathcube7/two-lines-of-python-to-solve-the-
schr%C3%B6dinger-equation-2bced55c2a0e

to wave function is found as

|𝜓(2)
𝑛 ⟩ =

ℎ̄2

256𝑚4𝜔6

((
32𝑛

5
2 − 144𝑛

3
2 + 112

√
𝑛

)
√
𝑛 − 3

√
𝑛 − 2

√
𝑛 − 1 |𝑛 − 4⟩

+
(
−8𝑛

7
2 − 516𝑛

5
2 + 428𝑛

3
2 − 264

√
𝑛

) √
𝑛 − 1 |𝑛 − 2⟩

−
(
65𝑛4 + 130𝑛3 + 487𝑛2 + 422𝑛 + 156

)
|𝑛⟩

+
(
−8𝑛3 + 492𝑛2 + 1436𝑛 + 1200

) √︁
𝑛2 + 3𝑛 + 2 |𝑛 + 2⟩

+
(
32𝑛2 + 208𝑛 + 288

) √︁
𝑛4 + 10𝑛3 + 35𝑛2 + 50𝑛 + 24|𝑛 + 4⟩

)
,

(29)
and third-order correction to wave function is found as

|𝜓(3)
𝑛 ⟩ =

ℎ̄3

512𝑚6𝜔9

((
−4𝑛

9
2 − 406𝑛

7
2 + 2062𝑛

5
2 − 2576𝑛

3
2

+ 1359
√
𝑛 + 2ℎ̄2𝜔2

(
−17𝑛

9
2 − 34𝑛

7
2 − 139𝑛

5
2 − 122𝑛

3
2 − 48

√
𝑛

))
(√

𝑛 − 3
√
𝑛 − 2

√
𝑛 − 1

)
|𝑛 − 4⟩ +

(
30𝑛

11
2

+ 325𝑛
9
2 + 6124𝑛

7
2 − 5941𝑛

5
2 + 8582𝑛

3
2 − 2040

√
𝑛

+ 2ℎ̄2𝜔2
(
−136𝑛

11
2 − 204𝑛

9
2 − 976𝑛

7
2 − 420𝑛

5
2 + 104𝑛

3
2 + 192

√
𝑛

))
(√

𝑛 − 1
)
|𝑛 − 2⟩+

(
1068𝑛5 + 2670𝑛4 + 13776𝑛3

+ 17994𝑛2 + 14748𝑛 + 4464
)
|𝑛⟩ +

(
−30𝑛5 + 175𝑛4 − 5124𝑛3

− 22663𝑛2 − 37686𝑛 − 22392

+ 2ℎ̄2𝜔2
(
136𝑛5 + 476𝑛4 + 150𝑛3 + 2644𝑛2 + 1848𝑛 + 576

))
(√︁

𝑛2 + 3𝑛 + 2
)
|𝑛 + 2⟩ +

(
4𝑛4 − 390𝑛3 − 3256𝑛2 − 7902𝑛

− 6399 + 2ℎ̄2𝜔2
(
17𝑛4 + 34𝑛3 + 139𝑛2 + 122𝑛 + 48

))
(√︁

𝑛4 + 10𝑛3 + 35𝑛2 + 50𝑛 + 24
)
|𝑛 + 4⟩

)
.

(30)
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Table 2. Zeros of wave functions for various 𝜆 values (only positive 𝑥 and 𝑥 = 0 points are listed).

𝜆 𝜓0 𝜓1 𝜓2 𝜓3 𝜓4

0.1 2.275 0, 2.146 0.738, 2.354 0, 1.373, 2.749 0.867, 1.903, 3.243
0.2 1.581 0, 1.805 0.884, 2.226 0, 0.302, 1.432, 2.682 0.101, 0.906, 1.911, 3.179
0.3 1.369 0, 1.753 0.908, 2.208 0, 0.331, 1.430, 2.666 0.101, 0.900, 1.897, 3.150
0.4 1.294 0, 1.739 0.910, 2.201 0, 0.330, 1.425, 2.659 0.095, 0.895, 1.889, 3.136
0.5 1.263 0, 1.733 0.910, 2.198 0, 0.326, 1.422, 2.654 0.090, 0.892, 1.883, 3.128
0.6 1.249 0, 1.730 0.908, 2.195 0, 0.323, 1.419, 2.651 0.086, 0.890, 1.880, 3.122
0.7 1.242 0, 1.728 0.907, 2.193 0, 0.317, 1.417, 2.648 0.081, 0.888, 1.877, 3.199
0.8 1.237 0, 1.727 0.906, 2.192 0, 0.317, 1.416, 2.647 0.079, 0.887, 1.875, 3.116
0.9 1.235 0, 1.726 0.905, 2.191 0, 0.315, 1.415, 2.645 0.076, 0.886, 1.874, 3.114
1.0 1.233 0, 1.725 0.904, 2.190 0, 0.313, 1.414, 2.644 0.074, 0.885, 1.873, 3.112

In each correction term kets are replaced with normalized
wave functions of quantum harmonic oscillator. In the follow-
ing, we presented constituent terms of the wave function for
the ground and first excited states where ℎ̄, 𝑚, 𝜔 selected as 1.
Terms of the ground state wave function are

𝜓
(0)
0 (𝑥) =

𝑒−
𝑥2
2

4√𝜋
,

𝜓
(1)
0 (𝑥) =

(
−4𝑥4 − 12𝑥2 + 9

)
𝑒−

𝑥2
2

16 4√𝜋
,

𝜓
(2)
0 (𝑥) =

3 ·
(
96𝑥4 − 88𝑥2 − 41

)
𝑒−

𝑥2
2

64 4√𝜋
,

𝜓
(3)
0 (𝑥) =

3
(
−8404𝑥4 + 11052𝑥2 + 2265

)
𝑒−

𝑥2
2

512 4√𝜋
,

(31)

and terms of the first excited state wave function are

𝜓
(0)
1 (𝑥) =

√
2𝑥𝑒− 𝑥2

2

4√𝜋
,

𝜓
(1)
1 (𝑥) =

√
2𝑥

(
−4𝑥4 − 20𝑥2 + 45

)
𝑒−

𝑥2
2

16 4√𝜋
,

𝜓
(2)
1 (𝑥) =

3
√

2𝑥
(
176𝑥4 − 360𝑥2 − 225

)
𝑒−

𝑥2
2

64 4√𝜋
,

𝜓
(3)
1 (𝑥) =

3
√

2𝑥
(
−22964𝑥4 + 65940𝑥2 + 5445

)
𝑒−

𝑥2
2

512 4√𝜋
.

(32)

The total wave function is calculated by using Equation 8.
Care must be taken to ensure that the total wave function ob-
tained by perturbation expansion must be checked for normal-
ization. In this work, for each level 𝑛, the wave function is
checked and normalized numerically. In Figure 1, total nor-
malized wave functions belonging to quantum anharmonic and
harmonic oscillators are presented. As seen from the plots, os-
cillations in the wave functions of the anharmonic oscillator
are not well-periodic. Moreover, one and two additional peaks
occur in the wave functions and probability distributions for
odd and even parity solutions, respectively.

In Table 2, for the wave functions representing the ground
and the first four excited states plotted in Figure 1, the nu-
merical values of the 𝑥 positions of the nodes are listed for 𝜆
values between 0.1 and 1. As expected, odd-numbered states
are anti-symmetric, and even-numbered states are symmetric
with respect to the origin. Therefore in Table 2, only positive
roots and the 𝑥 = 0 point intersections are listed. The number
of intersections with the 𝑥-axis increases as the quantum state
number increases, as expected. More interestingly, with the in-
crease of the 𝜆 perturbation parameter, spreading of the peaks
of the wave functions along the 𝑥-axis decreases.

As an example for the excited state with 𝑛 = 10 and pertur-
bation parameter 𝜆 = 0.1, probability distributions of quantum
harmonic and anharmonic oscillators are given in Figure 2. If
one compares the two probability distributions, it can be de-
duced that, due to the quartic term in the Hamiltonian, the
localization range of the particle in one dimension decreases
in the anharmonic oscillator case compared to the harmonic
oscillator.

4. CONCLUSION

In this article we have computed the energy and wave func-
tion corrections for the quantum anharmonic oscillator up to
the third order by using non-degenerate perturbation theory.
Consistent energy values with the literature are found only for
small perturbation parameters and low quantum levels. The 𝑥4

term in the Hamiltonian leads to an increase in the intensity of
confinement, which facilitates the localization of a particle.
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Figure 1. Wave functions of harmonic (solid) and quartic anharmonic (dotted) oscillator with 𝜆 = 0.1. In (a) harmonic and quartic potentials with 𝜆 = 0.1 are also
plotted.
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Figure 2. Probability distribution of quantum harmonic (solid) and quartic
anharmonic (dotted) oscillator for quantum level 𝑛 = 10 and 𝜆 = 0.1.
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SUPPLEMENTARY
Codes that are used in calculating energy eigenvalues for an-
harmonic quantum oscillator are listed below.

Mathematica

ClearAll["Global‘*"];
TISE1D[U_Function, {xmin_, xmax_}, N0Grid_ : 101,
BoundaryCondition_String : "zero"] :=
Module[{dx = (xmax - xmin)/(N0Grid -
1), Hmtx, Tmtx, Vmtx},
Tmtx = -(1/(2 (dx)^2))
SparseArray[{{i_, i_} -> -2, {i_, j_} /; Abs[i -

j] == 1 -> 1},
{N0Grid, N0Grid}];

Vmtx = DiagonalMatrix[U /@ Range[xmin, xmax, dx]];
Hmtx = Tmtx + Vmtx;
If[BoundaryCondition == "periodic",
Hmtx[[1, -1]] = Hmtx[[-1, 1]] = -(1/(2 (dx)^2));];
Sort[Transpose@Eigensystem[Hmtx],
(#1[[1]] < #2[[1]]) &]]

TableForm[Table[V1[x_] = 1/2. x^2 + \[Lambda] x^4 ;
Flatten[{\[Lambda],
Transpose[
Round[TISE1D[Function[{x}, V1[x]], {-

10, 10}, 1000], 0.0001]][[
1, 1 ;; 3]]}],

{\[Lambda], 0.1, 1, 0.1}],
TableHeadings -> {None, {"\[Lambda]",

"\!\(\*SubscriptBox[\(E\), \(0\)]\)",
"\!\(\*SubscriptBox[\(E\), \(1\)]\)",
"\!\(\*SubscriptBox[\(E\), \(2\)]\)",
"\!\(\*SubscriptBox[\(E\), \(3\)]\)"}},

TableAlignments -> Center]

Python

import numpy as np
from scipy.sparse import diags
from scipy.sparse.linalg import eigs
from findiff import FinDiff
l_E = np.array([])
il=0.1
V = {"V2":lambda x:1/2*x**2,

"V4":lambda x:1/2*x**2 + il*x**4}["V4"]
for il in np.arange(0.1, 1.1 ,0.1):

x = np.linspace(-5, 5, 200)
energies, states = eigs(

-0.5 * FinDiff(0, x[1]-
x[0], 2).matrix(x.shape) +

diags(V(x)),
k=3, which=’SR’)

energies = np.insert(energies, [0], il)
l_E = np.append(l_E, energies)

l_E = np.round(l_E.real, 4).reshape((10,4))
print("\tl\t E0\t\t E1\t\t E2\n", l_E)
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