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This study considers the one-dimensional variable-sized bin packing problem 
(VSBPP) which is an NP-Hard problem. In this study, the objective is to find an 
efficient solution that minimizes both the total capacity of the bins used and 
the number of bins required, thereby optimizing the company's storage policy 
and saving space within the warehouse. Three algorithms are employed to 
solve a real warehouse’s VSBPP: i) First Fit Decreasing (FFD), ii) Best Fit 
Decreasing (BFD), and iii) Next Fit Decreasing (NFD). The warehouse dataset 
includes items of various sizes, and the goal is to allocate these items into bins 
most efficiently. Experimental results demonstrate that the FFD and BFD 
algorithms outperform the NFD algorithm. Furthermore, all three algorithms 
significantly reduce storage space usage and improve space utilization 
compared to the warehouse's current practices.  

BİR DEPO İÇİN ENVANTER TUTMA VE ALAN KULLANIMI POLİTİKASININ ENİYİLEMESİ 
Anahtar Kelimeler                     Öz  
Depo, 
Değişken Boyutlu Kutulama Problemi, 
İlk Bulduğun Boşluğu Doldur,  
En İyi Boşluğu Doldur,  
Sonraki Boşluğu Doldur 

Bu çalışmada NP-Zor bir problem olan tek boyutlu değişken ölçekli kutulama 
problemi ele alınmaktadır. Bu çalışmada amaç, kullanılan kutuların 
kapasitelerinin toplamını ve kullanılan kutu sayısını en aza indiren verimli bir 
çözüm bulmak, böylece şirketin depolama politikasını optimize etmek ve 
depoda yer tasarrufu sağlamaktır. Gerçek bir deponun problemini çözmek için 
üç farklı yöntem: i) İlk Bulduğun Boşluğu Doldur (İBBD), ii) En İyi Boşluğu 
Doldur (EİBD) ve iii) Sonraki Boşluğu Doldur (SBD) algoritmaları 
kullanılmıştır. Deponun veri seti, farklı boyutlarda çeşitli öğelerden oluşmakta 
olup amaç bu öğeleri en verimli şekilde kutulara tahsis etmektir. Deneylerden 
elde edilen sonuçlara göre, İBBD ve EİBD algoritmaları SBD algoritmasından 
daha iyi olmakla beraber, her üç algoritmanın da mevcut depo uygulamasına 
kıyasla depolama alanı kullanımını azaltmada ve alandan yararlanmayı 
arttırmada başarılı olduğu gösterilmiştir. 
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1. Introduction 

The management of warehouses is an essential function 
for any company that trades in tangible commodities. It 
should be a priority since it gives companies the ability 
to retain competitiveness. Warehouse management 
entails several processes, such as optimizing space and 
maintaining inventory records. Proper warehousing 
management is usually faced with several widely known 
problems. Hemmelmayr, Schmid, and Blum (2012) 
stated that a common optimization problem called the 
Bin Packing Problem (BPP) consists of packing items 

into bins. Finding a reasonable solution to the BPP is a 
way of saving resources such as storage space. 
Therefore, it is essential to find solutions by determining 
the most effective method for packing different items 
into bins.  

This research  provides a way of effectively storing items 
in bins of a particular warehouse. Finding an effective 
way to store leads to saving space inside a particular 
warehouse, which can be utilized for other warehousing 
activities, and dismissing the option of renting new 
storage spaces to store all the items at hand. This study 
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can be used as a reference amongst other industries that 
face the redundant problem of effectively storing their 
Stock Keeping Units (SKUs) within bins. 

The warehouse under consideration is a maintenance, 
repair, and overhaul (MRO) warehouse and faces 
challenges in effectively utilizing its space. MRO covers 
preventive maintenance, component repair, 
replacement, deep maintenance, structural repairs, etc. 
In practice, the warehouse's space is being wasted due 
to incorrect storage techniques. This indicates an 
underlying lack of organization, which must be 
addressed to maximize efficiency and eliminate wasted 
space. This leads to requiring expensive external storage 
solutions. To overcome this, the warehouse 
management desires to optimize existing space usage 
through better storage techniques, aiming to store more 
parts without acquiring or renting additional 
warehouses. 

The rest of the paper is organized as follows. Literature 
review is given in Section 2. In Section 3, the problem is 
defined. The solution approach is explained in Section 4. 
Computational results are reported in Section 5. The 
conclusion is given in Section 6. 

2. Literature Review 

BPP is one of the combinatorial optimization problems 
that has been well studied for many years because of its 
economic benefits on different sectors and the high 
number of industrial applications. BPP involves a set of 
items or boxes (small objects) of various dimensions 
that must be assigned to containers or bins (large 
objects) with capacity constraints to minimize the 
number of required bins to pack all items. Several 
variants of BPP differ in terms of dimensionality, type of 
bins (identical, variable size), and static/dynamic 
nature. One classification was introduced by Dyckhoff 
(1990), and another improved typology was proposed 
by Wäscher, Haußner, and Schumann (2007). 

In the classical one-dimensional BPP (1DBPP), only a 
single dimension of the item is taken into consideration 
(usually width), and all bins are identical with the same 
capacity, where the objective is to minimize the total 
number of used bins. In the two-dimensional BPP 
(2DBPP), the aim is to pack items while only considering 
two-dimensional (usually width and height) rectangular 
items into identical two-dimensional bins. Lodi, 
Martello, Monaci, and Vigo (2013) stated that 2DBPP has 
many industrial applications, such as wood and glass 
cutting, in addition to packing in transportation and 
warehousing. The strip packing problem is a variation of 
the 2DBPP where bins of width and infinite height 
(therefore, this is referred to as strip) and a set of 
rectangular items are given, and the objective is to 
determine the way to pack the items within the strip 
such that the height of the strip is minimized. Wäscher 
et al. (2007) have classified this problem in their 

typology as an open dimension problem, one of the 
applications of strip packing in manufacturing where 
rectangular pieces must be cut from a roll of cloth or 
paper with a fixed width and infinite height. According 
to Jin, Ito, and Ohno (2003), a three-dimensional BPP 
(3DBPP) is a generalization of the one and two-
dimensional BPPs in which the three dimensions (width, 
length, and height) of both the items and bins are taken 
into consideration. 3DBPP has the most practical 
applications, such as in transportation, where it is used 
to determine the most efficient way to load boxes onto a 
transportation vehicle or containers, minimizing the 
amount of space wasted. 3DBPP appears in a range of 
contexts, such as in the distribution and storage of 
goods, manufacturing, the packaging of items, and the 
use of space in various settings. 

A variant of bin packing is variable-sized BPP (VSBPP), 
where bins or containers have different capacities, and 
each item must be packed in turn. The objective is to 
minimize the sum of the capacities of the bins. VSBPP 
adds a layer of complexity to the problems because of 
the variable size of the bins. The VSBPP has practical 
applications in areas such as packing, transportation 
planning, and cutting, but according to Hemmelmayr et 
al. (2012), there is not a lot of published research on the 
VSBPP. Furthermore, the bin packing problem can be 
classified as either online or offline. The main difference 
between online and offline bin packing problems is that 
in online bin packing, items arrive one at a time, and a 
decision must be made about which bin to place each 
item in as soon as the bin becomes available without 
knowing the complete set of items in advance (Boyar, 
Kamali, Larsen, and López-Ortiz,  2013). This contrasts 
with the offline bin packing problem, where the 
complete set of items is known, and the bins can be 
optimized for the entire set of items at once. 

Offline algorithms perform better than online 
algorithms on the bin packing problem because they 
receive the sequence of items in advance (Karp, 1992). 
However, online algorithms have the advantage of being 
able to start packing items right away without having to 
wait for the entire set of items to become available. 
Online algorithms can be useful in situations where the 
items are arriving continuously and must be packed 
immediately as opposed to being available all at once.  

Additionally, the bin packing problem can be studied in 
a dynamic setting, where items can be added or 
removed from the bins during the execution of an 
algorithm (Gupta, Guruganesh, Kumar, and Wajc, 2018). 
To achieve the best possible space utilization, the 
algorithm must be able to adapt to changes in the input 
data and rearrange the items in the bins. On the 
contrary, in a static bin packing setting, items are known 
beforehand when they are assigned to the bins.  

Most existing work focuses on static bin packing in the 
sense that items do not depart. In some potential 
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applications like warehouse storage, a more realistic 
model takes into consideration the dynamic arrival and 
departure of items. In dynamic bin packing, items arrive 
over time, reside for some time, and may depart at an 
arbitrary time.  The BPP is strongly NP-Hard and very 
complex to solve in practice (Martello and Vigo, 1998). 
Hence, many different methods have been developed to 
solve this problem. 

Exact algorithms, such as integer programming, 
dynamic programming, and branch and bound, 
guarantee finding the optimal solution to bin packing 
problems. However, their high computational 
complexity often renders them impractical for large-
scale instances, as highlighted by Coffman, Garey, and 
Johnson (1984). On the other hand, heuristic and meta-
heuristic algorithms are primarily employed to provide 
high-quality solutions when optimality cannot be 
reached within a reasonable running time. Meta-
heuristic algorithms, including simulated annealing, 
genetic algorithms, variable neighborhood search, and 
tabu search, have been widely applied in solving 
combinatorial optimization problems (Aarts and Korst, 
2003; Hemmelmayr et al., 2012). 

In this study, we tackle an NP-hard problem by adopting 
a mathematical model and tracking the running time for 
different problem sizes. Afterward, three heuristic 
algorithms, which are developed for identical-size bin 
packing problems, are adapted for variable-sized bin 
packing problems, and their performance measures are 
reported. 

3. Problem Definition 

Proper warehouse management is one of the most 
impactful aspects that can affect a company’s success. In 
today’s world, warehouse performance measurements 
can be the deciding factor in determining companies’ 
global rankings (Tompkins and Smith, 1998). There are 
several criteria to consider for a warehouse to be 
classified as properly managed. These criteria include 
picking systems, optimizing space, maintaining 
inventory records, following safety standards, and 
controlling labor expenses. Optimizing picking systems 
plays a critical role in enhancing both customer 
satisfaction and the overall efficiency of warehouse 
operations (Pinto, Nagano, and Boz, 2023). Also, 
optimizing space utilization includes multiple criteria, 
such as fitting as many SKUs into their desired storage 
containers and fitting the storage containers in an 
organized manner to minimize unutilized space. With 
every criterion having its own contribution weight to 
optimizing space utilization, this study focuses on fitting 
as many SKUs into their desired storage containers 
inside warehouses as the key factor for increasing 
warehouse efficiency. The handled problem is called the 
one-dimensional variable-sized bin-packing problem 
(VSBPP). The objective of the VSBPP is to minimize the 

sum of the used bin capacities which will lead to more 
space in the warehouse without the need to rent any 
additional warehouse. 

A lack of coordination emerges between the planning 
department and the warehousing department inside the 
company. The planning department presumes a 
storage-containing unit can no longer store more SKUs, 
while in reality, the containers can store almost double 
the amount of the currently available items. To prevent 
the costly option of renting new warehousing spaces, 
this study focuses on storing more items within each bin 
to use fewer bins and generate more space for storing 
even more items if needed.  

In the first phase, an ABC analysis is conducted to split 
the inventory into three main categories. A-items have 
the highest importance with respect to the value 
contribution, B-items have lower importance and value, 
and C-items have the least importance. It is one of the 
methods that help companies control warehouses by 
allowing the management to stay focused on the most 
important items. In addition to that, it aids in achieving 
effective stock management of resources and stock level 
optimization. ABC analysis is based on the Pareto 
principle, which assumes that 20% of the items generate 
80% of the total value. 

Grondys (2009) stated that ABC analysis allows 
companies to focus on the most expensive items. 
However, classifying the items in the company depends 
on different aspects, so analyzing and filtering data is the 
first step before applying the ABC analysis. The goal is to 
work on every aspect that the company considers 
important, then combine all the results together so a 
decision can be made in terms of which item should be 
classified to which category. Two different criteria were 
considered for the ABC analysis. The first criterion is 
based on the distinct count of the picklist, which is the 
number of orders for each item throughout the year. The 
second criterion is based on priority.  

After conducting the ABC analysis, the manager in the 
company decided to go with the first criterion and 
proceed with only class A and B items since class C items 
were not ordered often per year and thus had minimal 
impact on the optimization process for storage space 
allocation. In addition, the warehouse management 
expressed a preference to assign a dedicated storage 
area for Class C items, located far from the main 
operational zones, without including them in the 
optimization process, as their low demand does not 
justify the computational effort or complexity of their 
inclusion. 

The subsequent step was to determine the number of 
bins used, which amounted to 762 distinct bins for class 
A and B items. Table 1 shows the existing bins in use 
derived from three different bin sizes (small, medium, 
and large), with a total used capacity of 1,940,472 cm3. 
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Table 1. Current Bin Structure and Used Capacity for 
Class A and B Items 

Bin type Bin size 
(𝑐𝑚3) 

Count Total used 
capacity 
(𝑐𝑚3) 

Small 900 139 125,100 
Medium  2,808 587 1,648,296 
Large  4,641 36 167,076 
 Total  762 1,940,472 

 

By evaluating the current used capacity and establishing 
a value for benchmark, our primary objective is to 
minimize total used capacity. Since then, it would be 
reasonable to aim for 100% utilization per bin. 
However, including more items per bin increases the 
time for the picker to retrieve any desired items from 
the bin. It is, therefore, crucial to ensure that every bin 
contains some free space or buffer, in other words. 
Hence, all maximum bin capacities were decreased by 
20% to make sure that some free space remained inside 
the bin.  

In this study, the items are significantly smaller than the 
bins, with none of their dimensions (length, width, 
height) exceeding the respective dimensions of the bins. 
This allows the problem to focus on optimizing the total 
volume within the capacity constraints of the bins, 

effectively treating items as occupying liquid-like 
volumes. 

4. Solution Methodology 

After defining the problem with all the considerations, 
the solution approach should cover all the problem’s 
aspects. Figure 1 explains the plan and the methods that 
the defined problem would be solved with. The initial 
goal is to find an optimal solution, but if the problem size 
at hand cannot be solved within a reasonable running 
time due to NP-Hardness, a feasible and effective 
alternative solution method should be implemented.  

4.1. Exact Solution 

A mathematical model aids in understanding the level of 
complexity of a certain problem. Knowing the level of 
complexity, henceforth, gives insight into the 
appropriate ways to approach the solution. It is proven  
that the one-dimensional bin-packing problem is 
classified as NP-Hard (Alenezi, Aboelfotoh, Albdaiwi, 
and Almulla, 2015). As stated by Haouari and Serairi 
(2009), the VSBPP is a generalization of the classical- 
dimensional bin-packing problem and therefore also 
NP-Hard. 

 

 

 
Figure 1. Flowchart of Solution Approach
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The following mathematical model is developed by 
adapting the model proposed Hemmelmayr et al. (2012) 
which considers a general one-dimensional VSBPP. 
Some indices, parameters, and decision variables are 
modified according to the problem at hand. In addition, 
the objective function was revised to minimize the total 
utilized bin capacities, to align with the company 
warehouse optimization goals. There are three indices 
in the model. 𝑖 represents the items(𝑖 = 1,2, ⋯ , 𝑛) 
where 𝑛 is the number of items; 𝑗 represents the bins 
(𝑗 = 1,2, ⋯ , 𝑚) where 𝑚 is the number of bins; 
𝑘 represents the bin type (𝑘 = 1,2, ⋯ , 𝑟) where 𝑟 is the 
number of bin types.  

In the model, the following parameters are used. 𝐶𝑘 
represents the capacity of bin type 𝑘. 𝑉𝑖  represents the 
volume of item 𝑖. These parameters define the storage 
limits of bins and the space requirements of items, 
respectively. 
 
The decision variables are as follows. 𝑥𝑖𝑗  is a binary 

variable and takes 1 if item 𝑖 is stored in bin 𝑗; 0, 
otherwise. 𝑦𝑗𝑘  is a binary variable and takes 1 if used bin 

𝑗 is of type 𝑘; 0, otherwise. 
 
Furthermore, the mathematical model operates with the 
fact that the items are significantly smaller than the bins, 
and none of their individual dimensions exceed the bin 
dimensions. This ensures that all items can fit within the 
bins in 3D space. As such, the model focuses exclusively 
on volume optimization, aligning with the practical 
constraints of the study. 
 

min ∑  

𝑚

𝑗=1

∑  

𝑟

𝑘=1

𝐶𝑘 ⋅ 𝑦𝑗𝑘                (1) 

Subject to:  

∑  

𝑚

𝑗=1

  𝑥𝑖𝑗 = 1 for 𝑖 = 1, … , 𝑛   (2) 

∑  

𝑟

𝑘=1

 𝑦𝑗𝑘 ≤ 1  for 𝑗 = 1, … , 𝑚 (3) 

∑  

𝑛

𝑖=1

 𝑉𝑖 ⋅ 𝑥𝑖𝑗 ≤ ∑  

𝑟

𝑘=1

 𝐶𝑘 ⋅ 𝑦𝑗𝑘  for 𝑗 = 1, … , 𝑚  (4) 

𝑥𝑖𝑗 ∈ {0,1} for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚  (5) 
𝑦𝑗𝑘 ∈ {0,1} for 𝑗 = 1, … , 𝑚 and 𝑘 = 1, … , 𝑟 (6) 

 

The objective (1) is to minimize the sum of the 
multiplication of the utilized bins and their 
corresponding capacities. This results in minimizing the 
total utilized capacities, thereby optimizing storage 
space usage. Constraint (2) ensures that each item is 
assigned to exactly one bin. This guarantees that all 
items are stored without duplication. Constraint (3) 
ensures that each bin can only be at most one bin type. 
Constraint (4) ensures that the total volume of stored 

items in a bin cannot exceed its capacity. This ensures 
adherence to the physical limits of the bins. Constraints 
(5) and (6) are binary restrictions for all decision 
variables. 

To clarify the boundaries of the model, the following 
assumptions are made: the model assumes that all items 
must be assigned to exactly one bin, bins of each type 
have fixed capacities (𝐶𝑘) defined in advance, and the 
total number of bins (𝑚) and bin types (𝑟) are finite and 
predetermined. The focus is solely on storage space 
optimization, excluding other operational constraints 
like bin costs.  

After formulating the mathematical model for the 
problem, some small size problems are solved by using 
IBM ILOG CPLEX. Then, we progressively increased the 
problem size until reaching the real-scale scenario for 
the problem at hand.  

Table 2 provides the results regarding the number of 
items (𝑛), the number of bins (𝑚), the number of bin 
types (𝑟), the number of decision variables (𝑥𝑖𝑗 , 𝑦𝑗𝑘) and 

the running times. 

The execution times vary depending on the problem 
size, with smaller instances being solved relatively 
quickly while larger instances may require significantly 
more time to find an optimal solution. This highlights 
the time complexity of the problem, which can increase 
exponentially as the problem size grows due to the NP-
Hardness of VSBPP. 
 

Table 2. Problem Size and Average Running Time 
𝑛 𝑚 𝑟 𝑥𝑖𝑗  

(Count) 

𝑦𝑗𝑘  

(Count) 

Average 
running time 
(hours) 

10 10 3 100 30 00:00:01:43 

20 20 3 400 60 00:00:01:65 

30 30 3 900 90 00:00:01:53 

50 50 3 2,500 150 00:00:02:12 

80 80 3 6,400 240 00:00:02:77 

100 100 3 10,000 300 00:00:04:75 

150 150 3 22,500 450 >24 

4.2. Heuristic Algorithms 

In general, the running time for solving a mathematical 
model may take an unreasonable time as the problem 
size gets larger if it is NP-Hard. To tackle this problem, 
implementing a heuristic algorithm is a good alternative 
that allows us to efficiently solve large instances of the 
VSBPP within a reasonable running time. 

In the literature, several heuristic methods have been 
utilized to address the VSBPP. Moreover, VSBPP has 
been solved using metaheuristic algorithms such as tabu 
search and genetic algorithm.  
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Heuristic algorithms to solve VSBPP include (Coffman, 
et al., 1984): 

i. First Fit Decreasing (FFD): This algorithm tries 
to place each item into the first bin that has 
enough space for it. If no bin has enough space, 
a new bin is created, and the item is placed in 
the new bin. 

ii. Next Fit Decreasing (NFD): Like the First Fit 
Decreasing algorithm, the Next Fit Decreasing 
algorithm begins packing items into the next 
bin after the current one rather than the first 
bin. The algorithm moves to the next bin and 
tries to fit the item there if it does not fit in the 
current bin. The item is placed in the newly 
created bin if the item still does not fit the bin. 

iii. Best Fit Decreasing (BFD): This algorithm looks 
for a bin that can accommodate the current item 
with the smallest amount of leftover space. If no 
bin has space for the item, a new bin is created, 
and the item is put in it. 

For VSBPP, Figure 2 shows the pseudocode of the FFD 
algorithm, whereas Figure 3 shows the pseudocode of 
the NFD algorithm. Figure 4 shows the pseudocode of 
the BFD algorithm. 

Dökeroğlu (2017) implements FFD and BFD algorithms 
for one-dimensional BPP in his study. 

The VSBPP was addressed by Haouari and Serairi 
(2009) through the utilization of multiple methods, 
including FFD, BFD, a set covering heuristic, and genetic 
algorithm. Notably, the results obtained from FFD and 
BFD were found to be satisfactory. 

Kang and Park (2003) conducted a research on the 
VSBPP and proposed two algorithms known as iterative 
FFD (IFFD) and iterative BFD (IBFD). The authors 
asserted that these modified versions of the original FFD 
and BFD algorithms effectively address the VSBPP. The 
approach of IFFD involves initially assigning all items to 
the largest size bins using FFD, resulting in a feasible 
solution. Subsequently, the items in the last bin of the 
solution are repacked into the next largest bins using 
FFD, leading to another solution. This process continues 
until repacking becomes unfeasible, generating multiple 
feasible solutions. Among these solutions, the best one 
is chosen as the final solution, with potential additional 
modifications if required. Similarly, IBFD follows a 
similar procedure but employs the BFD algorithm 
instead of FFD. 

 
 

 
Figure 1. Pseudocode of FFD Algorithm 
 

 
Figure 2. Pseudocode of NFD Algorithm 
 

 
Figure 3. Pseudocode of BFD Algorithm 
 



ESOGÜ Müh. Mim. Fak. Dergisi 2025, 33(1), 1608-1617  J ESOGU Eng. Arch. Fac. 2025, 33(1), 1608-1617 

1614 
 

The drawback of the FFD, BFD, and NFD lies in their 
reliance on identical bin sizes, which is not applicable to 
the VSBPP. Consequently, some researchers have 
endeavored to modify these algorithms to accommodate 
variable-sized bins, as exemplified by the Iterative FFD 
algorithm developed by Kang and Park (2003). 
Therefore, employing these algorithms directly -without 
any modifications- would not be suitable for addressing 
our specific problem. So, some modifications are 
required. Research on the VSBPP is limited when 
compared to the bin-packing problem, with the majority 
of studies focused on one-dimensional events. Common 
issues include the creation of lower bounds and solution 
strategies. VSBPP, an NP-hard issue, has been handled 
using both accurate and efficient approximation 
methods, with the latter category comprising heuristic 
and metaheuristic approaches (Borgulya, 2024).  

In order to test the algorithms’ effectiveness, the 
dimensions of the SKUs associated with the warehouse 
at hand were taken into consideration along with the bin 
types. In the case of having different SKUs, however, 
simple modifications need to be done to make for the 
change of the new dimensions in order for the algorithm 
to run effectively. All algorithms are implemented in 
Python. For instance, a partial depiction of the obtained 
FFD results for small bin types can be observed in Figure 
5. The implementation of the FFD algorithm yielded 
highly favorable outcomes for the small items, with an 
impressive average utilization of 98.4% across all bins. 
Notably, the storage of 314 items required using 106 
small bins.  
 

 
Figure 5. Partial Depiction of FFD Algorithm Results for 
the Small Bin Type 
 

To align with the requirements of the MRO warehouse, 
the standard FFD, BFD, and NFD algorithms were 
modified. Specifically, three FFD algorithms were 
implemented in a single code, each addressing a distinct 
bin size (large, medium, small). Furthermore, a 
constraint limiting the number of items per bin to 7 was 
introduced to ensure efficient retrieval times. These 
modifications were guided by practical observations 
during preliminary testing, ensuring the algorithms 
effectively balance space utilization and operational 
efficiency. 

The Python code for the implementation of FFD, NFD, 
and BFD algorithms has been made publicly available on 
GitHub for transparency and reproducibility. The 
repository includes detailed comments and 
documentation to help readers understand and 
replicate the methodology. The code can be accessed via 
the following link: 

https://gist.github.com/faris118203/600e15c76ad473
25303403fa418a536e 

For context, the code comprises three separate FFD 
algorithms, each tailored for a specific bin type. It begins 
by sorting all items in descending order based on their 
weights. Additionally, a constraint has been introduced 
to limit the maximum number of items in a single bin to 
7, determined based on preliminary studies to optimize 
retrieval time efficiency. 

The outcomes derived from the code partially displayed 
in Figure 6 revealed that a total of 1,169 items were 
successfully stored across 511 bins. In Figure 6, the 
overall utilization percentage of all bins amounted to 
95.25%, indicating an efficient utilization of available 
storage space. The sum of the capacities of the used bins 
(overall used space) equated to 1,520,421 𝑐𝑚3, which 
was computed by multiplying the number of bins used 
for each bin type by its respective capacity. 
Furthermore, the code yielded these impressive results 
within a remarkably short duration of around 1 second.  
 

 
Figure 6. Average Utilization Results for FFD for All Bin 
Types 
 
This study complies with scientific research and 
publication ethics and principles. 

5. Computational Results 

Table 3 provides a summary of the sum of the used bin 
capacities, overall average utilization, and the number of 
used bins for each algorithm.  
 
Table 3. FFD, BFD, and NFD Algorithms’ Results 

Algorithm Total 
Number 
of Used 
Bins 

The Sum of 
the Used Bins’ 
Capacities 
(𝑐𝑚3) 

Average 
Utilization 

FFD 511 1,520,421 95.25 % 
BFD 511 1,520,421 95.25 % 
NFD 631 1,859,097 77.14 % 

https://gist.github.com/faris118203/600e15c76ad47325303403fa418a536e
https://gist.github.com/faris118203/600e15c76ad47325303403fa418a536e
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Notably, FFD and BFD algorithms both exhibited the 
most favorable outcomes, boasting an impressive 
average utilization percentage of 95.25% across all bin 
types. Furthermore, the total capacity of the used bins 
amounted to 1,520,421 𝑐𝑚3, indicating a highly efficient 
utilization of available storage space.  

When comparing the FFD and BFD algorithms’ results 
with the current utilized capacity inside the company’s 
warehouse, the results turn out to be rather impressive. 
The items inside the warehouse are currently 
distributed across 762 bins with three different bin 
types. The total utilized capacities of the currently used 
bins are 1,940,472 𝑐𝑚3. The FFD and BFD algorithms’  
results indicate that the items will be stored across 511 
bins. Moreover, the total utilized capacities needed to 
store all items will be 1,520,421 𝑐𝑚3. This leads to a 
decrease of 420,051 𝑐𝑚3 which is around 21.6% of the 
total used storage capacities. This number is equivalent 
to around (420,051 / 4,641) = 90 of the large bins, 149 
of the medium bins, and 466 of the small bins in the 
warehouse. 

The efficiency and practicality of the proposed 
algorithms were evaluated using three performance 
metrics: optimality gap, computation time, and solution 
quality. Table 4 provides a detailed comparison of the 
results obtained for FFD, BFD, and NFD algorithms.  
 
Table 4. Performance Metrics for FFD, BFD, and NFD 
Algorithms 

Algorithm Optimality 
Gap (%) 

Running 
Time (sec) 

Solution 
Quality 
(%) 

FFD 2.56 1.25 95.25 

BFD 2.75 1.48 95.25 

NFD 8.24 0.96 77.14 
 

The results indicate that the FFD and BFD algorithms 
achieve superior solution quality compared to NFD, 
albeit with slightly higher computation times. These 
findings are consistent with the literature, where similar 
trends have been observed (Hemmelmayr et al., 2012). 
The gap values demonstrate the near-optimal 
performance of FFD and BFD, making them suitable for 
practical applications in real-world warehouse 
management. 

6. Conclusion 

Effective warehouse management is crucial for 
companies in the warehouse industry, offering 
significant cost and space savings, improved operational 
efficiency, and increased profitability. Ongoing 
optimization of warehouse operations, including 
inventory management and storage arrangements, 
leads to streamlined workflows and accurate inventory 

tracking. Efficient storage systems maximize space 
utilization, eliminating the need for additional 
warehouses and associated costs.  

The aim of this study is to find an efficient solution that 
minimizes the total capacity of the boxes used and the 
number of boxes used, thus optimizing the company's 
storage policy and saving space in the warehouse. The 
problem under consideration is an NP-Hard problem. 
Foremost, three-dimensional measurements were 
taken for thousands of SKUs in the warehouse, and a 
detailed ABC analysis was performed. Subsequently, we 
focused on A and B-class items. Afterwards, 
Hemmelmayr et al.’s (2012) mathematical model was 
adapted to the problem under consideration. The 
problem was solved by increasing its size gradually and 
trying to obtain optimum results through computational 
experiments. However, it has been shown that as the 
problem size gets larger, the problem cannot be solved 
in a reasonable time, which supports the NP-Hardness 
of the real problem size. Therefore, First Fit Decreasing 
(FFD), Best Fit Decreasing (BFD), and Next Fit 
Decreasing (NFD) heuristic algorithms, which do not 
guarantee the optimal result but are known to give good 
results in a short running time, are considered. This 
means that this study can be used as a reference for 
implementing the FFD, BFD, and  NFD inside 
warehouses that face the same problem of having to 
store items inside variable-sized bins as opposed to 
storing the items in only single-sized bins (which was 
the original aim of designing these algorithms) by 
slightly modifying the code implemented to match the 
needed dimensions.  

The results obtained from the computational 
experiments showed that FFD and BFD outperformed 
the NFD algorithm with the same performance, and all 
three algorithms were successful in reducing storage 
space usage and increasing space utilization compared 
to the existing warehouse practice. 

The scalability of the proposed approach can be 
extended to larger warehouses by employing 
distributed algorithms or parallel computation 
techniques. These techniques would enable the efficient 
handling of larger datasets and more complex 
configurations without significantly increasing 
computation time. 

For dynamic inventory conditions, where items 
frequently arrive and leave, adaptive heuristic 
algorithms can be integrated into the existing 
framework. These algorithms would dynamically adjust 
bin allocations based on real-time data, ensuring that 
storage space utilization remains efficient under 
changing inventory demands. 

Future work could explore these enhancements, 
including testing the algorithms under varying 
warehouse scales and dynamic conditions, to further 
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validate their robustness and applicability in diverse 
operational environments. 
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