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Abstract 

 

        In this study, we investigated modified gravity in 

terms of both scalar and scalar density fields. 

Subsequently, the results are compared and briefly 

discussed within the framework of the Friedmann-

Robertson-Walker (FRW) metric. We present here 

focus our attention on investigating a new modified 

gravitational theory by making use of a weight 2 scalar 

density field, which may be important to describe a late 
universe. On this purpose, we derive corresponding 

equation-of-motion (EoM) for the selected scalar 

density form in order to reveal cosmological features 

of our theoretical ground. Consequently we arrived at 

the new and interesting field equations derived from 

modified equations of action corresponding to an FRW 

metric. 

 

Keywords: Modified gravity, scalar density, scalar 

field. 

 

1. Introduction 

 

Many astrophysical and cosmological studies in 

recent years have revealed that the universe has entered 

a period of accelerating expansion. The corresponding 

information and data analyses (Spergel 2003), (Page 

2003), (Verde 2003), (Bridel et al. 2003), (Riess et al. 

1998), (Perlmutter et al. 1998), 
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(Perlmutter et al.1997), (Perlmutter et al. 1999), 

(Vishwakarma 2001), (Vishwakarma 2002), (Jain and 

Taylor 2003), (Dekel et al. 1997), (Viana and Liddle 

1999), (Schmidt et al. 1998), (Efstathiou et al. 1999), 

(Netterfield et al. 2002), (Tonry et al. 2003), (Daly and 

Djorgovski 2003), (Lahanas et al. 2003), (Seljak et al. 

2005), (Riess et al. 2005), (Astier et al. 2006) 

performed via the WMAP, CMB and supernova 

datasets indicated some strong evidences for this 

speedy expansion phenomenon of the cosmos.  

Therefore, it is clear that cosmic acceleration has far-

reaching implications in contemporary physics. For 

this reason, scientists have begun to consider the 

physical process behind this mysterious expansion 

phase as a fundamental problem of cosmology. 

However, despite all studies, a proper cause has not yet 

been fully established. Historically, attempts to 

modified the General Theory of Relativity (GTR) 

begin soon after Einstein introduced his theory in 

1920. However, especially in the last couple of years, 

such attempts have increased significantly with the 

understanding that the universe is entering a period of 

accelerating expansion. Unfortunately, it is currently 

not possible to explain this mysterious accelerated 

expansion in the original form of the GTR. So we need 

to modified it or come up with new alternative theories. 

On the other hand, it has been suggested that, if gravity 

itself, is modified appropriately it could explain this 

late-time mysterious acceleration (Nojiri and Odintsov 

2004), (Capozziello et al. 2003), (Nojiri and Odintsov 

2007), (Borowiec 2007), (Brevik and Hurtado 2007), 

(Sotiriou 2006), (Bertolami et al. 2007), (Li and 

Barrow 2007). In general, there are two fundamental 

approaches proposed to explain the reason for this 

accelerated expansion behaviour (Allemandi et al. 

2005): one of them is introducing dark energy with 
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negative pressure as the most influential component of 

the universe and the other one is making use of 

modified gravity theories. In this context, many studies 

carried out on the modification of GTR (Boehmer and 

Tamanini 2013), (Boehmer et al. 2014), (Barrow and 

Ottewill 1983), (Capozziello and Laurentis 2011), 

(Dobado and Maroto 1995), (Dvali et al. 2000), 

(Haghani et al. 2013), (Harko and Lobo 2014), (Harko 

et al. 2011), (Harko et al. 2011), (Lobo 2008), (Nojiri 

and Odintsov 2011), (Odintsov and G´omez 2013), 

(Starobinsky 1980), (Sotiriou and Faraoni 2010). On 

the other hand, some scientists suggest that dark energy 

components such as the cosmological constant Λ or 

quintessence may be causing our universe to accelerate 

(Padamanabhan 2003), (Parker et al. 2003). it is 

significant to emphasize here that the idea of using the 

well-known cosmological constant dark energy model 

grapples with some significant issues such as the fine-

tuning and the cosmic coincidence problems 

(Weinberg 1972). In addition, there is a fact that the 

dark energy particle has not been observed yet. As a 

result, the modifications of the GTR have gained 

noteworthy momentum in literature (Meng and Wang 

2003), (Freese and Lewis 2002), (Salti et al. 2018), 

(Salti et al. 2016), (Abedi and Salti 2015). 

       In the GTR, the Einstein-Hilbert action is 

generally written as given below 

 

𝑆𝐸𝐻 =
1

2𝑘2 ∫ 𝑑4𝑥√−𝑔 𝑅.                                          (1) 

 

Here, we have 𝑘2 = 8𝜋𝐺 and assume natural units 𝑐 =
ℏ =  1 for the sake of simplicity. It is well known that 

the 𝑓(𝑅) −theories of gravity extends the Einstein-

Hilbert action in the GTR (Sotiriou and Faraoni 2010) 
to the following one 

 

𝑆𝐸𝐻 =
1

2𝑘2 ∫ 𝑑4𝑥√−𝑔 𝑓(𝑅).                                     (2) 

 

Note that, here, (𝑅) is an arbitrary function of the 

curvature scalar 𝑅.  

       On the other hand, within the framework of the 

modified GTR, scalar fields provide possible dark 

energy models, which can describe the late time 

acceleration. In addition, scalar fields play a 

considerable role in many fields of physics, such as 
gravity and cosmology. However, scalar density fields, 

although very useful in theoretical physics, has not 

been adequately evaluated. A recent paper shows that 

using the weight 1 scalar density solution in the FRW 

metric affects both the Klein-Gordon equation and the 

Friedmann equation compared to the scalar field 

(Pirinccioglu and Sert 2012). One can also sees studies 

containing scalar density fields with different context 

(Demir and Pak 2009), (Pirinccioglu 2012), 

(Pirinccioglu 2019).  

       In this paper, we investigate the recent 

acceleration phase of the universe using the scalar 

density field and the scalar field within the framework 

of modified gravity theory and compare both cases. In 
addition, we present an original case of a scalar density 

field to understand the properties of the recent 

acceleration of the cosmos. This aim may help us to 

understand the subtleties behind the formation of 

cosmological structure.  

According to cosmological observations, the 

universe can be described as a homogeneous and 

isotropic manifold on galactic scales (Friedmann 

1922), (Friedmann 1924). In other words, according to 

the Friedmann approach, which is also known as the 

FRW metric, the cosmos is isotropic and homogeneous 
at galactic scales. Thus, the corresponding spacetime 

fabric has the same behaviour in all directions and 

everywhere, and the metric is invariant throughout the 

selected spacetime structure. Therefore in accordance 

with our purpose throughout this study we will use the 

Friedmann approach. The four-dimensional FRW 

spacetime is represented generally by the subsequent 

line-element 

 

𝑑𝑠2 =  𝑑𝑡2  −  𝑎2(𝑡) [
𝑑𝑟2

1−𝑘𝑟2 +𝑟2𝑑𝛺2],                    (3) 

 

where 𝑑𝛺2 = 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2 . And the parameter 𝑘 

is introduced to explain the spatial curvature of the 

metric and takes values  𝑘 = −1, 0, 1 in case of the 

closed, spatially flat, an open universes, respectively. 

Also, the scale factor is 𝑎(𝑡) and 𝑟 is a radial 

coordinate on the spatial hypersurfaces. 

 

2. Equation of Motion in the Scalar Field 

 

We consider a gravitational action with 𝜙 scalar 

field can be given in an action integral as 

 

𝑆[𝜙]= ∫ 𝑑4𝑥√−𝑔 [ −
1

2
 𝑀𝑝𝑙

2 𝑅 − 𝑓(𝜙) +
1

2
𝑔𝜇𝑣𝛻𝜇𝜙𝛻𝑣𝜙 −

1

2
𝑚2𝜙2].                                         (4) 

 

Here, we have 𝑀𝑝𝑙
2 =

1

8𝜋𝐺
, where 𝑀𝑝𝑙 denotes the 

Planck mass. Taking the variation of action (4) with 

respect to 𝜙, one can get the scalar field equation 

 

𝑔𝜇𝑣𝛻𝜇𝛻𝑣𝜙 − 𝑚2𝜙 + 𝑓′(𝜙)=0,                                 (5) 
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where 𝑓′(𝜙) is defined as  𝑓′(𝜙) =
𝑑𝑓

𝑑𝜙
 .  In the 

framework of the FRW metric, considering the 

homogeneous universe, equation (5) becomes 
 

�̈� + 3𝐻�̇� − 𝑚2𝜙+𝑓′(𝜙) = 0.                                (6)      

                                                    

Varying equation (4) with respect to metric tensor, 

𝑔𝜇𝑣, one can get the result 

 

𝐺𝜇𝑣 = 𝑅𝜇𝑣 −
1

2
𝑔𝜇𝑣𝑅 =

1

2𝑀𝑝𝑙
2 [𝑔𝜇𝑣𝑓(𝜙) −

1

2
𝑔𝜇𝑣𝑔𝛼𝛽𝛻𝛼𝜙𝛻𝛽𝜙 +

1

2
𝑔𝜇𝑣𝑚2𝜙2 + 𝛻𝜇𝜙𝛻𝑣𝜙].           (7) 

 

Here, 𝐺𝜇𝑣 is called Einstein Tensor. The right hand side 

of this equation, which corresponds to the energy-

momentum tensor, can be written as 
 

𝑇𝜇𝑣  =
1

2𝑀𝑝𝑙
2 [𝑔𝜇𝑣𝑓(𝜙) −

1

2
𝑔𝜇𝑣𝑔𝛼𝛽𝛻𝛼𝜙𝛻𝛽𝜙 +

1

2
𝑔𝜇𝑣𝑚2𝜙2 + 𝛻𝜇𝜙𝛻𝑣𝜙],                                            (8) 

 

where 𝑇𝜇𝑣 is the energy-momentum tensor. If both 

sides of this equation are contracted by 𝑔𝜇𝜈, in terms 

of curvature scalar the equation (8) becomes 

 

𝑅 = −
1

2𝑀𝑝𝑙
2 [4𝑓(𝜙) − 𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝑣𝜙 + 2𝑚2𝜙2].      (9)   

                                             

Here, 𝑅 is the Ricci scalar. In the framework of the 

FRW metric, assuming a homogeneous and isotropic 

universe with zero spatial curvature equation (9) 

becomes   

     

�̇� + 2𝐻2 =
1

12𝑀𝑝𝑙
2 [4𝑓(𝜙) − �̇�2 + 2𝑚2𝜙2],          (10)   

                                           

where the Hubble expansion rate is defined by  𝐻 ≡
�̇�

𝑎
  

and the dot represents the time derivative. 

 

3. Preliminaries: Scalar Density  

 

In this part, we introduce briefly how we can use a 

scalar density in an EoM. In the subsequent step, 

within the framework of modified gravity studies, a 

new EoM, which include a scalar density field with a 

weight of 2, is proposed.   

It is generally known that a scalar quantity is invariant 
under all coordinate transformations: 

 

𝜙′(𝑥′) = 𝜙(𝑥).                                                      (11) 

 

On the other hand, the four-dimensional volume 

element generally changes as 

 

𝑑4𝑥 = |
𝜕𝑥𝑎

𝜕𝑥′𝛽| 𝑑4𝑥′                                                   (12) 

 

under coordinate transformations. Next, the above 

relation transforms with the Jacobian, determinant of 

the transformation coefficients, definition as 

 

𝑑4𝑥 = 𝐽𝑑4𝑥′.                                                          (13) 

 

For the inverse transformation case, we have 

 

𝑑4𝑥′ = 𝐽−1𝑑4𝑥,                                                      (14) 

  

where 𝑑4𝑥 has a scalar density of weight −1. It will be 

useful remind here that the transformation rule can be 

applied for the metric tensor in a similar way. In this 

context, the determinant 𝑔 of the metric tensor can be 

presented as  
 

𝑔(𝑥) = 𝑑𝑒𝑡𝑔𝜇𝑣(𝑥).                                                (15) 

 

Also, the above equation under the general tensor 

transformation rules, the metric tensor transforms as 

 

𝑔𝜇𝑣
′ (𝑥′) =

𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝑣 𝑔𝛼𝛽(𝑥).                                   (16) 

 

Taking the determinant of both sides of equation (16), 

we reach at the following conclusions 

 

𝑑𝑒𝑡𝑔𝜇𝑣
′ (𝑥′) = 𝑑𝑒𝑡 (

𝜕𝑥𝛼

𝜕𝑥′𝜇)  𝑑𝑒𝑡 (
𝜕𝑥𝛽

𝜕𝑥′𝑣)𝑑𝑒𝑡𝑔𝛼𝛽(𝑥)  (17) 

 

𝑔′(𝑥′) = 𝐽2𝑔(𝑥).                                                    (18) 

 

Here, the term 𝐽2 causes 𝑔(𝑥) to be a scalar density. 

Note that, here, the factor 𝑔(𝑥) behaves like a scalar 

density of weight 2. Any tensor density of weight-W 
can be expressed as the multiplication of an ordinary 

tensor and the factor 𝑔
−𝑊

2  (Weinberg 1972). In our 

study, both 𝛺 and 𝑔 are considered as scalar densities 

with weight of 2, thence  

 

𝜙 =
𝛺 

𝑔
                                                                     (19) 

 

becomes a normal scalar. 

 

4. Scalar Density Field in the FRW Framework 

 

In this section, we start with the Einstein-Hilbert 

type action integral. Therefore, we present the EoM 

that must be solved in order to find the general 
behaviour of cosmological scalar density fields. An 

action integral from equations (4) and (19) for scalar 

density fields can be given as 
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𝑆
[
Ω

𝑔
]

= ∫ 𝑑4𝑥√−𝑔 [ −
1

2
 𝑀𝑝𝑙

2 𝑅 − 𝑓 (
Ω

𝑔
) +

1

2
𝑔𝜇𝑣𝛻𝜇(

Ω

𝑔
)𝛻𝑣(

Ω

𝑔
) −

1

2
𝑚2(

Ω

𝑔
)2].                                (20) 

 

Here, after varying equation (20) with respect to Ω, one 

can get the result 
 

𝑓′ (
Ω

𝑔
) + 𝑔𝜇𝑣 1

𝑔2 𝛻𝜇𝛻𝑣Ω − 𝑚2Ω
1

𝑔2 = 0,                   (21) 

 

where 𝑓′ (
Ω

𝑔
) =

𝑑𝑓

𝑑Ω
 . The above equation can be 

rewritten in the following form 

 

𝑔𝜇𝑣𝛻𝜇𝛻𝑣Ω − 𝑚2Ω + 𝑔2𝑓′ (
Ω

𝑔
) = 0.                       (22) 

 

 So, making use of this conclusion, it is possible to 

reach at the Friedmann equation by assuming the 

homogeneity and isotropy cases. In doing so, note that 

the general definition for the covariant derivative of a 

scalar density field of weight- 𝑊 is written as     

  

𝛻𝜇Ω = 𝜕𝜇Ω − 𝑊𝛤𝛼𝜇 
𝛼 Ω.                                           (23) 

 

As a result, substituting equation (3) in equation (20) 

yields the following result 

 

Ω̈̃ + 6�̇�Ω̃ − 9𝐻Ω̇̃ + 18𝐻2Ω̃ − 𝑚2Ω̃ + 𝑔2𝑓′ (
Ω

𝑔
) = 0. 

(24) 

 

Here, we used the transformation Ω = Ω̃𝑟4𝑠𝑖𝑛2𝛳, 

assumed that  𝑔2𝑓′ (
Ω

𝑔
) is a spatial constant and 

focused on the case 𝑘 = 0 describing flat spacetime 

metric. Remember that the Hubble parameter 𝐻 ≡
�̇�

𝑎
  is 

connected with the expansion rate, where the dot 
represents the time derivative. Now, we are in position 

to focus on the principle of least action 

 

𝛿𝑆
[
Ω

𝑔
]

= 0                                                                (25) 

for our investigation. Hence, variation of the action 

(20) with respect to the contravariant metric tensor 𝑔𝜇𝑣 

gives 

 

∫ 𝑑4𝑥𝛿 [√−𝑔 ( −
1

2
 𝑀𝑝𝑙

2 𝑅 − 𝑓 (
Ω

𝑔
) +

1

2
𝑔𝜇𝑣𝛻𝜇(

Ω

𝑔
)𝛻𝑣(

Ω

𝑔
) −

1

2
𝑚2(

Ω

𝑔
)2)] = 0                        (26) 

 

and 

 

∫ 𝑑4𝑥𝛿√−𝑔 [−
1

2
 𝑀𝑝𝑙

2 𝑅 − 𝑓 (
Ω

𝑔
) +

1

2
𝑔𝜇𝑣𝛻𝜇(

Ω

𝑔
)𝛻𝑣(

Ω

𝑔
)

−
1

2
𝑚2 (

Ω

𝑔
)

2

]

+ ∫ 𝑑4𝑥√−𝑔[ −
1

2
 𝑀𝑝𝑙

2 𝛿𝑅

− 𝛿𝑓 (
Ω

𝑔
) +

1

2
𝛿𝑔𝜇𝑣𝛻𝜇(

Ω

𝑔
)𝛻𝑣(

Ω

𝑔
) 

+
1

2
𝛿(𝑔−2)𝛻𝜇Ω𝛻𝑣Ω −

1

2
𝑚2𝛿 (

Ω

𝑔
)

2

] =  0.                (27) 

 

Using equation (27), the corresponding energy-

momentum tensor can be written as 

 

𝑇𝜇𝑣 =
1

𝑀𝑝𝑙
2 [

3

2
𝑔𝜇𝑣𝑔𝑎𝛽𝛻𝑎(

𝛺

𝑔
)𝛻𝛽(

𝛺

𝑔
) + 𝛻𝜇 (

𝛺

𝑔
) 𝛻𝑣(

𝛺

𝑔
)  −

3

2
𝑔𝜇𝑣𝑚2 (

𝛺

𝑔
)

2

+ 𝑔𝜇𝑣𝑓(
𝛺

𝑔
) − 2𝑔𝜇𝑣(

𝛺

𝑔
)𝑓′(

𝛺

𝑔
)].          (28) 

 

Contracting this equation with 𝑔𝜇𝑣, one can reach at 

the relation 

 

𝑅 = −
1

𝑀𝑝𝑙
2 [

7

𝑔2 𝑔𝜇𝑣𝛻𝜇Ω𝛻𝑣Ω −
6

𝑔2 𝑚2Ω2 + 4𝑓 (
𝛺

𝑔
) −

8𝛺

𝑔
𝑓′ (

Ω

𝑔
)],                                                               (29) 

 

where 𝑅 is the Ricci scalar and expressed now in terms 

of scalar density. With this statement, we suppose that 

the universe is isotropic and homogeneous on large 

scales to arrive at the modified Friedmann equations. 

Making use of the definition 𝛻𝜇Ω = 𝜕𝜇Ω − 𝑊𝛤𝛼𝜇 
𝛼 Ω, 

the last equation can be rewritten as follows; 

 

𝑅 = −
1

𝑀𝑝𝑙
2 [

1

𝑎12 (7Ω̇̃2 − 84𝐻Ω̃Ω̇̃ + 252𝐻2Ω̃2 −

6𝑚2Ω̃2) + 4𝑓 (
𝛺

𝑔
) +

8Ω̃

𝑎6 𝑓′ (
𝛺

𝑔
)].                            (30) 

 
Finally, we can express this equation in terms of the 

Hubble parameter as 

 

�̇� + 2𝐻2 =
1

6𝑀𝑝𝑙
2 [

1

𝑎12 (7Ω̇̃2 − 84𝐻Ω̃Ω̇̃ + 252𝐻2Ω̃2 −

6𝑚2Ω̃2) + 4𝑓(
𝛺

𝑔
) +

8Ω̃

𝑎6 𝑓′(
𝛺

𝑔
)].                               (31) 

 
This equation shows that both of the scalar density and 

mass density coefficients are proportional to 𝑎−12, 

which means both of these densities affect the 

accelerating expansion of the universe in a similar way. 

In addition, it seems that the derivative of the function 

has a significant influence here, and this effect 

decreases with 𝑎−6. 
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5. Discussion 

 

According to the results we obtained in this study, 

when the Friedmann equations for scalar and scalar 

density fields are compared, it is seen that the scalar 

density variables decrease rapidly with time according 

to the scale factor, 𝑎(𝑡). In addition, considering the 

scalar field equations (6), (10) and the scalar density 

equations (24), (31), it is understood that the scalar 
density field equations contain more terms. Moreover, 

the derivative of the function has a significant effect on 

equations (6), (24) and (31), but, interestingly it has no 

any effect on the scalar field equation (10). Also, in 

scalar density, the mass density is affected by the scale 

factor. However, it is not affected in the scalar field 

case.  

Astrophysical observations have shown that the 

accelerating expansion of the universe has recently 

entered a new exotic phase and unfortunately the GTR 

cannot fully explain the reason of this behaviour. This 
situation has led scientists to introduce new approaches 

such as the dark energy models and modified gravity 

perspectives. In this study, our main aim was to 

examine the dynamical behaviour of the expansion 

phase of our universe from a new and unique 

perspective by looking at the evolutionary processes of 

the cosmos. Therefore, the field equations of the GTR 

have been modified by using a scalar density field with 

weight of 2. Our results may inspire some 

phenomenological researches for future studies, such 

as the problem of the existence of neutron stars, 

gravitational wave astronomy, gravastars and dark 
energy stars, which are considered also as an 

alternative interpretation of black holes. Moreover, it 

is possible to reach additional original cosmological 

conclusions by discussion thermodynamics laws in our 

framework. 

Lastly, gravitational wave astronomy, which began 

in recent years with the famous LIGO (the Laser 

Interferometer Gravitational-Wave Observatory) 

detections, may be the basis for testing the extended 

GTR with the results we have obtained in this paper. A 

recently published paper claims that advanced projects 
to detect gravitational waves, if their sensitivity is 

increased, could allow gravitational wave astronomy 

to perform a precise test for both the GTR and 

extended theories of gravity (Corda 2009). 
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