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Abstract—Waste material was fragmented into gas, liquid 

and solid fractions by pyrolysis. Recently the solid fraction 

(char) has been used as filler in epoxy composites. Type and 

properties of filler affect water absorption of epoxy 

composites. A recent water absorption database (of 1512 data) 

has been obtained experimentally. Accordingly, type of 

paralysed plastic, waste pre–washing, pyrolysis temperature, 

additive dosage and water exposure time were input 

parameters in the estimation model developed with multilayer 

perceptron artificial neural network (MLP ANN) to predict 

the absorbed water quantity as output. Four datasets were 

derived with data pre-processing. Among all the 

configurations worked up, 0.991 training and 0.986 testing R² 

were attained as the highest R² values under conditions 

including 2e4 iterations, lr 0.04, mc 0.9, first hidden layer of 

22 nodes, and second hidden layer of 15 nodes. The R² value 

attained in the optimum configuration and the average R² 

attained via 5-fold cross-validation are close to each other for 

both training and test. The established model will help users 

to predict the quantity of water that absorbed upon exposure. 

This will give idea about the availability of that composite for 

using it for particular purposes. 

 
Keywords—ANN, waste plastics, composite, epoxy resin, 

water.  

I. INTRODUCTION 

Water absorption tendency is a property that can be 

directly attributed to chemical nature and physical structure 

of the material. It has been long known that epoxy and 

epoxy composites easily absorb water when exposed to 

humid environments [1]. The thermoplast polymer matrix 

is known to absorb and diffuse less moisture because it does 

not contain open molecular structures and unsaturated sites, 

which react with water, a highly polar solvent, as does a 

thermoset matrix [2].  

The moisture absorption by composites has several 

adverse effects on their properties and thus, affects their 

operational characteristics and long–term performance [3]-

[5]. The water in epoxy is present in two states; firstly, 

distributed water molecules between the polymer chain and 

condensed water in fractures and cavities [6]. Moisture 
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absorption results in plasticization of the matrix, and 

subsequently to swelling which can cause matrix cracking 

and fiber/matrix debonding. It reduces the stable lifetime of 

the material. Therefore, it is important to study the water 

absorption behaviour of composites in order to estimate the 

consequent effects on the performance of composite parts. 

Such studies enable users to develop strategies for 

controlling and minimizing water absorption [3]. 

Pyrolysis is one of the famous recovery processes that can 

be applied to many types of organic polymeric wastes to 

fractionate them into useful products. As a result of 

pyrolytic decomposition the paralysed material was 

fragmented into gas, liquid and solid fractions. Liquid and 

gas products generally contain components that can easily 

be used as fuel and/or feedstock after further processing. 

Within zero–waste approach, the solid fraction (char) has 

been evaluated in other areas such as adsorption, activated 

carbon production etc. In recent studies char has been used 

as filler in epoxy composites. Depending upon the paralysed 

material and pyrolysis conditions, char properties and char–

added composite properties, which affect their utilization 

areas, change significantly. Water/humidity absorption 

properties of epoxy composites are also affected from type 

of filler material. 

Recently artificial neural network algorithm has been 

preferred to predict different parameters of epoxy 

composites because of some important disadvantages of 

experimental studies such as high cost, time consuming etc. 

Most of these studies interested in the modelling the 

mechanical behavior of composite materials using ANN 

[7]-[9]. Although the modelling of composites’ water 

absorption behaviour is  an important problem a few 

published studies on modelling water absorption in 

composites have been conducted. Pujari et al. aimed to 

compare the ANN and regression models for predicting the 

water absorption properties of jute and banana fiber 

composites using interpolated values obtained from the 

experiment by fuzzy [3]. In a similar study, Pujari et al. 

compared ANN and the correlation–based method for 

various foundation configurations with the interpolated 

values of experimental works using jute and banana fiber 
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composites [4].  

Nazari and  Azimzadegan developed (ANN) and gene 

expression programming (GEP) models for predicting 

splitting tensile strength and water absorption of concretes 

containing ZnO2 nanoparticles at different ages of curing 

[10]. Chen et al. presented ANN modelling to predict the 

water absorption rate of poly (methyl methacrylate) PMMA 

called organic glass and its composites [11].  

In this study, ANN modelling was aimed to predict the 

absorbed water quantity for composite material by using a 

dataset obtained previously as a result of experimental 

studies. In order to find the best model configuration, the 

optimum parameter values of ANN were investigated. 

II. MATERIAL AND METHODS 

A.  Dataset 

A recent water absorption database has been obtained as 

a result of experimental studies of a completed project in 

which Bisphenol–A type epoxy composites prepared with 

plastics pyrolysis char additives [12]. Change of absorbed 

water quantity (mg/g) with type of paralysed waste plastic 

type (HDPE, LDPE, PET, PS, PP, MIX), existence of waste 

washing pre-process, plastic pyrolysis temperature (up to 

700°C) and char additive dosage (up to 50%) in the 

composite and water exposure time (up to 10 days, after 

which composites reach saturation) was included in the 

dataset. ANN model was established to predict the absorbed 

water quantity for composite material by using this dataset. 

B. Artificial Neural Network (ANN) 

In this study modelling of water absorption quantity of 

composites was implemented depending on paralysed waste 

plastic type, existence of waste pre–washing, plastic 

pyrolysis temperature, water exposure time and char 

additive dosage in the composite by using Artificial Neural 

Network (ANN) algorithm. ANN developed by being 

inspired from human brain is a popular and powerfully 

Artificial Intelligence algorithm. Therefore, different ANN 

algorithms have been drawn attention in the literature such 

as Multi-Layer Perceptron (MLP), Levenberg Marquert 

(LM), Radial Based Neural Network (RBNN) etc. The  

common points of these algorithms are process units called 

as neurons and weights between neurons. These algorithms 

are different from each other in terms of structure, learning 

algorithm, activation function etc.. The structure of ANN is 

depending on the complexity of problem and 

experimentally specified. In this study, MLP was preferred 

to model experimental data because of its applicability and 

performance in prediction problems. In this study, 

prediction modelling with MLP was carried out by using 

MATLAB release R2010a. 

MLP is a fully connected feedforward neural network 

with one or more hidden layer(s) between input and output 

layers and also trained with error back–propagation 

learning algorithm.  The basic features of MLP are 

differentiable nonlinear activation function of each neuron 

in hidden and output layers and weights between neurons in 

different layers.  Training is based on the adjusting weights 

in the learning process. Before the training, the input vector 

and expected output vector called as desired vector are 

presented to the network and the initial values of weights 

are assigned.  The learning process is performed in two 

phase: forward and backward. In the forward phase, the 

input vector is propagated layer by layer through the 

network with the fixed weights of the network and the 

output signal is produced. In the backward phase, the 

output of the network is compared with the target vector  to  

compute an error for each input observation. Then resulting  

sum error signal is propagated through the network, again 

layer by layer in the backward direction to adjust weights of 

the network [13]-[14].  

There are several important parameters which affect the 

performance of learning process  such as the number of 

hidden layer, the number of neurons in hidden layer(s), 

learning rate, momentum coefficient and the number of 

iteration [13]-[14]. In the learning process  the optimum 

values of these parameters are investigated to reach the best 

model by changing them with different datasets in different 

stages. 

In this study, data pre-processing was applied to see the 

effects of some uncontrolled extraordinary data on the 

modelling stages. These data include the theoretical initial 

(t=0) water absorption values (which were zero in the 

dataset) and missing experimental values (assigned as zero 

in the dataset) in the original dataset. Thus, by applying 

data pre-processing, four different datasets were generated 

from original dataset as described in Table 1.  

TABLE I. THE RECOMMENDED FONTS. 

Description 
Name of 

Dataset 

Number of 

Data 

Original dataset includes theoretical 

initial water absorption values as zero 

and missing values as zero 

DS1 1512 

Zero values assigned for missing data 

were eliminated as the first step of data 

preprocessing 

DS2 1498 

Irrelevant and/or unexpected water 

absorption values were removed as the 

second step of data preprocessing  

DS3 1482 

All zero values representing theoretical 

initial water absorption values and also 

representing missing data were 

eliminated as the third step of data 

preprocessing 

DS4 1373 

 

Modelling process stages were as follows: 

In the first stage of modelling (ST1), each dataset was 

divided into subsets for training and testing as 80% and 

20%, respectively. Preliminary modelling studies were 

performed with DS1 to decide the number of hidden layers. 

Firstly the modelling was done by using MLP with one 

hidden layer by altering the number of neurons in  the 

range [5 25] for 0.2 learning rate (lr) and 0.8 momentum 

coefficient (mc). The obtained best model was called as 

ST1–DS1. 

In the second stage (ST2),  the experiments was 

performed using the first dataset, DS1, in MLP with two 
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hidden layers by changing number of neurons in hidden 

layers to decide the better structure. The number of neurons 

in the first hidden layer and in the second hidden layer were 

changed in the ranges [4 25] and [5 15], respectively. As a 

result, it was decided that MLP with two hidden layers was 

more successful than the structure with one hidden layer 

and the subsequent studies were performed with MLP with 

two hidden layers.  

In the third stage (ST3), the experiments were performed 

for each dataset by changing the number of hidden neurons 

in the ranges of [4 25] and [5 15] to find the best model 

structure (ST3–DS1, ST3–DS2, ST3–DS3, ST3–DS4).   

In the fourth stage (ST4), with the best number of 

neurons of each dataset lr and mc were changed in the 

ranges [0.1 0.5] and [0.2 0.9] to find optimum values of 

them. For each dataset lr and mc resulting in the highest 

prediction performance were determined and these 

configurations were called as ST4–DS1, ST4–DS2, ST4–

DS3, ST4–DS4.  

In the fifth stage (ST5), fine tuning of lr and mc was 

performed for the modelling of DS4 by using the same layer 

structure of ST4–DS4 which resulted in the highest 

prediction performance. In the previous stage, the values of 

lr and mc for ST4–DS4 had been experimentally found as 

0.1 and 0.9, respectively. However 0.1 is the lower bound of 

lr and 0.9 is the upper bound of mc search space. Therefore, 

by keeping the other optimized values constant, the 

experiments were carried out with DS4 by changing both lr 

in the range [0.01 0.2] and mc in the range [0.85 0.95] with 

the increment 0.01 for the same structure. The reached best 

model was called as ST5–DS4. 

In the sixth stage (ST6), 5 fold cross validation was 

performed for ST5–DS4 to prove the reliability of the study. 

In previous steps 80% of the dataset was used for training 

while the remaining 20% was used for testing. In each fold 

of cross validation another 20% portion of the dataset was 

used for testing while the remaining 80% of it was used in 

training. The calculated errors and R2 were listed at the end 

of each run and statistically compared to indicate the 

reliability of model performance. The advantages of this 

method are that every data point gets to be in a test set 

exactly once, and gets to be in a training set 4 times [15] 

In the previous stages, the number of iteration had been 

selected as 2e4. In the seventh stage (ST7), the effect of 

iteration number was investigated by using the same 

optimum configuration in the fifth stage, ST5–DS4. 

C. Performance Criteria 

Comparisons were made between the model estimation 

results and the experimental results by calculating the Mean 

Absolute Error (MAE), Mean Square Error (MSE), Root 

Mean Square Error (RMSE), and the coefficient of 

specificity (R²). The equations used in these calculations are 

given in Eq.1-4. 
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in which N is the number of data in dataset; Oexp(i) and 

OModel(i) are ith  experimental and model output values of 

absorbed water quantity, respectively. The average values of 

experimental output in the dataset and model output are 

indicated as ExpO  and ModelO . 

The condition which yielded the lowest error and the 

highest R² was selected as the best condition. These error 

calculations were made both for the training, and the test 

data, and training and test performances were assessed 

separately. 

III. RESULTS 

A ‘one factor at a time’ model run was implemented. In 

each step the optimized value of the previous step and all 

the conditions were kept constant except the variable of that 

step. Accordingly, lr (0.2), mc (0.8) and the number of 

iteration (2e4) were assigned initially. First, the MLP 

prediction performances for one and two hidden layers were 

compared with original data set (DS1). The performace of 

prediction of models for each structure (ST1–DS1 and 

ST3–DS1) were compared in Table 2. The error values 

(MAE, MSE and RMSE) for MLP with two hidden layers 

(ST3–DS1) were lower than the model with one hidden 

layer (ST1–DS1) while R2 value was higher than ST1–DS1. 

As better results were achieved by using the structure with 

two hidden layers, subsequent studies were performed with 

two hidden layer MLP for all datasets. 

TABLE II. COMPARISON OF ONE AND TWO HIDDEN LAYER STRUCTURE MODEL PERFORMANCES. 

  

Number of 

Neurons Parameters Training Results Test Results 

  HL1 HL2 lr mc MAE MSE RMSE R2  MAE MSE RMSE R2 

ST1–DS1 28 0 0.2 0.8 0.508 0.438 0.662 0.967  0.649 0.801 0.895 0.957 

ST3–DS1 20 14 0.2 0.8 0.295 0.160 0.400 0.989  0.429 0.338 0.581 0.982 
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After the decision of the number of layers the number of 

neurons in each hidden layer were optimized for each 

dataset to find the best approximation to real water 

absorption quantity values. At this third stage lr (0.2), mc 

(0.8) and the number of iteration (2e4) were kept constant 

and only number of neurons were changed. Then the effects 

of lr and mc were studied by changing their values in the 

fourth stage The prediction performances of the best models 

of these two consecutive stages, ST3 (ST3–DS1, ST3–DS2, 

ST3–DS3, ST3–DS4) and ST4 (ST4–DS1, ST4–DS2, ST4–

DS3, ST4–DS4) are presented in Table 3. The results 

indicated that DS4 was the dataset obtained the lowest 

errors and highest R2. In addition, the model was run for 

ST4–DS4 by performing fine tuning of lr and mc  in the 

fith stage and the results (ST5–DS4) were added as the last 

row of Table 3. The scatter plot of predicted test values of 

ST5–DS4 model against real experimental values is given 

in Figure 1. Both the slope of the trendline and R2 are close 

to 1 as expected. 

TABLE III. OPTIMIZATION OF NUMBER OF NEURONS AND PARAMETERS FOR EACH DATASET. 

 

Training Test Number of Neurons Parameters 

Model MAE MSE RMSE   R2 MAE MSE RMSE R2    HL1 HL2 lr mc 

ST3–DS1 0.295 0.160 0.400 0.989 0.429 0.338 0.581 0.982    20  14 0.2 0.8 

ST4–DS1 0.302 0.166 0.408 0.988 0.422 0.338 0.581 0.982    20  14 0.1 0.9 

ST3–DS2 0.281 0.133 0.365 0.991 0.442 0.392 0.626 0.978    22  15 0.2 0.8 

ST4–DS2 0.283 0.136 0.369 0.991 0.434 0.378 0.615 0.979    22  15 0.1 0.9 

ST3–DS3 0.315 0.168 0.410 0.989 0.457 0.363 0.603 0.975    17  13 0.2 0.8 

ST4–DS3 0.309 0.161 0.401 0.990 0.413 0.318 0.564 0.978    17  13 0.3 0.9 

ST3–DS4 0.270 0.131 0.362 0.991 0.383 0.281 0.531 0.985    22  15 0.2 0.8 

ST4–DS4 0.263 0.124 0.352 0.991 0.381 0.277 0.526 0.985    22  15 0.1 0.9 

ST5–DS4 0.263 0.124 0.353 0.991 0.378 0.272 0.521 0.986    22  15 0.04 0.9 
 

 
Fig. 1.  Scatter plot of best model configuration ST5–DS4. 

lr is expressed as the size of the step taken while 

approaching the minimum over the error function. The fact 

that the lr has a low value means that learning process 

takes place in small steps, i.e., brings together a slow 

learning process [16]. On the other hand, the network may 

not reach to the absolute minimum when higher learning 

coefficients are used to increase learning speed. This 

situation is called oscillation. Thus, lr should be taken so as 

not to cause oscillation. For this reason, in the studies 

conducted, the learning ratio is generally assigned a value 

between 0 and 1, preferably between 0-0.2 [17-18]. In the 

light of this information and with no significant change in 

error ratios, 0.2 which gives the lowest error and the 

highest R² in all error functions for the test data was 

selected as the optimum lr. mc was optimized changing the 

mc between 0.1-0.9 in accordance with the approach in the 

literature that the selection range should be between 0-

1[13]. For all models, the highest prediction performance 

was obtained when all zero values in the dataset 

representing theoretical initial water absorption values and 

also representing missing data were eliminated i.e, with 

DS4. This indicates that theoretical values should not be 

included in the dataset for such a prediction model. 

Comparison of prediction performances of the best 
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configuration of models with DS2 and DS4 datasets 

indicated that, during data preprocessing eliminating not 

only zero values assigned for missing data in the dataset, 

but also elimination of theoretical zero values is essential 

for higher prediction performance. Correct data 

preprocessing is important in modeling. The lowest 

prediction performance was achieved with DS3, indicating 

that removing any data by considering it as irrelevant 

and/or unexpected value is not meaningful as data 

preprocessing.   

In this study, the best model configuration was reached 

in the above five stages. In the sixth stage, 5-fold cross–

validation was applied to DS4 dataset by using ST5–DS4 

model configuration to indicate the reliability and success 

of it. The obtained error and R2 values of each fold, and 

their mean and standart deviation values for both training 

and testing were given in Table 4. When the values attained 

in the previously specified optimum configuration and the 

average values attained via cross-validation are compared, 

training R² values were close to each other, while there was 

not a quite big difference between the test R² values. The 

fact that R2 values are close to each other for both training 

and test values indicates the success of the optimum 

configuration attained. Standard deviations are low and 

mean R2 values were close to maximum values indicating 

that this model can predict water absorption values with 

high performance. 

TABLE IV. PERFORMANCE RESULTS AND THEIR STATISTICS FOR CROSS VALIDATION. 

 Cross Training Test 

 Val. MAE MSE RMSE    R2 MAE MSE RMSE R2 

1st Fold 0.2629 0.1245 0.3528 0.9913 0.3785 0.2716 0.5211 0.9857 

2nd Fold 0.2736 0.1370 0.3701 0.9908 0.4369 0.5707 0.7554 0.9685 

3rd Fold 0.2501 0.1160 0.3406 0.9928 0.4252 0.3643 0.6036 0.9711 

4th Fold 0.2500 0.1114 0.3337 0.9925 0.4260 0.7066 0.8406 0.9586 

5th Fold 0.2558 0.1152 0.3394 0.9929 0.3794 0.3876 0.6226 0.9665 
                  

Mean 0.2585 0.1208 0.3473 0.9921 0.4092 0.4601 0.6687 0.9701 

Std Dev 0.0089 0.0092 0.0130 0.0009 0.0251 0.1568 0.1142 0.0089 

 

 

Finaly, the effect of iteration number was investigated on 

the best model configuration  (ST5–DS4) in the last stage 

and the results were shown in Figure 2. It is seen from the 

figure that the model performance increases when the 

number of iteration increased from 1e4 to 2e4 but above 2e4 

iteration, there is no significant change in the model 

performance as the number of iteration increase. 

 

 

(a) 
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(b) 

(c) 

(d) 

Fig. 2.  Effect of number of iterations on (a) R2 values, (b) MAE values, (c) MSE values, (d) RMSE values for both model training and test 
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I. CONCLUSION 

In this study, water absorption quantity of epoxy 

composites with pyrolysis char additives was modeled by 

using MLP. The established prediction model was improved 

by optimizing the model configuration in consecutive 

stages. The input parameters of MLP are pyrolysed waste 

plastic type, existence of waste pre–washing, plastic 

pyrolysis temperature, water exposure time and char 

additive dosage in the composite while the  output 

parameter of model is  water absorption quantity of 

composites. The most important aim of modelling is the 

best prediction of water absorption quantity. The effects of 

data preprocessing, MLP structure and the number of 

iterations were also investigated.  

This study indicated that data preprocessing is 

important in increasing model prediction performance. 

Before ANN modeling it is necessary to review all the data. 

If there is missing data in the experimental dataset, it 

should not be replaced with zero or with another value. 

This reduces the model performance. Theoretically for 

exposure time is zero (i.e. at the beginning of water 

exposure) absorbed water quantity is zero as well. This can 

be used in plotting the change of absorbed water quantity 

against time. However, this theoretical approach should not 

be used in the dataset in prediction model, otherwise the 

prediction performance decreases. 

Among all the configurations worked up, the lowest error 

and the highest R² values were obtained under hyperbolic 

tangent transfer function configuraton including 2e4 

iterations, lr 0.04, mc 0.9, 22 nodes in the first hidden 

layer, and 15 nodes in the second hidden layer. R² values 

attained in this configuration were found respectively as 

0.991 in the training, and as 0.986 in the testing. The R² 

attained in the optimum configuration and the average R² 

attained via cross-validation are very close to each other for 

both training and test values proves the success of the 

optimum configuration attained. 
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