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ABSTRACT
In this study, compensation payments for Turkish motor vehicles’ compulsory third-party liability insurance between 2018 and
2022 are modeled from a comparative perspective using regression-based and copula-based multivariate statistical methods. The
assumption of gamma distribution for logarithmic compensation payment variables is carried out in both approaches. Bivariate
gamma regression is established using the bivariate gamma distribution, and the mixture of experts, one of the machine learning
techniques, is employed to form the mixture of bivariate gamma regressions. The bivariate copula regression and finite mixture of
copula regression models are designed using the Gumbel and Frank copula functions. The computational analyses were conducted
using the mvClaim package in R. Based on the comparison of model results, a mixture of copula-based models is found to be
more suitable for the multivariate modeling of insurance compensation payments.

Keywords: Bivariate Gamma Distribution, Copula, Generalized Linear Model, Copula Regression, Insurance Compensation
Payments, Machine Learning Techniques, Mixture of Experts Model

1. Introduction

In actuarial science, statistics, econometrics, and financial studies, a multivariate structure is quite common. There may
be correlations or dependencies among variables due to multivariability, making identifying, modeling, and incorporating the
dependency structure into calculations important to obtain more accurate estimates. The dependence between variables can be
determined simply through covariance and correlation analysis. Standard regression models are commonly used to depict the
relationship between the response variable and explanatory variables. As the marginal generalized linear model (GLM) represents
a generalized form of a linear model, it can be employed with a more diverse range of data as an alternative to linear models.
However, apart from the linear regression model and GLM, for modeling correlated multivariate data, multivariate distributions
or copulas, which are mathematically based functions, are required.

Random vector variables are utilized in place of a random variable in multivariate distributions. Essential descriptive statistics
are summarized using joint probability density and joint cumulative distribution functions. In many multivariate statistical
analysis techniques, such as canonical correlation, discriminant analysis, and multivariate analysis of variance, the assumption of a
multivariate Gaussian distribution is used (Tatlıdil, 1996). Besides the Gaussian distribution, various other continuous distributions
can be used for multivariate modeling. For instance, the bivariate gamma distribution is applied in actuarial science to model joint
claim severities (Hu et al., 2019; Hu et al., 2021). A multivariate Pareto distribution is proposed for financial risk measurement (Su
and Furman, 2017). Additionally, aside from continuous distributions, discrete distributions can also be adapted into a multivariate
form. Vernic (2000) introduced a generalization of the multivariate generalized Poisson distribution. Moreover, in recent times,
the phase-type distribution (Zadeh and Bilodeau, 2013; Eryılmaz, 2017) and Sarmanov distribution (Vernic et al., 2022) have
frequently appeared in multivariate analysis.

Multivariate modeling has found widespread use in statistics, econometrics, and finance. In actuarial science, there also exist
correlated or dependent random variables that necessitate multivariate modeling. In non-life actuarial calculations, model-based
approaches are frequently employed. Models are constructed using claim, loss, or risk variables such as claim severity, claim
frequency, probability of claim, individual or aggregate losses, deductibles, limits, loss elimination or inflation ratios, value at risk,
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and risk exposure, (Klugman et al., 2012). In studies involving claim variables, the assumption of independence among claims
has been commonly utilized until recently. However, nowadays, studies that embrace the notion of dependency between claim
variables have superseded those relying on the assumption of independence.

Dependency modeling studies in non-life insurance mathematics vary based on the types of claim variables and the structure of
the dependency. Generally, the emphasis has been on modeling the dependency between claim severity and frequency; however,
different dependency structures have also been under consideration. To model the dependency between claim severity and
frequency, various techniques can be employed, such as copulas (Boateng et al., 2017), GLMs (Garrido et al., 2016), GLMMs
(Jeong et al., 2017), and copula regression models (Song et al., 2009; Parsa and Klugman, 2011; Czado et al., 2012; Krämer et al.,
2013; Maarotto and Varin, 2017; Erdemir and Sucu, 2022). Furthermore, the dependency among claim occurrences (Arvidsson
and Francke, 2007), the dependence between types of risks or types of claims (Frees et al., 2010; Ren, 2012), and the dependence
between claim severities (Hu et al., 2019; Hu and O’Hagan, 2021) are modeled using various methods.

Machine learning constitutes a subset of artificial intelligence that empowers computer systems to learn, particularly from
extensive datasets (Hastie et al., 2009; Alpaydın, 2010; Murphy, 2012). This field finds diverse applications within statistical
and financial domains. In statistical studies, machine learning serves such purposes as estimation, regression, classification,
and clustering. In financial studies, it proves instrumental for tasks such as risk assessment, portfolio management, stock price
estimation, option pricing, and credit evaluation. In actuarial sciences, machine learning techniques are used for a wide range of
applications, such as premium estimation, loss estimation, risk management, and reinsurance optimization. In recent years, machine
learning techniques have been frequently utilized in actuarial studies that involve claim data (Weerasinghe and Wĳegunasekara,
2016; Dewi et al., 2019; Singh et al., 2019; Abdelhadi et al., 2020; Hanafy and Ming, 2021). Moreover, machine learning techniques
have been integrated into copula and GLM methods to enhance predictions. For the dependency modeling of multivariate claim
severities, a novel approach incorporating a bivariate gamma distribution and a mixture of experts (MoE) has been introduced
by Hu et al. (2019). The bivariate gamma MoE model family for joint claim severity is comprised of stages, such as bivariate
gamma distribution estimation, mixture of bivariate gamma clustering, bivariate gamma regression, and mixture of bivariate
gamma regressions (Hu et al., 2021). MoE is a machine learning technique designed to improve predictive performance through
ensemble techniques. The MoE family employs a clustering framework by dividing the problem space into homogeneous regions.
While ensemble techniques use results from all models, the MoE family employs results from a few, or only one, expert network(s)
(Baldacchino et al., 2016).

Hu and O’Hagan (2021) proposed a new approach named finite mixture of copula regression by integrating copula functions.
The copula regression model can be constructed using Gaussian copula function for gamma and Poisson margins under the
mixed copula approach (Song, 2007; Czado et al., 2012). Additionally, Archimedean copula functions, such as Gumbel and Frank
copulas, can be utilized for copula regression with gamma and zero-truncated Poisson margins (Krämer et al., 2013), and also
for the mixture of copula regressions with gamma margins (Hu et al., 2021). Hu et al. (2021) have also introduced a new R
package named mvClaim for the multivariate modeling of general insurance claim severities. The mvClaim R package is a recent
and valuable resource that offers flexible multivariate modeling of dependency for joint claim severity. Moreover, since it can be
adapted to any continuous insurance data, in this study, it is employed in the multivariate modeling of insurance compensation
payments.

Compensation payments represent a significant expense for insurance companies. Their accurate modeling and forecasting are
vital for determining reserve calculations, estimating future expenses, and establishing budgets for companies. Surprisingly, there
is a dearth of work on statistical modeling of compensation payments. When reviewing the literature, it becomes evident that
computational calculations are primarily based on fundamental mathematical calculations and legal adjustments, which fall short
of true statistical modeling. Notably, the calculations for traffic insurance compensation payments tend to be primarily focused on
legal adjustments from the perspective of the insured (Emekliler, 2017; Yolal, 2019).

In this study, compensation payments are regarded as a pivotal expense for insurance companies, with the emphasis placed on
modeling using multivariate statistical methods. The proposed multivariate methods and the R package introduced by Hu et al.
(2021) for actuarial claim severities have been applied to continuous multivariate traffic insurance compensation payments. Traffic
insurance stands as one of the most fundamental legal obligations for all vehicle owners. Insurance companies are obligated to
provide compensation payments, such as material, death, invalidity, and medical reimbursements under the umbrella of traffic
insurance following the occurrence of a claim.

Compensation payments for motor vehicles’ compulsory third-party liability insurance in Turkey are determined according to
the General Conditions of Highways Motor Vehicles Compulsory Financial Liability Insurance (https://www.tsb.org.tr/).
Material compensation has been computed based on such factors as type of vehicle, market value of the vehicle, and the usage status
of the vehicle. This calculation has been facilitated by specific coefficients and a formula outlined in these conditions. Regarding
invalidity compensation, both temporary incapacity and permanent disability compensations were calculated in accordance with
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the conditions specified in these regulations. These calculations consider the active and passive periods of the individual using life
annuities under some actuarial assumptions (Şahin et al., 2021). The death benefit, also recognized as compensation for loss of
support, was determined utilizing life tables, actuarial assumptions, and life annuities (Şahin et al., 2020).

In this study, a comparative analysis is conducted regarding the multivariate modeling of the dependency among claim compen-
sation payments between 2018 and 2022. This is achieved through the application of the mixture of bivariate gamma regression
using the MoE approach and the finite mixture of copula regression model.

The remainder of the article is organized as follows. Section 2 provides a brief description of the methods employed. This section
covers regression-based multivariate models, such as bivariate gamma regression and the mixture bivariate gamma regression
models, as well as copula-based multivariate models, like copula regression and the finite mixture of copula regression. In Section
3, an application is performed for the multivariate modeling of Turkish compulsory traffic insurance compensation payments using
real data which was obtained from reports about motor vehicle insurance statistics published by the Insurance Association of
Turkey, and the results are given. A comparative perspective is presented and concluding remarks are given in Section 4.

2. Methodology

2.1. Regression-Based Multivariate Models

2.1.1. Bivariate Gamma Regression

Consider Y1 and Y2 as mixtures of independent gamma-distributed random variables, namely 𝑋1, 𝑋2𝑎𝑛𝑑𝑋3, where 𝑋𝑖 ∼
𝐺𝑎𝑚𝑚𝑎(α𝑖 , β) for i=1,2,3; α𝑖 > 0 and β > 0. The shape parameters vary for each variable, while the rate parameter remains

constant. Let the vector Y=
[

𝑌1
𝑌2

]
have a bivariate gamma distribution with the parameters α1, α2, α3 and β where 𝑌1 = 𝑋1 + 𝑋2

and 𝑌2 = 𝑋2 + 𝑋3. The probability desnsity function of 𝑌1 and 𝑌2 is provided in Eq. 1 (Hu et al., 2021).

𝑓𝑌1 ,𝑌2 (𝑦1, 𝑦2) =
𝛽𝛼1 + 𝛼2 + 𝛼3

−
𝑒 𝛽(𝑦1 + 𝑦2)

Γ(𝛼1)Γ(𝛼2)Γ(𝛼3)

∫
𝑚𝑖𝑛(𝑦1, 𝑦2)
𝑥3 = 0 𝑒𝛽𝑥3𝑥

𝛼3−1
3 (𝑦1 − 𝑥3)𝛼1−1 (𝑦2 − 𝑥3)𝛼2−1𝑑𝑥3 (1)

A bivariate gamma regression model which models the relationship between gamma-distributed response variables 𝑋1 and 𝑋2
with a covariate vector 𝑧𝑇

𝑖
, can be expressed using logarithmic link function, as shown in Eq. 2. Here, 𝛾1 and 𝛾2 represent the

coefficients of regression model, and i=1, 2, . . . , n (Purhadi et al., 2018). T represents the transpose of the matrix.

𝜇𝑖1 = 𝐸 (𝑋1) = 𝑒𝑥𝑝(𝛾1𝑧
𝑇
𝑖 ), 𝜇𝑖2 = 𝐸 (𝑋2) = 𝑒𝑥𝑝(𝛾2𝑧

𝑇
𝑖 ) (2)

2.1.2. Mixture of Bivariate Gamma Regression

The MoE model is a machine learning method that encompasses model-based clustering with concomitant covariates 𝑤𝑖 and
provides a more convenient approach for regression modeling. The covariates 𝑤𝑖’s are used in the estimation of future outcome
variables. Consider a population comprising G components, each characterized by a bivariate gamma distribution with component-
specific parameters 𝜃𝑔 = (α1𝑔, α2𝑔, α3𝑔, β𝑔), where g=1, 2, . . . , G. The conditional density function based on covariates, using
the mixing proportion 𝜏𝑔 where

∑𝐺
𝑔=1 𝜏𝑔 = 1 is presented in Eq. 3.

𝑝(𝑦𝑖 |𝑤𝑖) = Σ𝐺
𝑔=1𝜏𝑔 (𝑤0𝑖)𝑝

(
𝑦1𝑖 , 𝑦2𝑖 |𝛼1𝑖𝑔 (𝑤1𝑖), 𝛼2𝑖𝑔 (𝑤2𝑖), 𝛼3𝑖𝑔 (𝑤3𝑖)

)
(3)

In Eq. 3, 𝜏𝑔 (𝑤0𝑖) represents the gating network and is modeled by multinomial logistic regression as 𝜏𝑔 (𝑤0𝑖) =
𝑒𝑥𝑝 (𝛾𝑇

0𝑔𝑤0𝑖 )

(∑′=1
𝑔

𝐺𝑒𝑥𝑝

(
�̂�𝑇

0𝑔′𝑤0𝑖

) .

The expert network is denoted by 𝑝

(
𝑦1𝑖 , 𝑦2𝑖 |α1𝑖𝑔 (𝑤1𝑖), α2𝑖𝑔 (𝑤2𝑖), α3𝑖𝑔 (𝑤3𝑖)

)
and it is modelled using GLM with a logarithmic link

function. Specifically, 𝑙𝑜𝑔(α1𝑖𝑔) = 𝛾𝑇1𝑔𝑤1𝑖 , 𝑙𝑜𝑔(α2𝑖𝑔) = 𝛾𝑇2𝑔𝑤2𝑖 , 𝑙𝑜𝑔(α3𝑖𝑔) = 𝛾𝑇3𝑔𝑤1𝑖 and 𝑙𝑜𝑔(β𝑖𝑔) = 𝑔𝑎𝑚𝑚𝑎𝑇4𝑔𝑤4𝑖 . Here, 𝛾0𝑔, 𝛾1𝑔,

𝛾2𝑔, 𝛾3𝑔, and 𝛾4𝑔 are the coefficients of regression models for each component.

Bivariate gamma regression models without mixtures are designed as model types EI and IE, where EI and IE correspond to the
bivariate gamma regression over α𝑘𝑖 and bivariate gamma regression over β𝑘𝑖 , respectively. “E” signifies equal (with a predefined
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mixing proportion of 1/G, where G is a parameter associated with gating), while “I” signifies identical density parameters without
covariates. In the bivariate gamma regression model (EI), the parameters are α𝑘𝑖 and β, while in the bivariate gamma regression
model (IE), the parameters are α𝑘 and β𝑖 . Bivariate gamma regression models have no gating network, with G=1 for both models.
However, both models include covariates in the expert networks.

A mixture of bivariate gamma regression models has been established based on model types VC, VI, VV, VE, CV, IV, EV, EC,
and CE, where “E,” “C,” and “V” signify equal, constant, and variable, respectively. The bivariate gamma MoE model family
employs various parameterizations using “C,” “V,” and “E.” C, V, E, and I are notations established for modeling gating 𝜏 tau,
expert α𝑘 , k=1,2,3 and expert β parameters with different choices under the MoE approach and are used to facilitate parame-
terization. 𝐶 (𝜏𝑔;�𝛾0𝑔), 𝑉 (𝜏𝑖𝑔;∃𝛾0𝑔) and E(𝜏𝑔=1/G) are representations of gating 𝜏. 𝐶 (α𝑘𝑔;�𝛾𝑘𝑔), V(α𝑘𝑖𝑔;∃𝛾𝑘𝑔), E(α𝑘𝑖;∃𝛾𝑘)
and I(α𝑘 ;�𝛾𝑘) are for expert α𝑘 , while C(β𝑔;�𝛾4𝑔), 𝑉 (𝛽𝑖𝑔;∃𝛾4𝑔), 𝐸 (;∃𝛾4) and I(β;�𝛾4) are for expert β. All mixture bivariate
gamma regression models have gating networks and include covariates in the expert networks. In mixture models, data is segmented
into specific clusters using machine learning techniques, such as MoE. For more comprehensive information, refer to Hu et al.
(2019) and Hu et al. (2021).

2.2. Copula-Based Multivariate Models

2.2.1. Copula Regression

A parametric copula function is a useful multivariate distribution function, as represented by Eq. 4. The marginal distribution
functions 𝐹𝑋1 (𝑥1), 𝐹𝑋2 (𝑥2), . . . ., 𝐹𝑋𝑛

(𝑥𝑛), are uniformly distributed within the interval [0,1], with 𝜃 representing the copula
parameter, as per Sklar’s Theorem (Sklar, 1959; Nelsen, 2007).

𝐹𝑋(1. . . 𝑋𝑛 ) (𝑥1, . . . , 𝑥𝑛) = 𝐶 (𝐹𝑋1 (𝑥1), . . . , 𝐹𝑋𝑛
(𝑥𝑛) |𝜃) (4)

Copulas, which are frequently preferred in multivariate and dependency modeling, can either be used independently or be
incorporated into copula regression models through the inclusion of GLM techniques (Czado et al., 2012; Kramer et al., 2013;
Masarotto and Varin, 2017; Erdemir and Sucu, 2022). In addition to understanding the distribution that variables conform to, the
utilization of copulas in copula regression models requires the incorporation of certain covariates. Copula regression models can
be defined using the Gaussian copula function within the mixed copula approach (Song, 2007; Song et al., 2009; Czado et al.,
2012). Kramer et al. (2013) also employed Archimedean copulas in their copula regression models. A bivariate copula regression
model can be constructed as C(Gamma GLM,Gamma GLM|θ), combining marginal Gamma GLMs through a C(.,.|θ) Archimedan
copula function with θ as the copula parameter.

2.2.2. Finite Mixture of Copula Regressions

Hu and O’Hagan (2021) defined a finite mixture of copula regression models that encompass Joe, Gumbel, Clayton, Frank, and
survival Clayton copulas, in addition to the Gaussian copula. Similar to the mixture of bivariate gamma regression, the MoE-based
modeling includes a combination of two copula regression models. A GLM is expressed using 𝛿 as the link function and β 𝑗𝑔 as
the regression coefficient for the j𝑡ℎ margin and g𝑡ℎ component, as shown in Eq. 5. Additionally, 𝑥𝑇

𝑖 𝑗𝑔
represents the covariate of

j𝑡ℎ margin and g𝑡ℎ component, where j=1,2; g=1, 2, . . . , G.

𝜇 𝑗𝑖 = 𝛿−1
(
𝑥𝑇𝑖 𝑗𝑔𝛽 𝑗𝑔

)
(5)

The likelihood function L(𝜃) =
∏

𝑖=1)𝑁
∑𝐺

𝑔=1 𝜏𝑔ℎ𝑔 (𝑦𝑖; 𝜃𝑔) for the finite mixture copula regression model is provided in
Eq. 6, where 𝑐𝑔 is the density of copula function. The term ℎ𝑔 (𝑦𝑖; 𝜃𝑔) represents the component-specific copula regression for
𝜃𝑔 =

{
α𝑔, β 𝑗𝑔, 𝛾 𝑗𝑔

}
, with α𝑔 as the copula parameter. An expectation-maximization (EM) algorithm is employed for the parameter

estimation (Dempster et al., 1977; Hu et al., 2021). The parameter 𝜏𝑔 signifies the mixing proportion, and it holds that
∑𝐺

𝑔=1 𝜏𝑔 = 1
under the MoE clustering approach.

𝐿 (𝜃) =
𝑁∏
𝑖=1

Σ𝐺
𝑔=1𝜏𝑔𝑐𝑔 (𝐹1 (𝑦1𝑖; 𝛽1𝑔, 𝛾1𝑔), 𝐹2 (𝑦2𝑖; 𝛽2𝑔, 𝛾2𝑔);𝛼𝑔) 𝑓1 (𝑦1𝑖; 𝛽1𝑔, 𝛾1𝑔), 𝑓2 (𝑦2𝑖; 𝛽2𝑔, 𝛾2𝑔) (6)
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3. Application

An application of these models have been conducted for the multivariate modeling of Turkish compulsory traffic insurance
compensation payments using data extracted from reports that include motor vehicle insurance statistics published on the website
of the Insurance Association of Turkey (https://www.tsb.org.tr/tr/istatistikler). The study discusses material, death,
and invalidity compensation amounts paid within the scope of compulsory traffic insurance for different vehicle types on a quarterly
basis from 2018 to 2022. Medical, outstanding, and transferring outstanding compensation payments have not been included in
the study. The data in the reports is not used directly. For all three types of compensation, the final compensation amounts are
calculated based on the reports as (Compensation Payments to the Insured) + (Expert Payments) + (Other Cost Payments) = Total
Compensation. Material, death, and invalidity compensation payments are determined as response variables, while the premium,
number of benefits, term, and type of vehicle are considered covariates. To prepare the data for modeling, it was categorized
according to the type of vehicle and the term. The term was categorized into four quarters (1st, 2nd, 3rd, and 4th), and the type
of vehicle was categorized into two groups: automobiles and non-automobiles. The type of vehicle variable is represented as a
dummy variable (1, 0). The other covariates are treated as continuous variables. Ultimately, a dataset with 300 observations, four
covariates, and three response variables has been compiled. One of the reasons for transforming the data into categorical values is
the utilization of GLM in multivariate models. Furthermore, due to the nature of the insurance system, it employs more categorical
data based on the characteristics of the policyholder or the vehicle, rather than individual data. The categorical structure facilitates
interpretation and estimation.

The aim of this study is to achieve the multivariate modeling of compensation payments based on vehicle type, premium, number
of benefits, and term variables using both regression-based and copula-based models. The regression-based models encompass
bivariate gamma regression models, as well as mixtures of these regression models created through machine learning techniques.
The copula-based models include copula regression models and mixtures of copula regression models utilizing Gumbel and Frank
copula functions. Statistical analyses and actuarial calculations were primarily conducted using the mvClaim R package (Hu et al.,
2021). The methods were applied using BGR ( ), MBGR ( ), MCGR ( ), and copreg.gamma ( ) functions in the mvClaim package.
The processing steps in functions are given in detail in the research of Hu et al. (2021). Additionally, auxiliary packages including
copula, stats, lme4, ggplot2, PerformanceAnalytics, and fitdistrplus have also been utilized.

Before conducting multivariate modeling, the correlation between Turkish compulsory traffic insurance compensation payments
was assessed through the correlation matrix. The correlations between material-death, material-invalidity, and death-invalidity
was found to be 0.940109, 0.957997, and 0.962905, respectively. These correlation coefficients are visualized in Figure 1. The
study demonstrates a significant and high dependency between the selected compensation payments, indicating the potential for
multivariate modeling. The compulsory traffic insurance covers the compensations to be paid for the reparation of the damage
that arises as a result of an event such as a traffic accident. The compensations may depend on certain factors related to the
general structure of traffic accidents and the functioning of the insurance system. In traffic accidents that result in death or injury,
the occurrence of material damage is inevitable. Therefore, a high correlation between these compensation payments is expected
among these payment types.

Figure 1. Correlation between death, material and invalidity compensation payments

In this study, Turkish compulsory traffic insurance compensations have been modeled using regression-based and copula-based
multivariate methods, with the assumption that compensation variables follow a Gamma distribution. The conditions for the
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application of the functions require the data to follow a gamma distribution and possess a structure suitable for multivariate
modeling. Thus, the suitability of compensation payment variables to the Gamma distribution has been tested. To fulfill the
assumption of a Gamma distribution, a logarithmic transformation was applied to all compensation variables. The shape and rate
parameters were determined using the fitdistrplus R package for the logarithmic compensations. According to the Kolmogorov-
Smirnov test, the logarithmic death, logarithmic material, and logarithmic invalidity compensations exhibit a good fit to the Gamma
distribution (p>0.05). Descriptive statistics of logarithmic material, death, and invalidity compensation payments are provided in
Table 1 below.

Table 1. The descriptive statistics of log- material, death and invalidity compensation payments

11 
 

In this study, Turkish compulsory traffic insurance compensations have been modeled using 

regression-based and copula-based multivariate methods, with the assumption that compensation 

variables follow a Gamma distribution. The conditions for the application of the functions require 

the data to follow a gamma distribution and possess a structure suitable for multivariate modeling. 

Thus, the suitability of compensation payment variables to the Gamma distribution has been tested. 

To fulfill the assumption of a Gamma distribution, a logarithmic transformation was applied to all 

compensation variables. The shape and rate parameters were determined using the fitdistrplus R 

package for the logarithmic compensations. According to the Kolmogorov-Smirnov test, the 

logarithmic death, logarithmic material, and logarithmic invalidity compensations exhibit a good 

fit to the Gamma distribution (p>0.05). Descriptive statistics of logarithmic material, death, and 

invalidity compensation payments are provided in Table 1 below. 

Table 1. The descriptive statistics of log- material, death and invalidity compensation payments 

 

 Material Death Invalidity 

Minimum 6.7690 5.4640 4.1730 
1st Quartile 15.992    14.640 15.096 

Median 17.650    16.291    17.029   
Mean 17.114    15.589    16.240   

3rd Quartile 18.920    17.354    18.123   
Maximum 22.913    20.381    21.892   

Standard Deviation 2.9924 2.9195 3.1863 
Variance 8.9543 8.5233 10.152 

    
 

Parametric bootstrap-based goodness-of-fit tests were conducted for the elliptical copulas 

(Gaussian and t) and several Archimedean copulas (Gumbel, Frank, Clayton, and Joe) to model 

the dependence between material and death compensations, the dependence between material and 

invalidity compensations, as well as the dependence between death and invalidity compensations 

separately. The results of these tests are presented in Table 2. 

Table 2. The results of goodness-of-fit test of parametric copulas 

Copula for the Dependence Between Material-Death Compensations 

Parametric copulas Parameter estimation  Statistic p-value 

Gaussian 0.94631 0.04557 0.009804* 
t 0.94753, 6.07160 # 0.08757 0.049020* 

Gumbel 5.0114 0.03677 0.009804* 

Parametric bootstrap-based goodness-of-fit tests were conducted for the elliptical copulas (Gaussian and t) and several
Archimedean copulas (Gumbel, Frank, Clayton, and Joe) to model the dependence between material and death compensa-
tions, the dependence between material and invalidity compensations, as well as the dependence between death and invalidity
compensations separately. The results of these tests are presented in Table 2.

Table 2. The results of goodness-of-fit test of parametric copulas
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Table 2. The results of goodness-of-fit test of parametric copulas 

Copula for the Dependence Between Material-Death Compensations 

Parametric copulas Parameter estimation  Statistic p-value 

Gaussian 0.94631 0.04557 0.009804* 
t 0.94753, 6.07160 # 0.08757 0.049020* 

Gumbel 5.0114 0.03677 0.009804* 
Frank 16.857 0.10058 0.009804* 

Clayton 3.8013 0.39174 0.009804* 
Joe 7.0723 0.20793 0.009804* 

Copula for the Dependence Between Material-Invalidity Compensations 

Parametric copulas Parameter estimation Statistic p-value 

Gaussian 0.96002 0.02583 0.009804* 
t 0.96079, 4.75585 # 0.07648 0.068630* 

Gumbel 5.6155 0.03309 0.009804* 
Frank 19.981 0.10368 0.009804* 

Clayton 5.0228 0.21816 0.009804* 
Joe 7.5368 0.41273 0.009804* 

Copula for the Dependence Between Death-Invalidity Compensations 

Parametric copulas Parameter estimation Statistic p-value 

Gaussian 0.95946 0.023055 0.009804* 
t 0.96077, 14.72332 # 0.098977 0.009804* 

Gumbel 5.2451 0.040724 0.009804* 
Frank 20.889 0.145360 0.009804* 

Clayton 4.9203 0.214590 0.009804* 
Joe 6.6707 0.390200 0.009804* 

*P value significant at the 0.05 level, #t copula has two parameters, while the other copulas have only one 
parameter 

 

According to Table 1, all chosen parametric copulas are suitable for jointly modeling material, 

death, and invalidity compensations, considering the dependence between compensations 

(p<0.05). Given the strong correlation between the compensations, it is an anticipated outcome 

that all copulas are well-suited. The suitability of both elliptical and Archimedean copulas for the 

data could stem from the presence of multiple dependencies in the data or indicate that the dataset 

simultaneously represents specific dependency structures from different perspectives. Considering 

that the analyses are conducted using the mvClaim R package, which is specifically designed for 

Gumbel and Frank copulas, this study focuses on these two copulas for the multivariate modeling 

of compensation payments. 

Regression-based and copula-based multivariate models were explored for modeling Turkish 

compulsory traffic insurance compensation payments. Initially, comparisons were conducted 

According to Table 1, all chosen parametric copulas are suitable for jointly modeling material, death, and invalidity compensa-
tions, considering the dependence between compensations (p<0.05). Given the strong correlation between the compensations, it
is an anticipated outcome that all copulas are well-suited. The suitability of both elliptical and Archimedean copulas for the data
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could stem from the presence of multiple dependencies in the data or indicate that the dataset simultaneously represents specific
dependency structures from different perspectives. Considering that the analyses are conducted using the mvClaim R package,
which is specifically designed for Gumbel and Frank copulas, this study focuses on these two copulas for the multivariate modeling
of compensation payments.

Regression-based and copula-based multivariate models were explored for modeling Turkish compulsory traffic insurance
compensation payments. Initially, comparisons were conducted within the regression-based models and separately within the
copula-based models. Subsequently, the chosen regression-based and copula-based models were compared with each other.
Notably, while the mvClaim R package has been primarily designed for insurance claim severities modeling, it can be adapted for
positively continuous data, as emphasized by Hu et al. (2021). This study employs a multivariate approach to model continuous
compensation payments using a combination of regression models, machine learning techniques, and copula functions.

The bivariate gamma regression and mixture of bivariate gamma regression models are fitted using the EM algorithm through
the BGR ( ) and MBGR ( ) functions within the package, respectively. The outcomes of the regression models are consolidated in
Table 3 below.

Table 3. Comparison of Bivariate Gamma Regression and Mixture of Bivariate Gamma Regression Models
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Table 3. Comparison of Bivariate Gamma Regression and Mixture of Bivariate Gamma 
Regression Models 

Bivariate Gamma Regression Models for Material-Death Compensations 

Models log-likelihood AIC BIC 

BGR1 (EI) -928.6031 1879.206 1919.948 
BGR (IE) -1032.769 2079.537 2105.464 
MBGR2 (VC) -752.3417 1556.683 1652.982 
MBGR (VI) -757.0442 1564.088 1656.683 
MBGR (VV) -758.8661 1581.732 1700.253 
MBGR (VE) -727.5208 1511.042 1614.747 
MBGR (CV) -800.6102 1637.220 1703.889 
MBGR (IV) -1010.359 2050.718 2106.275 
MBGR (EV) -808.2121 1660.424 1741.907 
MBGR (EC) -922.3294 1876.659 1935.919 
MBGR (CE) -841.3727 1710.745 1762.598 
Bivariate Gamma Regression Models for Material-Invalidity Compensations 

Models log-likelihood AIC BIC 

BGR (EI)  -933.2306 1888.461 1929.203 
BGR (IE)  -1071.726 2157.452 2183.379 
MBGR (VC) -727.1016 1506.203 1602.502 
MBGR (VI) -766.8502 1583.700 1676.295 
MBGR (VV) -739.5443 1543.089 1661.610 
MBGR (VE) -735.2582 1526.516 1630.222 
MBGR (CV) -772.0130 1580.026 1646.694 
MBGR (IV) -1049.915 2129.831 2185.388 
MBGR (EV) -801.7514 1647.503 1728.986 
MBGR (EC) -921.4530 1874.906 1934.167 
MBGR (CE) -834.7204 1697.441 1749.294 

Bivariate Gamma Regression Models for Death-Invalidity Compensations 

Models log-likelihood AIC BIC 

BGR (EI) -955.6750 1933.35 1974.092 
BGR (IE)  -1097.225 2208.45 2234.377 
MBGR (VC) -729.8655 1511.731 1608.029 
MBGR (VI) -772.4224 1594.845 1687.439 
MBGR (VV) -727.0960 1518.192 1636.713 
MBGR (VE) -735.8603 1527.721 1631.427 
MBGR (CV) -745.2686 1526.537 1593.205 
MBGR (IV) -1087.455 2204.910 2260.467 
MBGR (EV) -801.0448 1646.090 1727.573 
MBGR (EC) -944.0732 1920.146 1979.407 
MBGR (CE) -828.6652 1685.330 1737.183 

1BGR: Bivariate Gamma Regression, 2MBGR: Mixture Bivariate Gamma Regression 

 

According to Table 3, among the bivariate regression models, the bivariate gamma regression 

model (EI) exhibits the lowest values of information criteria (AIC, BIC) for all three pairs of 
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According to Table 3, among the bivariate regression models, the bivariate gamma regression model (EI) exhibits the lowest
values of information criteria (AIC, BIC) for all three pairs of compensation payments. Among the mixture regression models, those
with the lowest AIC and BIC values are the mixture of bivariate gamma regression models (VE) (AIC=1511.042, BIC=1614.747),
(VC) (AIC=1506.203, BIC=1602.502), and (VC) (AIC=1511.731, BIC=1608.029) for the pairs of material-death compensations,
material-invalidity compensations, and death-invalidity compensations, respectively. It is noteworthy that the mixture regression
models display lower values of information criteria compared to the bivariate gamma regression models for all three pairs of
compensations.

Based on the chosen models using information criteria, Figures 2, 3, and 4 depict the graphs illustrating the estimated logarithmic
and actual logarithmic compensation payments for all three pairs. In these figures, “BGR” denotes the bivariate gamma regression
model, while “MBGR” represents the mixture of bivariate gamma regression model.

Figure 2. The fitted values of BGR(EI) and MBGR(VE) models for the pair material-death compensations

Figure 3. The fitted values of BGR(EI) and MBGR(VC) models for the pair material-invalidity and death-invalidity compensations

Figure 4. The fitted values of BGR(EI) and MBGR(VC) models for the pair death-invalidity compensations
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It has been observed that the predicted values in the mixed bivariate gamma regression models are closer to the actual values
when compared to the bivariate gamma regression models for all three pairs of compensations.

The outcomes of bivariate copula regressions with gamma margins, including a single copula (Gumbel or Frank), and the
mixture of copula regressions with gamma margins, involving both copulas (Gumbel and Frank), fitted using the EM algorithm,
are presented in Table 4. According to Table 4, the mixture of bivariate copula regression models with Gumbel and Frank copulas
exhibit lower information criteria in comparison to the copula regression models for all pairs of compensations.

Table 4. Comparison of Copula Regression and Mixture of Copula Regression Models
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Figure 3. The fitted values of BGR(EI) and MBGR(VC) models for the pair material-invalidity 
and death-invalidity compensations 

Table 4. Comparison of Copula Regression and Mixture of Copula Regression Models 

Copula-Based Models for Material-Death Compensations 

Models log-likelihood AIC BIC 

Bivariate Copula Regression with Gumbel Copula -956.6117 1931.223 1964.557 
Bivariate Copula Regression with Frank Copula -924.8574 1867.715 1901.049 
Mix. of Copula Regression with Gumbel and Frank Copulas -569.9331 1169.866 1225.423 

Copula-Based Models for Material-Invalidity Compensations 

Models log-likelihood AIC BIC 

Bivariate Copula Regression with Gumbel Copula -965.4639 1948.928 1982.262 
Bivariate Copula Regression with Frank Copula -1075.104 2168.208 2201.542 
Mix. of Copula Regression with Gumbel and Frank Copulas -578.0628 1186.126 1241.682 

Copula-Based Models for Death-Invalidity Compensations 

Models log-likelihood AIC BIC 

Bivariate Copula Regression with Gumbel Copula -1020.234 2058.468 2091.802 
Bivariate Copula Regression with Frank Copula -1005.715 2029.429 2062.763 
Mix. of Copula Regression with Gumbel and Frank Copulas -602.2227 1234.445 1290.002 

 

Finally, upon comparing the selected mixture multivariate models, it becomes evident that the 

models with copulas are more suitable for the multivariate modeling of this data. As can be seen 

in Table 5 below, the AIC and BIC values for material-death compensations are calculated as 

1169.866 and 1225.423, respectively. The information criteria (AIC, BIC) values for material-

invalidity compensations are (AIC=1186.126, BIC=1241.682), and for death-invalidity 

compensations, they are (AIC=1234.445, BIC=1290.002). The mixture of copula regression 

models proves to be more suitable, with the criteria for these models being indicated in bold. 

 

Table 5. Comparison of Mixture Multivariate Models 

Multivariate Models for Material-Death Compensations 

 Mixture of Bivariate 
Gamma Regression 

Mixture of Copula 
Regression  

AIC 1511.042 1169.866 
BIC 1614.747 1225.423 

Multivariate Models for Material-Invalidity Compensations 

 Mixture of Bivariate 
Gamma Regression 

Mixture of Copula 
Regression  

Finally, upon comparing the selected mixture multivariate models, it becomes evident that the models with copulas are more
suitable for the multivariate modeling of this data. As can be seen in Table 5 below, the AIC and BIC values for material-death
compensations are calculated as 1169.866 and 1225.423, respectively. The information criteria (AIC, BIC) values for material-
invalidity compensations are (AIC=1186.126, BIC=1241.682), and for death-invalidity compensations, they are (AIC=1234.445,
BIC=1290.002). The mixture of copula regression models proves to be more suitable, with the criteria for these models being
indicated in bold.

Table 5. Comparison of Mixture Multivariate Models
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Table 4. Comparison of Copula Regression and Mixture of Copula Regression Models 

Copula-Based Models for Material-Death Compensations 

Models log-likelihood AIC BIC 

Bivariate Copula Regression with Gumbel Copula -956.6117 1931.223 1964.557 
Bivariate Copula Regression with Frank Copula -924.8574 1867.715 1901.049 
Mix. of Copula Regression with Gumbel and Frank Copulas -569.9331 1169.866 1225.423 

Copula-Based Models for Material-Invalidity Compensations 

Models log-likelihood AIC BIC 

Bivariate Copula Regression with Gumbel Copula -965.4639 1948.928 1982.262 
Bivariate Copula Regression with Frank Copula -1075.104 2168.208 2201.542 
Mix. of Copula Regression with Gumbel and Frank Copulas -578.0628 1186.126 1241.682 
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Table 5. Comparison of Mixture Multivariate Models 

Multivariate Models for Material-Death Compensations 

 Mixture of Bivariate 
Gamma Regression 

Mixture of Copula 
Regression  

AIC 1511.042 1169.866 
BIC 1614.747 1225.423 

Multivariate Models for Material-Invalidity Compensations 

 Mixture of Bivariate 
Gamma Regression 

Mixture of Copula 
Regression  

AIC 1506.203 1186.126 
BIC 1602.502 1241.682 

Multivariate Models for Death-Invalidity Compensations 

 Mixture of Bivariate 
Gamma Regression 

Mixture of Copula 
Regression  

AIC 1511.731 1234.445 
BIC 1608.029 1290.002 

 

4. Conclusion 

Motor vehicles’ compulsory third-party liability insurance compensation payments are 

essential expense items for insurance companies, as traffic insurance is a mandatory liability 

insurance frequently chosen by policyholders. Calculations of compensation payments primarily 

rely on fundamental mathematical methods and legal regulations. Predicting compensation 

4. Conclusion

Motor vehicles’ compulsory third-party liability insurance compensation payments are essential expense items for insurance
companies, as traffic insurance is a mandatory liability insurance frequently chosen by policyholders. Calculations of compensation
payments primarily rely on fundamental mathematical methods and legal regulations. Predicting compensation amounts is crucial
for determining reserve calculations, estimating future expenses, and establishing company budgets. Additionally, there might
exist correlations or dependencies among traffic insurance compensation payment variables, given that insurance companies are
obligated to provide compensation for material, death, invalidity, and medical claims. Identifying and modeling these dependencies
is essential, making multivariate statistical methods the foundation for such calculations.
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In non-life insurance mathematics, various approaches, including copula, GLM, GLMM, copula regression models, and mul-
tivariate distributions, are employed for dependency modeling studies. Notably, in recent years, machine learning techniques
integrated with copula and GLM have gained traction in actuarial studies, significantly enhancing prediction accuracy. In this
study, Turkish motor vehicles’ compulsory third-party liability insurance compensation payments spanning the years 2018 and
2022 were modeled using regression-based and copula-based multivariate statistical methods. Both models assume the gamma
distribution for logarithmic compensation payment variables. Bivariate gamma regression leverages the bivariate gamma distri-
bution, while the mixture of bivariate gamma regressions was realized through the MoE approach, one of the machine learning
techniques. The bivariate copula regression and finite mixture of copula regression models were formulated using Gumbel and
Frank copula functions. The computational analysis was facilitated using the R package "mvClaim."

MoE was applied with the help of the MBGR ( ) and MCGR functions in the mvClaim package. The primary purpose of MoE
is to provide an approach where different experts solve various sub-problems, with a better outcome being achieved by combining
the results of these experts. The advantage of MoE is evident in this study, as it leads to more accurate predictions with the mixture
models employing the MoE approach.

A comparative approach is presented through information criteria. The model results indicate that the mixture of models, both in
regression-based and copula-based scenarios, yields superior outcomes for the multivariate modeling of insurance compensation
payments. The observed high correlation between insurance compensation pairs validates the suitability of copula-based models
over regression models. The incorporation of machine learning techniques, like MoE, enhances predictions and results in lower
information criteria via mixture copula regression models. The primary focus of this study is estimating compensation payments
using multivariate statistical methods. For a more comprehensive study, the results obtained from classical compensation calculation
methods can be contrasted with the findings of regression-based and copula-based mixture models proposed in this study.
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