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Abstract 

The main purpose of this study is to deal with the parameter estimation 

problem for the geometric process (GP) when the distribution of the 

first occurrence time of an event is assumed to be Rayleigh. For this 

purpose, maximum likelihood and Bayesian parameter estimation 

methods are discussed. Lindley and Markov chain Monte Carlo 

(MCMC) approximation methods are used in Bayesian calculations. 

Additionally, a novel method called the Modified-Lindley 

approximation has been proposed as an alternative to the Lindley 

approximation. An extensive simulation study was conducted to 

compare the performances of the prediction methods. Finally, a real 

data set is analyzed for illustrative purposes.

 

1. Introduction

The counting process is an appropriate and 

frequently employed method for the statistical 

analysis of the times at which successive events 

occur. Let us consider a set of data with successive 

arrival times. If successive arrival times are 

independently and identically distributed (iid), the 

renewal process (RP) can be utilized to analyze this 

data. Although this method appears to be 

theoretically easy, real-world situations frequently 

have a monotone trend in the data set because of 

the effect of aging and accumulated wear [1], 

meaning that the successive arrival times may be 

independently distributed but not identically 

distributed. Non-homogeneous Poisson process 

and geometric process (GP) are two more 

procedures that can be used in the literature to 

analyze a set of successive arrival times with a 

trend. The GP was first introduced by Lam [1-2], 

as a generalization of a renewal process. See the 

following definition to understand it, [3]. 

Definition 1: A set of nonnegative random 

variables {𝑋𝑖  , 𝑖 = 1,2, … }  is said to be a GP, If 

𝑎𝑖−1𝑋𝑖 , 𝑖 = 1,2, … are iid random variables, where 

𝑎 > 0 is the ratio of GP. The GP is stochastically 

decreasing when 𝑎 > 1, increasing when 𝑎 < 1. It 
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will become a RP if 𝑎 = 1. In other words, it is 

simple to determine the density function of 𝑋𝑖 from 

Definition 1, if {𝑋𝑖  , 𝑖 = 1,2, … } is a GP and the 

density function of 𝑋1 is 𝑓.    

𝑓𝑥𝑖
(𝑥) = 𝑎𝑖−1𝑓(𝑎𝑖−1𝑥𝑖)                      (1)  

Furthermore, with 𝐸(𝑋1) = 𝜇 and  

𝑉𝑎𝑟(𝑋1) = 𝜎2, the expected value (EV) and the 

variance (Var) of 𝑋𝑖 ,are given as follows: 

𝐸(𝑋𝑖) =
𝜇

𝑎𝑖−1  and  𝑉𝑎𝑟(𝑋𝑖) =
𝜎2

𝑎2(𝑖−1), 
 

where μ and 𝜎2 are EV and Var of the first 

occurrence time 𝑋1, respectively.  

Lam introduced and applied the GP to maintenance 

and repair problems, see [1-2]. Several researchers 

have researched the basic properties of GP, such as 

[3-4]. Furthermore, the parameter estimation 

problems for the GP have recently been presented 

based on the assumption that the random variable 

𝑋1 follows particular distributions, for example, the 

lognormal distribution Yeh and Chan [5], gamma 

distribution Kara et al.[6], Weibull distribution 

Aydoğdu et al. [7], the inverse Rayleigh 

distribution Usta [8], generalized Rayleigh 

distribution Biçer et al. [9]  and Rayleigh 

distribution Biçer et al.[10]. 

https://dergipark.org.tr/tr/pub/bitlisfen
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In studies on the GP, different classical parameter 

estimation methods, including maximum 

likelihood estimators (MLEs), have been used to 

estimate the parameters of the process. Since GP 

was introduced, it has been studied by many 

researchers, see Kara et al. [11] and also the 

references cited therein. In these studies on the GP, 

classical (maximum likelihood and modified 

maximum likelihood) methods were used to 

estimate the parameters of the process. However, 

there are not many studies on the Bayesian 

parameter estimation problem in GP. Recently, the 

Bayesian estimators for GP with Lindley and 

Weibull distributions, respectively, are developed 

by Yılmaz et al. [12] and Usta [13]. 

This scenario has motivated us to investigate the 

Bayesian parameter estimation problem in the GP. 

On the other hand, Bayesian inference is an 

alternative framework in estimation problems and 

received a great deal of attention in recent years. 

One of the main advantages of Bayesian statistics 

is that it allows us to use prior information to 

analyze unknown parameters. Thus, stronger 

inferences are obtained. Additionally, Bayesian 

models outperform classical models, particularly 

for small sample sizes.  

Therefore, in this paper, we have discussed 

Bayesian inference in GP with Rayleigh 

distribution. 

Here, we assume that the first inter-arrival time 

𝑋1 distribution in GP follows a Rayleigh 

distribution with parameter λ. The remainder of the 

article is organized as follows: In section 2, the 

Rayleigh distribution is briefly given. The MLEs of 

the parameters 𝑎 and λ are obtained. The limiting 

distributions of the MLEs are investigated. The 

Bayes estimators of the unknown parameters under 

square error loss function (SELF) are constructed. 

For the Bayesian computation, Lindley’s, Modified 

Lindley (M-Lindley), and Gibbs sampling methods 

are used. In Section 3, a Monte Carlo Simulation 

study is carried out to compare the performance of 

the various estimation methods developed in the 

previous sections. A real-life data set is presented 

in Section 4. Finally, some concluding remarks are 

provided in Section 5. 
 

2. Material and Method 

 

In this section of the study, Rayleigh Distribution, 

maximum likelihood method and Bayesian 

parameter estimation methods are investigated. 

 

2.1 Rayleigh Distribution 

The Rayleigh distribution is one of the most widely 

used distributions for modeling positive data in 

reliability, health, and engineering. Let the 

distribution of the first occurrence time 𝑋1 in GP 

has a Rayleigh distribution. The probability density 

function (pdf) and the cumulative density function 

(cdf) of the Rayleigh distribution are given by 

𝑓(𝑥) =
𝑥

𝜆2 𝑒
−𝑥2

2𝜆2 ,      𝑥 > 0, 𝜆 > 0              (2) 

and  

𝐹(𝑥) = 1 − 𝑒
−𝑥2

2𝜆2          𝑥 > 0, 𝜆 > 0,         (3) 

respectively.  In Equations (2)-(3), λ represents the 

scale parameter of the distribution. 

Note that, the EV and the Var of the Rayleigh 

distribution are  

𝐸(𝑋) =
𝜆√𝜋

√2
 and 𝑉𝑎𝑟(𝑋) =

(4−𝜋)𝜆2

2
, (4) 

respectively. The MLEs and Bayesian methods are 

given as follows. 

 

2.2 Maximum Likelihood Estimators 

Assume that 𝑋1, 𝑋2, … , 𝑋𝑛 is a set of data that 

follows a GP with ratio 𝑎 and 𝑋1 has the Rayleigh 

distribution with parameter λ. Afterward, using 

Equation (1), and the likelihood function for 

𝑋𝑖 ,   𝑖 = 1,2, … 𝑛  is then obtained 

𝐿(𝑎, 𝜆; 𝑥) = ∏ 𝑎𝑖−1𝑓(𝑎𝑖−1𝑥𝑖)𝑛
𝑖=1 =

𝑎𝑛(𝑛−1)

λ2𝑛
∏ 𝑥𝑖𝑒

−(𝑎𝑖−1𝑥𝑖)
2

2 λ2𝑛
𝑖=1  .                         (5) 

The MLEs of the parameters 𝑎 and λ are obtained 

by taking logarithms of Equation (5), 

differentiating with respect to 𝑎 and λ, and equating 

the normal equations to zero as follows: 

𝑙𝑛𝐿(𝑎, 𝜆; 𝑥) = 𝑛(𝑛 − 1)𝑙𝑛𝑎 − 2𝑛𝑙𝑛𝜆 +

∑ 𝑙𝑛𝑥𝑖 − ∑
(𝑎𝑖−1𝑥𝑖)

2

2𝜆2
𝑛
𝑖=1

𝑛
𝑖=1   .                                  (6) 

Then, differentiating Equation (6) with respect to 𝑎 

and λ, and equating the normal equations to zero 

given as  

𝜕𝑙𝑛𝐿(𝑎,λ)

𝜕𝑎
=

𝑛(𝑛−1)

𝑎
 −

1

𝑎𝜆2
∑ (𝑎𝑖−1𝑥𝑖)

2
(𝑖 − 1)𝑛

𝑖=1                                                                                           

(7)                                                                                  

 and        
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𝜕𝑙𝑛𝐿(𝑎, λ)

𝜕λ
=

−2𝑛

λ
+

1

λ3 ∑(𝑎𝑖−1𝑥𝑖)
2

𝑛

𝑖=1

 
(8)                                                                                  

Then, from Equations (7) and (8), the parameter λ 

is found as follows: 

λ = (
1

2𝑛
∑ (𝑎𝑖−1𝑥𝑖)

2𝑛
𝑖=1 )

1

2
.                         

(9)                                                                                  

By substituting Equation (9) into (7), the resulting 

equation in 𝑎 becomes 

𝑛(𝑛−1)

𝑎
− (2𝑛 ∑ (𝑖 − 1)𝑥𝑖

2𝑎2𝑖−3𝑛
𝑖=1 )  

(∑ (𝑎𝑖−1𝑥𝑖)
2𝑛

𝑖=1 )
−1

= 0.                        (10) 

These equations are simultaneously solved to yield 

the MLEs for �̂� and λ̂.  Equation (10) must instead 

be solved iteratively because there are no explicit 

solutions to the equation. In this study, the Newton 

Rapson method is used. 

Now, we built the asymptotically distribution of the 

MLEs. With a mean vector (a, λ),and covariance 

(𝐼−1)the joint distribution of �̂� and λ̂   is 

asymptotically normal (AN), thus, 

(
�̂�
λ̂

) ~𝐴𝑁 ((
𝑎
λ

) , 𝐼−1(a, λ)).                      (11) 

Here 𝐼(𝑎, λ) = [𝐼𝑖𝑗]
2𝑥2

 where is defined as the 

Fisher information matrix 𝐼 and is obtained as 

shown below: 

𝐼−1(a, λ) = [
𝐼11 𝐼12

𝐼21  𝐼22 
] =

[
−𝐸 (

𝜕2𝑙𝑜𝑔𝐿

𝜕2𝑎
)  − 𝐸 (

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑎𝜕λ
)

−𝐸 (
𝜕2𝑙𝑜𝑔𝐿

𝜕λ ∂a
)  − 𝐸 (

𝜕2𝑙𝑜𝑔𝐿

𝜕2λ
)

].                  (12)                                                                                                   

Since 𝐸(𝑎𝑖−1𝑋𝑖)
2

= 2λ2, the expected values of 

the second derivatives are calculated as follows: 

𝐼11 = 
−𝑛(𝑛−1)

𝑎2 +
1

𝑎2λ2
∑ (𝑖 − 1)𝐸(𝑎𝑖−1𝑋𝑖)

2𝑛
𝑖=1   

−2

𝑎2λ2
∑ (𝑖 − 1)2𝐸(𝑎𝑖−1𝑋𝑖)

2𝑛
𝑖=1 ≈

4𝑛3

3𝑎2, 

𝐼12 =   
−2

𝑎λ3
∑ (𝑖 − 1)𝐸(𝑎𝑖−1𝑋𝑖)

2𝑛
𝑖=1 ≈

−2𝑛2

𝑎λ
, 

and 

𝐼22 =
−2𝑛

λ2 +
3

λ4
∑ 𝐸(𝑎𝑖−1𝑋𝑖)

2𝑛
𝑖=1 ≈

4𝑛

λ2 .  

The symbol ≈ stands for “asymptotically 

equivalent”. Therefore, the asymptotic variance-

covariance matrix of �̂� and λ̂ is obtained by 

𝐼−1(a, λ), 

𝐼−1(a, λ) = [

3𝑎2

𝑛3

3𝑎λ

2𝑛2 

3𝑎λ

2𝑛2  
λ2

𝑛

].                            (13) 

Then, by using equation (11), the marginal 

asymptotic distribution of �̂�  and λ̂  can be seen as 

�̂�~𝐴𝑁 (𝑎,
3𝑎2

𝑛3 )  and λ̂~AN (λ,
λ2

𝑛
). 

Thus, the all the proposed estimators are 

asymptotically unbiased. Furthermore, these 

estimators are also consistent because the 

asymptotic variance of each estimator goes to zero 

as n goes to infinity.                                                                                                                                         

2.3. Bayesian Inference 

The Bayesian estimation under the Lindley, M-

Lindley, and Markov chain Monte Carlo (MCMC) 

approximation techniques based on the SELF of 

parameters 𝑎 and λ in GP with Rayleigh 

distribution is discussed in this section. The 

Bayesian estimation framework has drawn a lot of 

interest recently. A suitable loss function and prior 

distribution play a significant role in making the 

best decision in Bayesian parameter estimation.  In 

line with this purpose, SELF is one of the widely 

used loss functions.  

This loss function is obtained by the following  

𝐿𝑆𝐸𝐿𝐹(λ̂,   λ) = (λ̂  −  λ),2                        (14) 

where λ̂ is the estimate of the parameter λ, see [14]. 

Before seeing the new data, what was known or 

thought to be true is expressed by the prior 

distribution. It is assumed that λ has independent 

Gamma prior distribution in this study. The 

independent Gamma prior distribution is 

reasonable since it is flexible and appropriate. 

When the values of the hyper-parameters in the 

gamma prior are taken to be zero, the prior is non-

informative. Several writers have employed 

independent gamma priors on the shape and scale 

parameters for lifespan distributions, see [15]-[16]. 

The prior distribution of the ratio parameter 𝑎 

would be the uniform distribution since the 

parameter has bounded support. Consequently, the 

prior pdfs of parameters 𝑎 and λ, independent 

uniform, and gamma priors may be given as 

𝜋1(𝑎) = (𝛷2 − 𝛷1)−1 

 and 
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 𝜋2(𝜆) =
𝛽𝛼

𝛤(𝛼)
λ𝛼−1𝑒−𝛽λ. 

Then, the joint prior pdfs of 𝑎 and λ is given as   

𝜋(𝑎, λ) = 𝜋1(𝑎)𝜋2(𝜆) = 

(𝛷2 − 𝛷1)−1 𝛽𝛼

𝛤(𝛼)
λ𝛼−1𝑒−𝛽λ.                    (15) 

Here, it is assumed that the hyper-parameters 
(𝛼, 𝛽) and (𝛷1, 𝛷2) are known and positive. 

Combining (5) with (15) and using Bayes theorem, 

the joint posterior density function of 𝑎 and λ is 

given by: 

𝜋(𝑎, λ|𝑥) =
𝐿(𝑎, λ; x)𝜋(𝑎, λ)

∫ ∫(𝑎, λ; x)𝜋(𝑎, λ)𝑑𝑎𝑑λ
∝ 

𝑎𝑛(𝑛−1)

(𝛷2−𝛷1)

λ𝛼−1−2𝑛

𝑒𝛽λ
∏ 𝑥𝑖𝑒

−(𝑎𝑖−1𝑥𝑖)
2

2 λ2 .𝑛
𝑖=1              (16) 

The marginal conditional posterior pdfs of 𝑎 and λ 

are thus provided in Equation (16), 𝜋𝑎(𝑎|λ, x) ∝

𝑎𝑛(𝑛−1)

(𝛷2−𝛷1)
∏ 𝑥𝑖𝑒

−(𝑎𝑖−1𝑥𝑖)
2

2 λ2 ,𝑛
𝑖=1         (17) 

and                                                                                       

𝜋2(λ|𝑎, x) ∝ λ𝛼−1−2𝑛𝑒−𝛽λ ∏ 𝑥𝑖𝑒
−(𝑎𝑖−1𝑥𝑖)

2

2 λ2 ,

𝑛

𝑖=1

 

                                                                 (18)                                                                                                                                 

respectively. The EV of the conditional posterior 

pdfs shown in (17) and (18) provides the Bayes 

estimators for the parameters 𝑎 and λ. However, an 

explicit solution for the estimates does not yield by 

expected values of the conditional posterior pdfs. 

Therefore, we are taking into consideration the 

Lindley, M-Lindley, and MCMC techniques to 

compute the Bayes estimators of the parameters 𝑎 

and λ for GP with Rayleigh distribution.  

Summaries of these methods are given below.  

2.4. Lindley Approximation 

For calculating the ratio of the two integrals, 

Lindley [17] proposed an approximation method. 

This method may be used for calculating the 

posterior mean of an arbitrary function 𝑢(𝑎, λ), as 

shown below: 

�̂� = 𝐸(𝑢(𝑎, λ|𝑥)) =
∫ ∫ 𝑢(𝑎,λ)𝜋(𝑎,λ)𝐿(𝑎,λ;x)𝑑𝑎𝑑λ

∞
0

∞
0

∫ ∫ 𝜋(𝑎,λ)𝐿(𝑎,λ;x)𝑑𝑎𝑑λ
∞

0
∞

0

.                      

(19) 

Here, 𝑢(𝑎, λ) is a function of 𝑎 and λ only, 

𝜋(𝑎, λ)is the joint prior density function, 

𝐿(𝑎, λ; x)and is the likelihood function. 

By using Lindley approximation, Equation (19) 

can be written by the following formula: 

𝑢 ≈ 𝑢(�̂�, λ̂) + 0.5[𝑢11𝜎11 + 𝑢22𝜎22 + 2𝑢12𝜎12 +

2𝑢1(𝜎11𝜌1 + 𝜎21𝜌2) + 2𝑢2(𝜎12𝜌1 + 𝜎22𝜌2)] +

0.5 [𝐿111(𝑢1𝜎11
2 + 𝑢2𝜎11𝜎12) +

𝐿112 (3𝑢1𝜎11𝜎12 + 𝑢2(𝜎11𝜎22 + 2𝜎12
2 )) +

𝐿122(𝑢1(𝜎11𝜎22 + 2𝜎12
2 ) + 3𝑢2𝜎12𝜎22) +

 𝐿222(𝑢1𝜎12𝜎22 +

𝑢2𝜎22
2 ) ] .                                                           (20) 

Here, �̂� and λ̂ are the MLEs of 𝑎 and λ respectively. 

𝑢1 =
𝜕𝑢(𝑎,λ)

𝜕𝑎
, 𝑢11 =

𝜕2𝑢(𝑎,λ)

𝜕𝑎2 ,  𝑢2
𝜕𝑢(𝑎,λ)

𝜕λ
, 𝑢22 =

𝜕2𝑢(𝑎,λ)

𝜕2λ
, 𝑢12 =

𝜕2𝑢(𝑎,λ)

𝜕a𝜕λ
, 𝜌1 =

𝜕𝐼𝑛𝜋(𝑎,λ)

𝜕𝑎
,  

𝜌2 =
𝜕𝐼𝑛𝜋(𝑎,λ)

𝜕λ
, 𝐿111 =

𝜕3𝐼𝑛𝐿

𝜕3𝑎
, 𝐿112 =

𝜕3𝐼𝑛𝐿

𝜕2𝑎𝜕λ
, 𝐿122 =

𝜕3𝐼𝑛𝐿

𝜕2λ𝜕a
,  𝐿222 =

𝜕3𝐼𝑛𝐿

𝜕3λ
,  

and 𝜎𝑖𝑗 , 𝑖, 𝑗 = 1,2  are the elements of the inverse 

Fisher information matrix. 

Hence, it follows from Equation (20) that the Bayes 

estimators of the parameters 𝑎 and λ, say  �̂�𝐿 and 

λ̂𝐿,are given: 

If 𝑢(𝑎, λ) = 𝑎,�̂�1 = 1, �̂�11 = �̂�12 = �̂�2 = �̂�22 =
0, then 

�̂�𝐿 = �̂� + �̂�21�̂�2 + 0.5[�̂�111�̂�11
2 + 3�̂�112�̂�11�̂�12 +

�̂�122 ((�̂�11�̂�22 + 2𝜎12
2 )) + �̂�222�̂�12�̂�22].                              

(21)                           

 If,(𝑎, λ) = λ, �̂�2 = 1, �̂�22 = �̂�12 = �̂�2 = �̂�11 = 0, 

then 

λ̂𝐿 = λ̂ + �̂�22�̂�2 +

0.5[�̂�111�̂�11�̂�12 +�̂�112(�̂�11�̂�22 +

2�̂�12
2 )+3�̂�122�̂�11�̂�22 + �̂�222�̂�22

2 ],                 (22)                                                          

respectively. 

Here, 

�̂�111 =
2𝑛(𝑛−1)

�̂�3 −  

2

λ̂2�̂�3
∑(�̂�𝑖−1𝑥𝑖)

2
(𝑖 − 1)(𝑖 − 2)(2𝑖 − 3)

𝑛

𝑖=1

 

 

�̂�222 =
−4𝑛

λ̂3 +
12

λ̂5
∑ (�̂�𝑖−1𝑥𝑖)

2
,𝑛

𝑖=1   

�̂�112 =
2

λ̂2�̂�3
∑ (�̂�𝑖−1𝑥𝑖)

2
(𝑖 − 1)(2𝑖 − 3),𝑛

𝑖=1   

�̂�122 =
−6

�̂�λ̂4
∑ (�̂�𝑖−1𝑥𝑖)

2
(𝑖 − 1),𝑛

𝑖=1   

�̂�1 = 0, �̂�2 =
𝛼−1

λ̂
− �̂�,  

and 𝜎𝑖𝑗 , 𝑖, 𝑗 = 1,2  are the elements of the variance-

covariance matrix defined in Equation (13). 
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2.5 Modified-Lindley Approximation 

In Lindley approximation, the Bayes estimators of 

𝑎 and λ are obtained by incorporating all (𝐿𝑖𝑗𝑘)into 

(21) and (22), respectively. However, in our case, 

it will be quite complicated. Therefore, we present 

the M-Lindley approximation as a novel 

approximation technique. The EVs of the terms in 

the expression (𝐿𝑖𝑗𝑘) form the basis of this 

approximation technique. In other words, 

 𝐸(𝐿𝑖𝑗𝑘) (𝑖, 𝑗, 𝑘 = 1,2,3) exists, it can be obtained 

under the M-Lindley approximation. 

Therefore, if all of the L terms are available, 

Equation (20) can be estimated as follows: 

�̂� ≈ 𝑢(�̂�, λ̂) + 0.5[𝑢11𝜎11 + 𝑢22𝜎22 + 2𝑢12𝜎12 +

2𝑢1(𝜎11𝜌1 + 𝜎21𝜌2) + 2𝑢2(𝜎12𝜌1 + 𝜎22𝜌2)] +

0.5 [𝐸(𝐿111)(𝑢1𝜎11
2 + 𝑢2𝜎11𝜎12) +

𝐸(𝐿112) (3𝑢1𝜎11𝜎12 + 𝑢2(𝜎11𝜎22 + 2𝜎12
2 )) +

𝐸(𝐿122)(𝑢1(𝜎11𝜎22 + 2𝜎12
2 ) + 3𝑢2𝜎12𝜎22) +

𝐸(𝐿222)(𝑢1𝜎12𝜎22 + 𝑢2𝜎22
2 )],                                                  

(23) 

where all the remaining terms will be the same as 

the Lindley approximation.  

Hence, it follows from Equation (23) that the Bayes 

estimators of the parameters 𝑎 and λ, say �̂�𝑀−𝐿 and 

λ̂𝑀−𝐿are given as follows: 

If 𝑢(𝑎, λ) = 𝑎, �̂�1 = 1, �̂�11 = �̂�12 = �̂�2 = �̂�22 =
0, then 

 

�̂�𝑀−𝐿 = �̂� + �̂�21�̂�2 + 0.5[𝐸(�̂�111)�̂�11
2   

3𝐸(�̂�112)�̂�11�̂�12 + �̂�122 ((�̂�11�̂�22 + 2𝜎12
2 )) +

𝐸(�̂�222)�̂�12�̂�22],   

If,(𝑎, λ) = λ, �̂�2 = 1, �̂�22 = �̂�12 = �̂�2 = �̂�11 = 0, 

then       

λ̂𝑀−𝐿 = λ̂ + �̂�22�̂�2 + 0.5[𝐸(�̂�111)�̂�11�̂�12 +

𝐸(�̂�112)(�̂�11�̂�22 + 2�̂�12
2 ) + 3𝐸(�̂�122)�̂�11�̂�22 +

𝐸(�̂�222)�̂�22
2 ].            

In our case, the Bayesian estimators of 𝑎 and λ 

using the M-Lindley approximation are derived as: 

�̂�𝑀−𝐿 = �̂� + �̂�12�̂�2 +
3�̂�

2𝑛2 and   

λ̂𝑀−𝐿 = λ̂ + �̂�22�̂�2 +
2λ̂

𝑛
. 

Here,  

𝐸(𝐿111) ≈
−2𝑛4

𝑎3 , 𝐸(𝐿222) =
20𝑛

λ3 ,   

𝐸(𝐿122) ≈
−6𝑛2 

𝑎λ2  and 𝐸(𝐿112) ≈
8𝑛3

λa2 , 

𝜎11, 𝜎12, 𝜎22 and 𝜌1, 𝜌2 will be the same as the 

Lindley approximation. 

2.6 Markov Chain Monte Carlo Method 

Here, the Gibbs sampling method is used to 

produce samples from the posterior distributions. It 

is a subclass of the MCMC, see [18]. We know that 

the posterior conditional density function of 𝑎 and 

λ is given as follows in Equations (17)-(18),  

𝜋𝑎(𝑎|λ, x) ∝
𝑎𝑛(𝑛−1)

(𝛷2−𝛷1)
∏ 𝑥𝑖𝑒

−(𝑎𝑖−1𝑥𝑖)
2

2 λ2   𝑛
𝑖=1 and 

𝜋λ(λ|a, x) ∝
λ𝛼−1−2𝑛

𝑒𝛽λ
∏ 𝑥𝑖𝑒

−(𝑎𝑖−1𝑥𝑖)
2

2 λ2   𝑛
𝑖=1 , 

respectively. It is clear from these equations that 

the conditional density function of 𝑎 and λ cannot 

be found in the form the well-known density 

functions. So, we can use the Metropolis- Hasting 

(M-H) algorithm, introduced by Metropolis et al. 

[19], with normal proposal distribution to generate 

random samples from these distributions. 

The steps of the Gibbs sampling method are as 

follows: 

Step1: Start with an initial guess 𝑎0 = �̂� and λ0 =

λ.̂ 

Step2: Set 𝑗 = 1. 

Step 3: Using the M-H algorithm, generate a 

posterior sample for 𝑎0
(𝑗)

and λ0
(𝑗)

from Equations 

(17) and (18), respectively. 

Step 4: Set 𝑗 = 𝑗 + 1 

Step 5: Repeat Step 3-4 N times and obtain MCMC 

sample as(𝑎1, λ1), …, , (𝑎𝑁, λ𝑁). 

So, the Bayes estimator of the parameters 𝑎 and λ 

under SELF, say �̂�𝑀𝐶𝑀𝐶  and, λ̂𝑀𝐶𝑀𝐶  are computed 

as follows: 

�̂�𝑀𝐶𝑀𝐶 =
1

𝑁
∑ 𝑎𝑗

𝑁
𝑖=1 and λ̂𝑀𝐶𝑀𝐶 =

1

𝑁
∑ λ 𝑁

𝑖=1 . 

3. Simulation Study 

In this Section, we carried out an extensive Monte 

Carlo simulation study to compare the 

performances of Bayesian and classical estimators 

with respect to mean, bias and mean square error 

(MSE) values for the different sample size. In the 

context of the Bayesian parameter estimation, two 

different informative priors are used. Firstly, we 



A.Yılmaz / BEU Fen Bilimleri Dergisi 13 (2), 482-491, 2024 

487 
 

take 𝛼 = 2, 𝛽 = 1 and 𝛷2 = 1.5, 𝛷1 = 0.5 and, 

call them Prior-I. Then we chose 𝛼 = 𝛽 = 0 and 

𝛷2 = 1.5, 𝛷1 = 0.5 and, call them Prior-II. The 

Bayesian estimators of the parameters 𝑎 and λ  are 

calculated under SELF using the Lindley, M-

Lindley, and MCMC approximation methods 

based on these priors.  The ratio parameters are 𝑎 =
0.90, 0.95, 1.05 and 1.10 and the sample 𝑛 =
20, 30, 50, 100, 190 are used in the simulation 

study.  A sequence of random variables {𝑌𝑖 , 𝑖 =
1,2, … } each having Rayleigh distribution with the 

parameter λ is generated by using MATLAB2013. 

The data set {𝑋𝑖, 𝑖 = 1,2, … } then becomes a 

realization of the GP with ratio 𝑎 by the 

transformation 𝑋𝑖 =
𝑌𝑖

𝑎𝑖−1.  Since the simulation 

results are similar, the results are summarized only 

for 𝑎 = 0.90, 1.10 and λ = 0.5, 0.8, 1 and 2.  

Additionally, the results obtained for n=190 are not 

added to the study because they are similar to the 

results obtained for n=100 in terms of bias and 

MSE. The mean, bias and MSE values of the 

estimators based on 2000 replications are given in 

Table 1-4. 

The bias and MSE values are given as follows: 

𝐵ias =
1

2000
∑ (θ̂i − θ)2000

1=1  and   

 𝑀𝑆𝐸 =
1

2000
∑ (θ̂i − θ).22000

1=1  

Here    θ̂iis the  𝑖𝑡ℎ simulated estimate of the 

parameter interest and θ is the true parameter value. 

 

Table1. The mean and MSE values for the estimators of parameters a and λ when a=0.90,1.10 and λ=0.5. 
    Prior-I   Prior-II 

   𝑎 λ 𝑎 λ 
N 𝑎 Method Mean                 Bias        MSE Mean              Bias         MSE Mean           Bias              MSE Mean        Bias             MSE 

 
20 

 MLE 0.90007  0.0007 3. 1𝑥10−4 0.5030 -0.0030 0.0131 0.8999 -0.0001 3.29𝑥10−4 0.4973 -0.0027 0.0124 

Lindley 0.8957 -0.0043 6.3𝑥10−4 0.4980 -0.0020 0.0125 0.8985 -0.0005 6.55𝑥10−4 0.4967 -0.0033 0.0116 

M-Lindley 0.8952 -0.0048 7.2𝑥10−4 0.4975 -0.0035 0.0124 0.8987 -0.0003 7.96𝑥10−4 0.4961 -0.0039 0.0116 

MCMC 0.9005 0.0005 1. 1𝑥10−4 0.5022 0.0022 0.0032 0.9003 0.0003 8.80𝑥10−5 0.5021 0.0021 0.0085 

 

30 

 

 
 

 
 

 

𝑎 = 0.9 

MLE 0.8998 -0.0002 9.63𝑥10−5 0.4951 -0.0049 0.0076 0.8999 -0.0001 9.92𝑥10−5 0.4951 -0.0049 0.0076 

Lindley 0.8996 -0.0004 1.27𝑥10−4 0.4981 -0.0019 0.0079 0.8997 -0.0003 1.26𝑥10−4 0.4964 -0.0036 0.0074 

M-Lindley 0.8997 -0.0003 1.42𝑥10−4 0.4983 -0.0017 0.0077 0.8998 -0.0002 1.73𝑥10−4 0.4966 -0.0034 0.0074 

MCMC 0.9000  0.0000 2.45𝑥10−5 0.5032 0.0032 0.0056 0.8999 -0.0001 2.43𝑥10−5 0.5065 0.0065 0.0022 

 

50 

MLE 0.8999 -0.0001 1.88𝑥10−5 0.4983 -0.0017 0.0046 0.8999 -0.0001 2.14𝑥10−5 0.4981 -0.0019 0.0046 

Lindley 0.8998 -0.0002 2.47𝑥10−5 0.4989 -0.0011 0.0047 0.8999 -0.0001 3.41𝑥10−5 0.4976 -0.0024 0.0044 

M-Lindley 0.8998 -0.0002 2.61𝑥10−5 0.4987 -0.0013 0.0045 0.8999 -0.0001 3.59𝑥10−5 0.4974 -0.0026 0.0045 

MCMC 0.9000  0.0000 5.08𝑥10−6 0.5018 0.0018 0.0033 0.9000  0.0000 5.08𝑥10−6 0.5033  0.0033 0.0033 

 
100 

MLE 0.9000  0.0000 2.33𝑥10−6 0.4999 -0.0001 0.0025 0.9001  0.0001 2.58𝑥10−6 0.5024  0.0024 0.0026 

Lindley 0.8999 -0.0001 2.77𝑥10−6 0.4997 -0.0003 0.0020 0.9000  0.0000 3.36𝑥10−6 0.5021  0.0021 0.0020 

M-Lindley 0.8999 -0.0001 2.81𝑥10−6 0.4995 -0.0005 0.0018 0.9000  0.0000 3.42𝑥10−6 0.5021  0.0021 0.0018 

MCMC 0.9000  0.0000 8.41x10−6 0.5011 0.0011 0.0012 0.9000  0.0000 8.03𝑥10−6 0.5026  0.0026 0.0007 

 
20 

 

 MLE 1.1004 0.0004 5.13x10−4 0.4989 -0.0011 0.0116 1.1005 0.0005 5. 01𝑥10−4 0.4994 -0.0006 0.0117 

Lindley 1.0989 -0.0011 5.87x10−4 0.4948 -0.0042 0.0110 1.0987 -0.0013 8.49𝑥10−4 0.4894 0.0116 0.0116 

M-Lindley 1.0987 -0.0013 6.93x10−4 0.4934 -0.0066 0.0111 1.0983 -0.0017 1.17𝑥10−4 0.4899 0.0101 0.0117 

MCMC 1.1009 0.0009 1.34x10−4 0.5031 0.0031 0.0096 1.1004 0.0004 1.32𝑥10−4 0.5075 0.0075 0.0083 

 

 
30 

 

 
 

 

 

 

𝑎 = 1.1 

MLE 1.0999 -0.0001 1.14x10−4 0.4993 -0.0007 0.0088 1.1002  0.0002 1.42x10−4 0.5010  0.0010 0.0078 

Lindley 1.0996 -0.0004 1.82x10−4 0.4994 -0.0006 0.0085 1.0997 -0.0003 2.49x10−4 0.5011  0.0011 0.0074 

M-Lindley 1.0997 -0.0003 2.02x10−4 0.4996 -0.0004 0.0080 1.0997 -0.0003 2.78x10−4 0.5008  0.0008 0.0070 

MCMC 1.0998 -0.0002 3.67x10−5 0.5010 0.0010 0.0062 1.0998 -0.0002 3.65x10−5 0.5005  0.0005 0.0052 

 
 

50 

MLE 1.1002  0.0002 3.11x10−5 0.4995 -0.0005 0.0051 1.1002 0.0002 3.25x10−5 0.5017  0.0017 0.0050 

Lindley 1.0998 -0.0002 3.82x10−5 0.4996 -0.0004 0.0049 1.0998 -0.0002 4.66x10−5 0.5008  0.0008 0.0048 

M-Lindley 1.0999 -0.0001 4.00x10−5 0.4997 -0.0003 0.0048 1.0999 -0.0001 4.89x10−5 0.5006  0.0006 0.0045 

MCMC 1.1002  0.0002 7.69x10−6 0.4998 -0.0002 0.0032 1.1003  0.0003 8.10x10−6 0.5018  0.0018 0.0034 

 
 

100 

MLE 1.1000  0.0000 3.69x10−6 0.5002  0.0002 0.0024 1.1000  0.0000 3.92x10−6 0.5002  0.0002 0.0024 

Lindley 1.0998 -0.0002 4.54x10−6 0.5006  0.0006 0.0020 1.0998 -0.0002 5.18x10−6 0.5001  0.0001 0.0020 

M-Lindley 1.0997 -0.0003 4.61x10−6 0.5005  0.0005 0.0018 1.0999 -0.0001 5.27x10−6 0.5000  0.0000 0.0020 

MCMC 1.1001  0.0001 5.91x10−6 0.5008  0.0008 0.0013 1.1000  0.0000 6.83x10−6 0.5001  0.0001 0.0017 

 
Table2. The mean and MSE values for the estimators of parameters a and λ when a=0.90,1.10 and λ=0.8. 

     Prior-I   Prior-II 

   𝑎 λ 𝑎 λ 
n a Method Mean Bias MSE Mean Bias MSE Mean Bias MSE Mean Bias MSE 

 

20 

 MLE 0.90007 0.0007 3. 17𝑥10−4 0.7984 -0.0016 0.0286 0.9002  0.0002 3.26𝑥10−4 0.7972 -0.0028 0.0304 

Lindley 0.8950 -0.0050 5.47𝑥10−4 0.7965 -0.0035 0.0270 0.8988 -0.0012 5.25𝑥10−4 0.7941 -0.0059 0.0297 

M-Lindley 0.8951 -0.0049 7.24𝑥10−4 0.7956 -0.0044 0.0270 0.8981 -0.0019 5.56𝑥10−4 0.7955 -0.0045 0.0298 

MCMC 0.9004 0.0004 9.27𝑥10−5 0.8030 0.0030 0.0194 0.9002  0.0002 7.70𝑥10−5 0.8037 0.0037 0.0190 

 

30 

 

 
 

 
 

 

𝑎 = 0.9 

MLE 0.9001  0.0001 9.28x10−5 0.7964 -0.0036 0.0199 0.9001  0.0001 8.93𝑥10−5 0.7985 -0.0015 0.0200 

Lindley 0.8982 -0.0008 1.38𝑥10−4 07962 -0.0038 0.0196 0.8993 -0.0007 1.74𝑥10−4 0.7983 -0.0017 0.0199 

M-Lindley 0.8989 -0.0001 1.57𝑥10−4 0.7962 -0.0038 0.0196 0.8991 -0.0009 1.74𝑥10−4 0.7975 -0.0025 0.0199 

MCMC 0.9000  0.0000 2.51𝑥10−5 0.8018 0.0018 0.0159 0.9003  0.0003 2.44𝑥10−5 0.8034 0.0034 0.0157 

 
50 

MLE 0.8998  -0.0002 2.06𝑥10−5 0.8058 0.0058 0.0136 0.8999 -0.0001 2.15𝑥10−5 0.7976 -0.0024 0.0131 

Lindley 0.8995  -0.0005 2.62𝑥10−5 0.8048 0.0048 0.0135 0.8996 -0.0004 3.4510−5 0.7963 -0.0037 0.0130 

M-Lindley 0.8994  -0.0006 2.76𝑥10−5 0.8046 0.0046 0.0135 0.8994 -0.0006 3.64𝑥10−5 0.7961 -0.0039 0.0130 

MCMC 0.8998  -0.0002 5.45𝑥10−6 0.8029 0.0029 0.0128 0.9000   0.0000 5.06𝑥10−6 0.8011  0.0011 0.0120 

 

100 

MLE 0.8999  -0.0001 2.45𝑥10−6 0.8001 0.0001 0.0059 0.8999  -0.0001 2.40𝑥10−6 0.7973  -0.0027 0.0064 

Lindley 0.8999 -0.0001 3.05x10−6 08004 0.0004 0.0058 0.8997  -0.0003 3.37𝑥10−6 0.7979  -0.0021 0.0060 

M-Lindley 0.8999 -0.0001 3.08𝑥10−6 07995 0.0005 0.0058 0.8997  -0.0003 3.44𝑥10−6 0.7981  -0.0019 0.0060 

MCMC 0.9000  0.0000 8.03x10−6 0.8005 0.0005 0.0037 0.9000   0.0000 8.13𝑥10−6 0.8004   0.0004 0.0038 

 

20 

 MLE 1.1003 0.0003 4.82x10−4 0.7979 -0.0021 0.0300 1.0990 -0.0010 5. 52𝑥10−4 0.7915 -0.0085 0.0328 

Lindley 1.0953 -0.0047 6.92x10−4 0.7936 -0.0064 0.0290 1.0987 -0.0013 8.31𝑥10−4 0.7923 -0.0077 0.0314 
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 M-Lindley 1.0955 -0.0045 8.64x10−4 0.7901 -0.0099 0.0290 1.0989 -0.0011 9.73𝑥10−4 0.7916 -0.0084 0.0317 

MCMC 1.0994 0.0006 1.29x10−4 0.8104 0.0104 0.0189 1.0988 -0.0012 1.73𝑥10−4 0.7923 -0.0067 0.0104 

 

 
30 

 

 
 

 
 

 

𝑎 = 1.1 

MLE 1.0997 -0.0003 1.41x10−4 0.7997 -0.0023 0.0211 1.1005  0.0005 1.47x10−4 0.8039   0.0039 0.0215 

Lindley 1.0979 -0.0021 2.04x10−4 0.7980 -0.0020 0.0206 1.0998 -0.0002 2.44x10−4 0.7992  -0.0008 0.0213 

M-Lindley 1.0974 -0.0026 2.31x10−4 0.7970 -0.0030 0.0206 1.0997 -0.0003 2.72x10−4 0.7982  -0.0018 0.0213 

MCMC 1.0999 -0.0001 3.79x10−5 0.8080 0.0080 0.0161 1.1001  0.0001 3.70x10−5 0.8053   0.0053 0.0055 

 
 

50 

MLE 1.0999  -0.0001 3.19x10−5 0.7982 -0.0018 0.0128 1.0998 -0.0002 3.13x10−5 0.7986 - 0.0014 0.0133 

Lindley 1.0997 -0.0003 4.21x10−5 0.7975 -0.0025 0.0127 1.0998 -0.0002 5.44x10−5 0.7973  -0.0027 0.0132 

M-Lindley 1.0994 -0.0006 4.43x10−5 0.7977 -0.0023 0.0127 1.0997 -0.0003 5.75x10−5 0.7981 -0.0019 0.0132 

MCMC 1.1002  0.0002 7.85x10−6 0.8030 0.0030 0.0083 1.1000  0.0000 7.80x10−6 0.8019   0.0019 0.0088 

 

 

100 

MLE 1.1000  0.0000 3.60x10−6 0.7990  0.0063 0.0024 1.1000  0.0000 3.87x10−6 0.7998  -0.0002 0.0064 

Lindley 1.0998 -0.0002 4.37x10−6 0.7988  0.0063 0.0020 1.0999 -0.0001 5.14x10−6 0.7994  -0.0006 0.0060 

M-Lindley 1.0997 -0.0003 4.46x10−6 0.7987  0.0062 0.0018 1.0999 -0.0001 5.23x10−6 0.7993  -0.0007 0.0059 

MCMC 1.1001  0.0001 6.43x10−6 0.8017  0.0047 0.0013 1.1000  0.0000 6.08x10−6 0.7995  -0.0005 0.0035 

 
 

Table3. The mean and MSE values for the estimators of parameters a and λ when a=0.90,1.10 and λ=1. 
     Prior-I   Prior-II 

   𝑎 λ 𝑎                  λ 
n    a Method            Bias               Mean                  MSE                        Bias               Mean            MSE Bias               Mean                  MSE              Bias               Mean         MSE 
 

 
20 

 

 
 

 
 

 
 
 

 
 

 
a=0.9 

MLE 0.8998 -0.0002  3. 42𝑥10−4 0.9902  0.0098 0.0513 0.9005 0.0005 3. 46𝑥10−4 1.0058 0.0058 0.0507 

Lindley 0.8996 -0.0004  5.71x10−4 0.9866 -0.0134 0.0499 0.8988 -0.0002 7.51𝑥10−4 1.0029 0.0029 0.0494 

M-Lindley 0.8997 -0.0003 7.33𝑥10−4 0.9895  0.0115 0.0499 0.8986 -0.0004 9. 22𝑥10−4 0.9982 -0.0018 0.0493 

MCMC 0.9003  0.0003  8.91x10−5 1.0122  0.0122 0.0343 0.9907 0.0007 9. 27𝑥10−5 1.0039 0.0039 0.0343 

 

30 

MLE 0.9007  0.0007  9.58𝑥10−5 1.0060  0.0060 0.0298 0.8999 -0.0001 1.51𝑥10−4    0.9956 -0.0044 0.0314 

Lindley 0.8998 -0.0002  1.55𝑥10−4 1.0025  0.0025 0.0295 0.8995 -0.0005 2.62𝑥10−4 0.9967 -0.0033 0.0309 

M-Lindley 0.8996 -0.0004  1.77𝑥10−4 1.0016  0.0016 0.0293 0.8994 -0.0006 2.94𝑥10−4 0.9968 -0.0032 0.0309 

MCMC 0.9005  0.0005  3. 14𝑥10−5 1.0013  0.0013 0.0207 0.8999 -0.0001 4.64𝑥10−4 1.0109  0.0109 0.0278 

 

50 

MLE 0.9001  0.0001  1.70𝑥10−5 1.0046  0.0046 0.0190 0.8998 -0.0002 1.84𝑥10−5 0.9960 -0.0040 0.0192 

Lindley 0.8999 -0.0001  2.33𝑥10−5 1.0028  0.0028 0.0189 0.8997 -0.0003 2.71𝑥10−5 0.9970 -0.0030 0.0180 

M-Lindley 0.8998 -0.0002  2.35𝑥10−5 1.0026  0.0026 0.0182 0.8997 -0.0003 2.90𝑥10−5 0.9973 -0.0027 0.0171 

MCMC 0.9000  0.0000  8.58𝑥10−6 1.0028  0.0028 0.0150 0.8998 -0.0002 4.81𝑥10−5 0.9986 -0.0014 0.0146 

 

100 

MLE 0.9000  0.0000   2.41𝑥10−6 0.9974 -0.0026 0.0102 0.8999 -0.0001 3.84𝑥10−6 0.9989 -0.0011 0.0097 

Lindley 0.8999 -0.0001    2.53𝑥10−6 0.9970 -0.0030 0.0080 0.8999 -0.0001 3.95𝑥10−6 0.9986 -0.0024 0.0095 

M-Lindley 0.8999 -0.0001   2.57𝑥10−6 0.9973 -0.0027 0.0075 0.8999 -0.0001 4.01𝑥10−6 0.9988 -0.0012 0.0093 

MCMC 0.9001   0.0001   7.29𝑥10−6 1.0010  0.0010 0.0066 0.9001 0.0001 7.52𝑥10−6 0.9990 -0.0010 0.0065 

 
20 

 MLE 1.0995  0.0005 5.69𝑥10−4 0.9864 -0.0136 0.0473 1.1001 0.0001 4.87𝑥10−5 0.9853 -0.0147 0.0457 

Lindley 1.0988 -0.0012 8.49𝑥10−4 0.9829  0.0171 0.0457 1.0996 -0.0004 9.56x10−4 0.9886 -0.0114 0.0445 

M-Lindley 1.0984 -0.0016 7.37𝑥10−4 0.9793 -0.0207 0.0457 1.0994 -0.0006 9.22𝑥10−4 0.9854 -0.0116 0.0445 

MCMC 1.0992 -0.0008 1.28𝑥10−4 1.0127  0.0127 0.0320 1.0102 0.0002 1.42𝑥10−5 1.0101 0.0102 0.0340 

 

 
30 

 

 
 

a=1.1 

MLE 1.0998 -0.0002 9.67𝑥10−5 0.9982 -0.0018 0.0324 1.0998 -0.0002 3.68𝑥10−5 0.9969 -0.0031 0.0319 

Lindley 1.0997 -0.0003 1.75𝑥10−4 0.9989 -0.0011 0.0290 1.0997 -0.0003 5.18𝑥10−5 0.9967 -0.0033 0.0315 

M-Lindley 1.0997 -0.0003 2.00𝑥10−4 0.9980 -0.0020 0.0285 1.0996 -0.0004 5.38𝑥10−5 0.9964 -0.0036 0.0312 

MCMC 1.0996 -0.0004 3.76𝑥10−5 0.9983 -0.0017 0.0184 1.0998 -0.0002 1.08𝑥10−5 1.0034 0.0034 0.0285 

 

 
50 

MLE 1.1002  0.0002 2.10𝑥10−5 1.0060 0.0060 0.0212 1.0999 -0.0001 3.57𝑥10−5 1.0036 0.0036 0.0194 

Lindley 1.0986 -0.0014 3.42𝑥10−5 1.0046 0.0046 0.0180 1.0998 -0.0002 5.27𝑥10−5 0.9985 -0.0015 0.0190 

M-Lindley 1.0987 -0.0013 3.68𝑥10−5 1.0044 0.0044 0.0176 1.0998 -0.0002 5.43𝑥10−5 0.9987 -0.0013 0.0188 

MCMC 1.1001  0.0001 6.27𝑥10−6 1.0033 0.0033 0.0157 1.0999 -0.0001 1.03𝑥10−5 1.0030 0.0030 0.0155 

 
 

100 

MLE 1.1000  0.0000 3.46𝑥10−6 0.9969 -0.0031 0.0100 1.1001 0.0001 3.80𝑥10−6 1.0027 0.0027 0.0107 

Lindley 1.0998 -0.0002 3.53𝑥10−6 0.9966 -0.0034 0.0096 1.0999 -0.0001 4.87𝑥10−6 1.0024 0.0024 0.0096 

M-Lindley 1.0998 -0.0002 3.60𝑥10−6 0.9966 -0.0034 0.0094 1.0999 -0.0001 4.96𝑥10−6 1.0022 0.0022 0.0094 

MCMC 1.1000 0.0000 8.53𝑥10−6 0.9970 -0.0030 0.0086 1.1000 0.0000 6.47𝑥10−6 1.0018 0.0018 0.0069 

 
 

Table 4. The mean and MSE values for the estimators of parameters a and λ when a=0.90,1.10 and λ=2. 
     Prior-I   Prior-II 

   𝑎 λ 𝑎 λ 
n  

 

 
 

 

𝑎 = 0.9 

Method Mean Bias MSE Mean Bias MSE Mean Bias MSE Mean Bias MSE 

 

 
20 

MLE 0.8995 -0.0005 3.52𝑥10−4 1.9794 -0.0206 0.2006 0.9010 0.0010 2.91𝑥10−4 2.0126 0.0126 0.1760 

Lindley 0.8997 -0.0003 7.99𝑥10−4 1.9712 -0.0288 0.1990 0.8995 -0.0005 7.32𝑥10−4 2.0063 0.0063 0.1743 

M-Lindley 0.8998 -0.0002 6.94𝑥10−4 1.9680 -0.0320 0.1991 0.8989 -0.0011 9.42𝑥10−4 2.0033 0.0033 0.1740 

MCMC 0.8999 -0.0001 8.40𝑥10−5 2.0169 0.0169 0.1473 0.9009 0.0009 9.29𝑥10−5 2.0024 0.0024 0.1530 

 

30 

MLE 0.8998 -0.0002 8.86𝑥10−5 1.9886 -0.0114 0.1291 0.9005  0.0005 8.48𝑥10−5 2.0114  0.0114 0.1251 

Lindley 0.8997 -0.0003 1.44𝑥10−4 1.9847 -0.0153 0.1288 0.8997 -0.0003 1.91𝑥10−5 2.0050  0.0050 0.1244 

M-Lindley 0.8994 -0.0006 1.65𝑥10−4 1.9839 -0.0161 0.1275 0.8997 -0.0003 2.33𝑥10−5 2.0041  0.0041 0.1243 

MCMC 0.8999 -0.0001 2.36𝑥10−5 2.0153 0.0153 0.1153 0.9006 0.0006 2.70𝑥10−5 2.0029  0.0029 0.1129 

 
50 

MLE 0.9001 0.0001 2.26𝑥10−5 2.0047 0.0047 0.0808 0.8999 -0.0001 2.15𝑥10−5 1.9945 -0.0055 0.0754 

Lindley 0.8998 -0.0002 3.09𝑥10−5 2.0034 0.0034 0.0806 0.8999 -0.0001 3.42𝑥10−5 1.9920 -0.0080 0.0752 

M-Lindley 0.8998 -0.0002 3.29𝑥10−5 2.0033 0.0033 0.0805 0.8999 -0.0001 3.59𝑥10−5 19919 -0.0081 0.0752 

MCMC 0.9000 0.0000 6.45𝑥10−6 2.0056 0.0056 0.0607 0.9000  0.0000 4.72𝑥10−5 1.9970 -0.0030 0.0686 

 

100 

MLE 0.9000 0.0000 1.96𝑥10−6 1.9989 -0.0011 0.0404 0.9001  0.0001 3.08𝑥10−6 2.0020  0.0020 0.0408 

Lindley 0.8999 -0.0001 3.02𝑥10−6 1.9992 -0.0008 0.0400 0.9000  0.0000 3.83𝑥10−6 2.0014  0.0014 0.0405 

M-Lindley 0.8999 -0.0001 3.08𝑥10−6 1.9993 -0.0007 0.0398 0.9000  0.0000 3.89𝑥10−6 2.0013 0.0013 0.0405 

MCMC 0.9000 0.0000 9.77𝑥10−6 1.9990 -0.0010 0.0299 0.9000  0.0000 9.70𝑥10−6 2.0008 0.0008 0.0389 

 

20 

 MLE 1.1002 0.0002 2.56𝑥10−4 1.9889 -0.0111 0.1844 1.0995 -0.0005 5.52𝑥10−4 1.9848 -0.0152 0.2161 

Lindley 1.0990 -0.0010 6.52𝑥10−4 1.9790 -0.0210 0.1825 1.0994 -0.0006 2.56𝑥10−3 1.9822 -0.0178 0.2115 

M-Lindley 1.0988 -0.0009 8.80𝑥10−4 1.9773 -0.0227 0.1826 1.0993 -0.0007 1.26𝑥10−3 1.9794 -0.0206 0.2112 

MCMC 1.0993 -0.0007 8.74𝑥10−4 2.0121 0.0121 0.1479 1.0999 -0.0001 1.17𝑥10−4 2.0163 0.0163 0.1488 

 
 

30 

 
 

 
 

𝑎 = 1.1 

MLE 1.1002 0.0002 4.66𝑥10−5 1.9963 -0.0037 0.1309 1.1003  0.0003 1.10𝑥10−4 1.9843 -0.0152 0.1214 

Lindley 1.0997 -0.0003 2.10𝑥10−4 1.9966 -0.0034 0.1307 1.0996 -0.0004 1.52𝑥10−4 1.9802 -0.0198 0.1204 

M-Lindley 1.0996 -0.0004 2.75𝑥10−4 1.9964 -0.0036 0.1306 1.0997 -0.0003 1.68𝑥10−4 1.9799 -0.0201 0.1196 

MCMC 1.1002  0.0002 4.66𝑥10−5 2.0030 0.0030 0.1250 1.1002  0.0002 3.30𝑥10−4 2.0130  0.0130 0.1080 

 

 
50 

MLE 1.1000  0.0000 3.08𝑥10−5 2.0011 0.0011 0.0798 1.1000  0.0000 1.80𝑥10−5 1.9972 -0.0028 0.0799 

Lindley 1.0954 -0.0046 5.10𝑥10−5 1.9984 -0.0016 0.0797 1.0999 -0.0001 2.94𝑥10−5 1.9978 -0.0022 0.0796 

M-Lindley 1.0950 -0.0050 5.36𝑥10−5 1.9982 -0.0018 0.0795 1.0998 -0.0002 3.14𝑥10−5 1.9976 -0.0024 0.0789 

MCMC 1.1000 0.0000 1.06𝑥10−5 2.0019 0.0019 0.0609 1.1001  0.0001 4.96𝑥10−5 2.0020  0.0020 0.0693 
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100 

MLE 1.1000 0.0000 6.16𝑥10−6 1.9976 -0.0024 0.0383 1.1001  0.0001 3.89𝑥10−6 2.0053  0.0053 0.0411 

Lindley 1.0999 -0.0001 8.15𝑥10−6 1.9971 -0.0029 0.0380 1.0999 -0.0001 3.37𝑥10−6 2.0049  0.0049 0.0393 

M-Lindley 1.0998 -0.0002 8.31𝑥10−6 1.9970 -0.0030 0.0377 1.0999 -0.0001 3.43𝑥10−6 2.0043  0.0043 0.0390 

MCMC 1.1002 0.0002 6.06𝑥10−6 1.9988 -0.0012 0.0298 1.1000  0.0000 6.87𝑥10−6 2.0040  0.0040 0.0300 

 
The following conclusions can be drawn from the 

Monte Carlo simulation. 

 As the sample size increases, bias and MSE 

values decrease in most of the cases. This is an 

expected case because all estimators are 

asymptotically unbiased and consistent as given in 

Section 2. 

 When the proposed Bayesian Methods and 

the MLEs are compared, Bayesianmethods have 

smaller bias and MSE values for estimating 

parameters 𝑎 and λ the most of the cases. 

 Considering Bayesian methods, the 

performance of the MCMC approximation method 

is generally demonstrated slightly better than 

Lindley and M-Lindley approximation methods in 

the case. Also, the performances of Lindley and M-

Lindley approximation methods under both Prior-I 

and Prior-II are more or less the same with respect 

to bias and MSE values in all cases. When Prior-I 

and Prior-II are compared, Prior-II is somewhat 

more efficient. 

4. Application 

In this Section, we take a real data set from the 

literature to apply the proposed methods.  This data 

set is about coal mining disaster data. It is found in 

Andrews and Herzberg [20]. The 190 observations 

in the data set demonstrate the days between 

successive disasters in Great Britain, see [21]. 

Moreover, Biçer et al. [10] analyzed the same data 

set for the Rayleigh distribution. They obtained that 

the a  ration parameter is less than 1 and the data 

set consists with a GP. They showed with the 𝑍∗ 

test statistic (𝑍∗ = 1.0049, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =0.8938) 

that this data set is appropriate with the Rayleigh 

distribution. For more details about 𝑍∗ test statistic, 

see Tiku [22].  Additionally we use Anderson-

Darling (A-D) test statistic (𝐴 − 𝐷 = 0.2414, 𝑝 −
𝑣𝑎𝑙𝑢𝑒 = 0.7368) to test whether the data set is fit 

with Rayleigh distribution. These test results on 

whether the coal mining disaster data set is suitable 

for the Rayleigh geometric process.  Therefore, this 

data set can be modeled with GP. We have the same 

result as other authors who analyzed this data set. 

However, they are only considered classical 

parameter estimators.  In our study, in addition to 

the classical parameter estimation, the proposed 

Bayesian parameter estimators are also taken 

consideration into for the Rayleigh distribution. 

The MLEs and Bayesian estimators of the 

parameters 𝑎 and λ by using MLE, Lindley, M-

Lindley, and MCMC approximation methods are 

given in Table 5. 
 

Table 5. Estimation of parameters the time between failure times of a coal mining disaster data 

 

 

 

 

 

There are some differences among the estimators 

even though they are close to one another. We 

select the most appropriate estimators using the 

simulation results provided in Section 3. We 

observed in simulation that the estimators obtained 

by MCMC method outperform the others. For this 

reason, in these examples, we recommend using 

MCMC estimators.  

5. Results and Discussion 

Here, MLEs and Bayesian parameter estimation 

methods for GP are discussed, assuming that the 

distribution of the first occurrence time is Rayleigh 

with the scale parameter λ.  As far as we know, this 

is the first study to compare Bayesian and classical 

parameter estimation methods. The asymptotic 

distributions of the MLEs are also constructed. 

These features are very useful for practitioners. 

Bayesian estimators under Prior-I and Prior-II 

based on SELF are considered. In Bayesian 

computation, Lindley and MCMC approximation 

methods are used. We also proposed the M-Lindley 

approximation as an alternative to the Lindley 

approximation.  We conducted a simulation study 

to evaluate the performance of these methods. It is 

clear from the simulation study that the M-Lindley 

approximation is very close to the Lindley 

approximation in terms of bias and MSE values. 

Additionally, the MCMC approximation has 

slightly better performance than the Lindley and 

M-Lindley approximations in terms of bias and 

                                                            Prior-I                                                     Prior-II 

Method  �̂�     λ̂     �̂�     λ̂ 

MLE 0.9916 91.2931 0. 9916 91.2931 

Lindley 0.9923 92.3196 0.9887 93.3755 

M-Lindley 0.9920 91.7736 0.9880 94.8301 

MCMC 0.9936 91.0412 1.0102 92.4682 
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MSE values. Therefore, considering the 

computational difficulties, we propose to use the 

M-Lindley and MCMC approximations instead of 

the Lindley and MLEs methods. 
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