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Abstract  Öz 
 

Let 𝑅 be a commutative ring with identity, 𝑀 be a 𝑅 −
𝑚𝑜𝑑𝑢𝑙𝑒 and 𝑁 be a submodule of 𝑀. 𝑁 is called to be 

essential (large) in 𝑀 if 𝑁 ∩ 𝑅𝑚 ≠ 0 for any nonzero 

element 𝑚 ∈ 𝑀 and we showed by 𝑁 ≤𝑒 𝑀. A sequence 

of 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 and 𝑅 − 𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠 

 
is called exact at 𝑀𝑖 if 𝐼𝑚(𝑓𝑖−1) = 𝐾𝑒𝑟 (𝑓𝑖). Also this 

sequence is called 𝑒 − 𝑒𝑥𝑎𝑐𝑡 at 𝑀𝑖 if 

𝐼𝑚(𝑓𝑖−1) ≤𝑒 𝐾𝑒𝑟(𝑓𝑖) and it is called 𝑒 − 𝑒𝑥𝑎𝑐𝑡 if it is 𝑒 −
𝑒𝑥𝑎𝑐𝑡 at each 𝑀𝑖. In this note, we present the concept of 

the characterization of 𝐸 − ℎ𝑜𝑚𝑜𝑡𝑜𝑝𝑦 and 𝐸 −
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 with some results such as chain map for 𝑒 −
𝑒𝑥𝑎𝑐𝑡 sequence and comparing theorem for 𝑒 − 𝑒𝑥𝑎𝑐𝑡 

sequence. 

 

Keywords: E-injective modules, e-exact sequences, 

contravariant functor, homological algebra. 

  

𝑅 birimli ve değişmeli bir halka, 𝑀 bir 𝑅 modül ve 𝑁, 𝑀 

‘nin bir alt modülü olsun. Eğer sıfırdan farklı bir 𝑚 ∈ 𝑀 

elemanı için 𝑁 ∩ 𝑅𝑚 ≠ 0 gerçekleniyorsa 𝑁’ye 𝑀 ‘nin 

bir büyük alt modülü denir ve 𝑁 ≤𝑒 𝑀 ile gösterilir. Bir 

𝑅 − 𝑚𝑜𝑑ü𝑙 dizisi için  

 
her 𝑀𝑖 için 𝐼𝑚(𝑓𝑖−1) = 𝐾𝑒𝑟 (𝑓𝑖) oluyorsa bu diziye tam 

(exact) dizi denir. Ayrıca her 𝑀𝑖 için 𝐼𝑚(𝑓𝑖−1) ≤𝑒 𝐾𝑒𝑟(𝑓𝑖) 

oluyorsa bu diziye e-exact dizi denir. Bu çalışmada 

𝑡𝑎𝑚 (𝑒𝑥𝑎𝑐𝑡) diziler teorisinin bir genişlemesi olan 𝐸 −
𝑒𝑥𝑎𝑐𝑡 diziler teorisi için 𝐸 − ℎ𝑜𝑚𝑜𝑡𝑜𝑝𝑦 and 𝐸 −
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 tanımlanmış ve zincir map ve karşılaştırma 

teoremi gibi ilgili bir kısım sonuçlar verilmiştir. 

 

 

Anahtar Kelimeler: E-injektif modüller, e-tam diziler, 

contravariant functor, homolojik cebir. 
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1. INTRODUCTION 

 

Let 𝑅 be a commutative ring with identity and 𝑀, 𝐴𝑖 be an 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒, for 𝑖 = 1,2. 

Consider  

 

 
 

an exact sequence of 𝑅 −modules. Hence we have 𝐼𝑚(𝑓1) = 𝐾𝑒𝑟 (𝑓2) (=  𝑓2
−1({0})). 

We can think a natural question: if we change a submodule 𝑈 of 𝑅,  what does happen 

for the trivial submodule {0} in the above definition? This sequence is called 𝑈3 −

𝑒𝑥𝑎𝑐𝑡 at 𝐴3 if 𝐼𝑚(𝑓1) =  𝑓2
−1(𝑈3), where 𝑈3 is a submodule of 𝐴3. Firstly, In (Davaz, 

& Parnian-Garameleky, 1999), Davaz and Parnian-Garameleky answered this question. 

Also, In (Davvaz, 2002), Davaz and Shabani-Solt obtained a generaliation of some 

notations in homological algebra and new basic properties of 𝑈 −homological algebra 

for 𝑈 − 𝑒𝑥𝑎𝑐𝑡 sequence theory. Besides, in (Anvariyeh, & Davvaz, 2002), Anvariyeh 

and Davvaz studied over 𝑈 − 𝑠𝑝𝑙𝑖𝑡 sequences. In (Anvariyeh, & Davvaz, 2005), 

Anvariyeh and Davvaz proved further results about quasi-exact sequences such as an 

analogue of Schanuel’s Lemma  for quasi-exact sequences. On the other hand, a 

submodule 𝑁 of 𝑀 is said to be essential (large) in 𝑀 if the intersection of 𝑁 with each 

nonzero submodule of 𝑀 is nonzero, namely, 𝑁 ∩ 𝑅𝑚 ≠ 0 for any nonzero element 

𝑚 ∈ 𝑀 and we showed by 𝑁 ≤𝑒 𝑀. A sequence of 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒𝑠  

 

 
 

is called exact at 𝑀𝑖 if 𝐼𝑚(𝑓𝑖−1) = 𝐾𝑒𝑟 (𝑓𝑖). In (Akray & Zebari, 2020), Akray and 

Zebari introduced the 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequences as a generalization of exact sequences, like 

𝑈 − 𝑒𝑥𝑎𝑐𝑡 theory. The previous sequence is called 𝑒 − 𝑒𝑥𝑎𝑐𝑡 at 𝑀𝑖 if 

𝐼𝑚(𝑓𝑖−1) ≤𝑒 𝐾𝑒𝑟(𝑓𝑖) and it is called 𝑒 − 𝑒𝑥𝑎𝑐𝑡 if it is 𝑒 − 𝑒𝑥𝑎𝑐𝑡 at each 𝑀𝑖. 

Particularly, they defined the sequence 

 

 
 

to be short 𝑒 − 𝑒𝑥𝑎𝑐𝑡 if 𝐾𝑒𝑟 (𝑓𝑖) = 0, 𝐼𝑚(𝑓1) ≤𝑒 𝐾𝑒𝑟(𝑓2) and 𝐼𝑚(𝑓2) ≤𝑒 𝐴3. Also 

from (Akray & Zebari, 2020), an 𝑅 − 𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑓1: 𝐴1 →  𝐴2 is called epic if 

𝐼𝑚(𝑓1) ≤𝑒 𝐴2 and essential monic if 𝐾𝑒𝑟(𝑓1) = 0. Obviously, the class of  𝑒 − 𝑒𝑥𝑎𝑐𝑡 

sequences is larger than the class of 𝑒𝑥𝑎𝑐𝑡 sequences. For instance, consider the short 

𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence 

 

 
 

where 𝑓1(16𝑛) = 8𝑛 and 𝑓2(𝑛) = 8𝑛 + 16ℤ. Since 𝑓1 is 𝑚𝑜𝑛𝑖𝑐, 𝐼𝑚(𝑓1) ≤𝑒 𝐾𝑒𝑟 (𝑓2) 

and 𝑓2 are 𝑒𝑝𝑖𝑐, the sequence is 𝑒 − 𝑒𝑥𝑎𝑐𝑡. But the sequence is not 𝑒𝑥𝑎𝑐𝑡, since 𝑓2 is 

not an 𝑒𝑝𝑖𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚. 
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In (Gunduz & Osama 2022), Gunduz and Osama defined a characterization of e-

injective module in terms of contravariant functor 𝐻𝑜𝑚(−, 𝐸). 

 

We recall from (Tercan & Yücel 2016) some basic definitions. An element 𝑚 of 𝑀 is 

said to be torsion of 𝑀 if the exists a regular element 𝑟 ∈ 𝑅 such that 𝑟𝑚 = 0. The set 

of all torsion elements 𝑇(𝑀) is a submodule of 𝑀. Also, an 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 𝑀 is called a 

𝑡𝑜𝑟𝑠𝑖𝑜𝑛 if 𝑇(𝑀) = 𝑀 and called 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑒 when 𝑇(𝑀) = {0}. 

 

The following theorem says that the contravariant functor 𝐻𝑜𝑚(−, 𝑀) is a left 𝑒 −
𝑒𝑥𝑎𝑐𝑡 functor when 𝑀 is a 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑒 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒. 

 

Theorem 1. (Akray & Zebari, 2020) Suppose that the following sequence of 𝑅 −
𝑚𝑜𝑑𝑢𝑙𝑒 and 𝑅 − 𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 

 

𝑀1  
𝑓1
→   𝑀2    

𝑓2
→    𝑀3  ⟶  0 

 

is 𝑒 − 𝑒𝑥𝑎𝑐𝑡. Then for all 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑒 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 𝑀, the sequence 

 

 
 

is 𝑒 − 𝑒𝑥𝑎𝑐𝑡. The converse is true if 𝑀3/𝐼𝑚(𝑓2) and 𝑀2/𝐼𝑚(𝑓1) are 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑒 

𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒𝑠. 

 

Defınıtıon 1. (Gunduz & Osama, 2022)  Let 𝑅 be a ring and  𝐸 an 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒. 𝐸 is 

said to be 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 if the following condition is satisfied: For any monic map 

𝑓1: 𝐴1 → 𝐴2 and any map 𝑓2: 𝐴1 → 𝐸, there exist 0 ≠ 𝑟 ∈ 𝑅 and 𝑓3: 𝐴2 → 𝐸 such that 

𝑓3𝑓1 = 𝑟. 𝑓2. 

 

 
 

Theorem 2. (Gunduz & Osama 2022) Let 𝑅 be a ring and 𝐸 an 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒. Then the 

following statements are equivalent: 

 

i) 𝐸 is an 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒. 

ii) 𝐻𝑜𝑚(−, 𝐸) is an 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence. 

 

Throughout section 2, all modules are assumed to be 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑒. In this section, 

we introduce the definition of 𝑒 − ℎ𝑜𝑚𝑜𝑡𝑜𝑝𝑦 and 𝑒 − 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 with some theorems 

such as chain map for 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence comparing theorem for 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence. 
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2. CHARACTERIZATION OF E-HOMOTOPY AND E-RESOLUTION 

 

To define 𝑒 − ℎ𝑜𝑚𝑜𝑡𝑜𝑝𝑦 and 𝑒 − 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, recall that some basic definitions. Let 

{𝐾𝑛}𝑛∈ℤ be a family of 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 and {𝑑𝑛: 𝐾𝑛 → 𝐾𝑛−1} a family of 𝑅 −
ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠. The family {𝐾𝑛, 𝑑𝑛} is called 𝑐ℎ𝑎𝑖𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 if  𝑑𝑛𝑑𝑛−1 = 0 for 

each 𝑛. 

 

We take 𝕂 = {𝐾𝑛}, 𝑑 = {𝑑𝑛} and show a chain complexes as follows: 

  

 
 

We also recall that 𝐻𝑛(𝕂, 𝑑) = 𝑍𝑛/𝐵𝑛, 𝑛 ∈ ℕ is called 𝑛 − 𝑡ℎ homology module of 𝐾, 

where  𝑍𝑛 = 𝐾𝑒𝑟(𝑑𝑛) and 𝐵𝑛 = 𝐼𝑚(𝑑𝑛+1). 

 

Let (𝕂, 𝑑) and (𝕃, 𝑑′) be chain complexes. The sequence 𝑓 = {𝑓𝑛: 𝐾𝑛 ⟶ 𝐿𝑛} is 

called a chain map if the following diagram is commutative. In words for the diagram 

 

 
 

that satisfies 𝑓𝑛−1𝑑𝑛 = 𝑑𝑛
′ 𝑓𝑛 

 

For the theory of 𝑒 − 𝑒𝑥𝑎𝑐𝑡, we will define 𝑓∗ = 𝐻𝑛(𝑓) from 𝐻𝑛(𝐾𝑛 , 𝑑𝑛) to 

𝐻𝑛(𝐿𝑛, 𝑑𝑛
′ ) as follows: 

 

Theorem 3. Let (𝕂, 𝑑) and (𝕃, 𝑑′) be chain complexes. If 𝑓 = {𝑓𝑛} is a chain map 

then it induces 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠 as follows 

 

𝐻𝑛(𝑓) = 𝑓∗ = 𝐻𝑛(𝐾𝑛 , 𝑑𝑛)→ 𝐻𝑛(𝐿𝑛 , 𝑑𝑛
′ ) 

 

such that 𝑥 + 𝐵𝑛 ↦ 𝑓𝑛(𝑟𝑥) + 𝐵𝑛
′ , where 𝐵𝑛 = 𝐼𝑚(𝑑𝑛+1), 𝐵𝑛

′ =  𝐼𝑚(𝑑𝑛+1
′ ) and for 

some 0 ≠ 𝑟 ∈ 𝑅. 

 

Proof.  To show 𝑓∗ is well defined, suppose that 𝑥 + 𝐵𝑛 = 𝑦 + 𝐵𝑛, then 𝑥 − 𝑦 ∈ 𝐵𝑛. 

 

Let 𝑥, 𝑦 ∈ 𝐾𝑒𝑟(𝑑𝑛) and implies that 𝑥 − 𝑦 ∈ 𝐾𝑒𝑟(𝑑𝑛). Since 𝐼𝑚(𝑑𝑛+1) ≤𝑒 𝐾𝑒𝑟(𝑑𝑛), 

we have 𝑟(𝑥 − 𝑦) ∈ 𝐼𝑚(𝑑𝑛+1) for some 0 ≠ 𝑟 ∈ 𝑅. Hence 𝑓𝑛(𝑟(𝑥 − 𝑦)) = 𝑓𝑛(𝑟(𝑥) −
𝑟(𝑦)) ∈  𝐵𝑛

′  and so 𝑓𝑛(𝑟𝑥) − 𝑓𝑛(𝑟𝑦) ∈ 𝐵𝑛
′ . Therefore 𝑓𝑛(𝑟𝑥) + 𝐵𝑛

′ = 𝑓𝑛(𝑟𝑦) + 𝐵𝑛
′  and 

we get 𝑓𝑛
∗(𝑥) = 𝑓𝑛

∗(𝑦). Also, it can be seen that 𝑓∗ is a homomorphism. Let 𝑥 + 𝐵𝑛,
𝑦 + 𝐵𝑛 ∈ 𝐻𝑛(𝐾𝑛 , 𝑑𝑛) then  𝑓∗[(𝑥 + 𝐵𝑛), +( 𝑦 + 𝐵𝑛)] = 𝑓∗[(𝑥 + 𝑦) + 𝐵𝑛] =
𝑓𝑛(𝑟(𝑥 + 𝑦)) + 𝐵𝑛

′ = 𝑓𝑛(𝑟𝑥 + 𝑟𝑦) + 𝐵𝑛
′ = 𝑓𝑛(𝑟𝑥) + 𝑓𝑛(𝑟𝑦) + 𝐵𝑛

′ = (𝑓𝑛(𝑟𝑥) + 𝐵𝑛
′ ) +

(𝑓𝑛(𝑟𝑦) + 𝐵𝑛
′ ) = 𝑓∗(𝑥 + 𝐵𝑛) + 𝑓∗(𝑦 + 𝐵𝑛), as desired. 
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Defınıtıon 2. (E-homotopy). Let (𝕂, 𝑑) and (𝕃, 𝑑′) be two chain complexes and 𝑓 =
{𝑓, 𝑔: 𝐾 → 𝐿} be two chain maps as 2.1. If there is a sequence 𝑠 = {𝑠𝑛} such that 

𝑟[𝑓𝑛 − 𝑔𝑛] = 𝑑𝑛+1
′ 𝑠𝑛 + 𝑟(𝑠𝑛−1𝑑𝑛) for all 𝑛 ∈ ℤ and for some 0 ≠ 𝑟 ∈ 𝑅, then 𝑓 and 

𝑔 are chain 𝑒 − ℎ𝑜𝑚𝑜𝑡𝑜𝑝𝑖𝑐 which is denoted by 𝑓 ≃𝑒 𝑔, where 𝑠𝑛: 𝐾𝑛 → 𝐿𝑛+1 is an 

𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 that is called a chain 𝑒 − ℎ𝑜𝑚𝑜𝑡𝑜𝑝𝑦. 

 

Lemma 1. The 𝑒 − ℎ𝑜𝑚𝑜𝑡𝑜𝑝𝑦 relation “𝑓 ≃𝑒 𝑔” is an equivalence relation. 

 

Proof.  If we choose 𝑠𝑛
′ = −𝑠𝑛 for all 𝑛 ∈ ℤ and for some 0 ≠ 𝑟 ∈ 𝑅, then 

𝑟[𝑓𝑛 − 𝑔𝑛] = 𝑑𝑛+1
′ (−𝑠𝑛) + 𝑟((−𝑠𝑛−1)𝑑𝑛) and implies that 𝑟[𝑔𝑛 − 𝑓𝑛] = 𝑑𝑛+1

′ 𝑠𝑛 +
𝑟(𝑠𝑛−1𝑑𝑛) , namely “𝑔 ≃𝑒 𝑓” and “≃𝑒” is symmetric. 

 

If we choose 𝑠𝑛 = 0, ∀𝑛 ∈ ℤ and for some 0 ≠ 𝑟 ∈ 𝑅, then 𝑟[𝑓𝑛 − 𝑔𝑛] = 0 and implies 

that “𝑓 ≃𝑒 𝑓” and “≃𝑒” is reflexive. 

 

To check transtivity, let 𝑓 ≃𝑒 𝑔 and  𝑔 ≃𝑒 ℎ. Then for some 0 ≠ 𝑟𝑖 , 𝑟𝑗 ∈ 𝑅 and 𝑖, 𝑗 ∈ 𝕀 

(an index set) there exist 𝑠𝑛 , 𝑡𝑛 ∶ 𝐾𝑛 → 𝐿𝑛+1, 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 homomorphisms such that 

we have 𝑟𝑖[𝑓𝑛 − 𝑔𝑛] = 𝑑𝑛+1
′ 𝑠𝑛 + 𝑟𝑖(𝑠𝑛−1𝑑𝑛)  and 𝑟𝑗[𝑔𝑛 − ℎ𝑛] = 𝑑𝑛+1

′ 𝑡𝑛 +

𝑟𝑗(𝑡𝑛−1𝑑𝑛). Define 𝑥𝑛 ∶ 𝐾𝑛 → 𝐿𝑛+1 homeomorphism such that 𝑥𝑛 = 𝑠𝑛 + 𝑡𝑛. This 

implies that 𝑟[𝑓𝑛 − ℎ𝑛] = 𝑟(𝑓𝑛 − 𝑔𝑛) + 𝑟(𝑔𝑛 − ℎ𝑛) = 𝑑𝑛+1
′ 𝑠𝑛 + 𝑑𝑛+1

′ 𝑡𝑛 +

𝑟(𝑠𝑛−1𝑑𝑛) + 𝑟(𝑡𝑛−1𝑑𝑛) = 𝑑𝑛+1
′ (𝑠𝑛 + 𝑡𝑛) + 𝑟((𝑠𝑛−1 + 𝑡𝑛−1)𝑑𝑛) = 𝑑𝑛+1

′ 𝑥𝑛 +

𝑟(𝑥𝑛−1𝑑𝑛), where for some 0 ≠ 𝑟 = 𝑟𝑖𝑟𝑗 ∈ 𝑅. Namely “≃𝑒” is transitivity. Hence,  

“≃𝑒” is an equivalence relation. 

 

Theorem 4. If “𝑓 ≃𝑒 𝑔” and “ℎ ≃𝑒 𝑘”, then “ℎ𝑓 ≃𝑒 𝑘𝑔”, where ℎ𝑓 is equal ℎ ∘ 𝑓. 

 

Proof. Let 𝑓, 𝑔: (𝕂, 𝑑) → (𝕃, 𝑑′)  be chain complexes. Then, there exist 𝑠𝑛: 𝐾𝑛 → 𝐿𝑛+1 

and 𝑡𝑛: 𝐿𝑛 → 𝑀𝑛+1, 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 homomorphisms such that 𝑟𝑖[𝑓𝑛 − 𝑔𝑛] = 𝑑𝑛+1
′ 𝑠𝑛 +

𝑟𝑖(𝑠𝑛−1𝑑𝑛) and 𝑟𝑗[ℎ𝑛 − 𝑘𝑛] = 𝑑𝑛+1
′′ 𝑡𝑛 + 𝑟𝑗(𝑡𝑛−1𝑑𝑛

′ ), some 0 ≠ 𝑟𝑖 , 𝑟𝑗 ∈ 𝑅, where each 

𝑔𝑛 is defined as 𝑔𝑛: 𝐾𝑛 → 𝐿𝑛. 

 

 
 

Define 𝑥𝑛: 𝐾𝑛 → 𝑀𝑛+1, ∀𝑛 ∈ ℤ and some 0 ≠ 𝑟 = 𝑟𝑖𝑟𝑗 ∈ 𝑅 such that 𝑥𝑛 = ℎ𝑛+1𝑠𝑛 +

𝑡𝑛𝑔𝑛, then we get 𝑟[ℎ𝑛𝑓𝑛 − 𝑘𝑛𝑔𝑛] = 𝑟[ℎ𝑛𝑓𝑛] − 𝑟[ℎ𝑛𝑔𝑛] + 𝑟[ℎ𝑛𝑔𝑛] − 𝑟[𝑘𝑛𝑔𝑛] =

𝑟(ℎ𝑛[𝑓𝑛 − 𝑔𝑛]) + 𝑟([ℎ𝑛 − 𝑘𝑛]𝑔𝑛 = ℎ𝑛(𝑟[𝑓𝑛 − 𝑔𝑛]) + 𝑟[ℎ𝑛 − 𝑘𝑛]𝑔𝑛 = ℎ𝑛(𝑑𝑛+1
′ 𝑠𝑛 +

𝑟(𝑠𝑛−1𝑑𝑛)) + (𝑑𝑛+1
′′ 𝑡𝑛 + 𝑟(𝑡𝑛−1𝑑𝑛

′ ))𝑔𝑛 = ℎ𝑛𝑑𝑛+1
′ 𝑠𝑛 + 𝑟(ℎ𝑛𝑠𝑛−1𝑑𝑛 + 𝑑𝑛+1

′′ 𝑡𝑛𝑔𝑛) +

𝑟𝑡𝑛−1𝑑𝑛
′ 𝑔𝑛 = 𝑑𝑛+1

′′ [ℎ𝑛+1𝑠𝑛 + 𝑡𝑛𝑔𝑛] + 𝑟(ℎ𝑛𝑠𝑛−1 + 𝑡𝑛−1𝑔𝑛−1)𝑑𝑛 = 𝑑𝑛+1
′′ 𝑥𝑛 +
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𝑟(𝑥𝑛−1𝑑𝑛), as desired. Here ℎ𝑛𝑑𝑛+1
′ = 𝑑𝑛+1

′′ ℎ𝑛+1 and 𝑑𝑛
′ 𝑔𝑛 = 𝑔𝑛−1𝑑𝑛 are used by the 

above diagram. Hence “ℎ𝑓 ≃𝑒 𝑘𝑔” and the proof is completed. 

 

Theorem 5. If two chain maps 𝑓, 𝑔: 𝐾 → 𝐿 are 𝑒 − ℎ𝑜𝑚𝑜𝑡𝑜𝑝𝑖𝑐, then 𝐻𝑛(𝑓) = 𝐻𝑛(𝑔). 

 

Proof.  Suppose that 𝑟[𝑓𝑛 − 𝑔𝑛] = 𝑑𝑛+1
′ 𝑠𝑛 + 𝑟(𝑠𝑛−1𝑑𝑛) for all 0 ≠ 𝑟 ∈ 𝑅. Let 𝑥 +

𝐵𝑛 ∈ 𝐻𝑛(𝐾) for 𝑥 ∈ ℤ. Since 𝑑𝑛(𝑥) = 0 and 𝐻𝑛(𝑓) = 𝑓∗: 𝐻𝑛(𝐾) → 𝐻𝑛(𝐿) such that 

𝑥 + 𝐵𝑛 ⟼ 𝑓𝑛(𝑟𝑥) + 𝐵𝑛
′  , then 𝑟[𝑓𝑛 − 𝑔𝑛](𝑥) = 𝑑𝑛+1

′ 𝑠𝑛(𝑥) + 𝑟(𝑠𝑛−1𝑑𝑛)(𝑥) =
𝑑𝑛+1

′ 𝑠𝑛(𝑥). Since 𝑥 ∈ 𝐾𝑒𝑟(𝑑𝑛), 𝑑𝑛(𝑥) = 0 and 𝑑𝑛+1
′ 𝑠𝑛(𝑥) ∈ 𝐵𝑛

′  , we get 𝑟[𝑓𝑛 −
𝑔𝑛](𝑥) = 𝑓𝑛(𝑟𝑥) − 𝑔𝑛(𝑟𝑥) ∈ 𝐵𝑛

′  , which implies 𝑓𝑛(𝑟𝑥) ∈ 𝐵𝑛
′ = 𝑔𝑛(𝑟𝑥) ∈ 𝐵𝑛

′ . Hence 

𝐻𝑛(𝑓)(𝑥 + 𝐵𝑛) = 𝐻𝑛(𝑔)(𝑥 + 𝐵𝑛), and so 𝐻𝑛(𝑓) = 𝐻𝑛(𝑔). 

 

To give the following theorems, recall that Let (𝕏, 𝜀) be a left complex over a module 

𝐴, where 

 

 
 

and 𝜀: 𝑋0 → 𝐴 such that 𝜀 ∘ 𝑑1 = 0. 

 

To get further results, we will give the following definitions.   

 

Defınıtıon 3. If the above sequence is 𝑒 − 𝑒𝑥𝑎𝑐𝑡 then it is called 𝑒 − 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

Moreover if each 𝑋𝑛 is an 𝑒 − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑣𝑒 module then it is called 𝑒 −
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . 

 

Likewise, recall that let (𝕐, 𝛿) be the right complex over a module 𝐵, where  

 

 
 

and 𝛿: 𝐵 → 𝑌0 such that 𝑑0 ∘ 𝛿 = 0. 

 

Defınıtıon 4. If the above sequence is 𝑒 − 𝑒𝑥𝑎𝑐𝑡, then it is called 𝑒 − 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

Moreover, if each 𝑌𝑛 is an 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑢𝑙𝑒 then it is called 𝑒 −
𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

 

Under the above new definitions, the following theorem is characterized by comparing 

theorem for 𝑒 −  𝑒𝑥𝑎𝑐𝑡 theory that explains why the above definitions are important. 

 

Theorem 6. Let (𝕏, 𝜀) be a left complex over 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 𝐴, (𝕐, 𝛿) a left complex 

over 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 𝐵 and 𝑓: 𝐴 → 𝐵 a homomorphism. If each 𝑋𝑛 is 𝑒 −  𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑣𝑒 

and (𝕐, 𝛿) is 𝑒 −  𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, then 
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there exists a chain map f ∶  {𝑓} ∶  𝕏 → 𝕐 such that the above diagram is commutative. 

Moreover, if  f′ is another chain map that satisfies the same condition, then f ≃𝑒f′ . 

 

Proof.  To proof this, we will use induction. Since 𝛿 is an epimorphism and 𝑋0 is 𝑒 −
 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑣𝑒, there exists a homomorphism 𝑓0: 𝑋0 → 𝑌0 such that 𝛿𝑓0 = 𝑟[𝑓𝜀], for some 

0 ≠ 𝑟 ∈ 𝑅. Thus, we have the following diagram 

 

 
 

is hold. Now, suppose that 𝑓1, 𝑓2, … , 𝑓𝑛 are homomorphisms. By hypothesis, we have 

the following diagram 

 

 
 

such that 𝑑′𝑓𝑛 = 𝑟[𝑓𝑛−1𝑑𝑛] for some 0 ≠ 𝑟 ∈ 𝑅. By the above diagram 𝑑′𝑓𝑛𝑑𝑛+1 =
𝑟[𝑓𝑛−1𝑑𝑛𝑑𝑛+1] = 0. Since 𝑑𝑛𝑑𝑛+1 = 0, it implies 𝑓𝑛𝑑𝑛+1 ∈ 𝐾𝑒𝑟(𝑑𝑛

′ ). Also, since 

𝐼𝑚(𝑑𝑛+1
′ ) ≤𝑒 𝐾𝑒𝑟(𝑑𝑛

′ ), then 𝑟(𝑓𝑛𝑑𝑛+1) ∈ 𝐼𝑚(𝑑𝑛+1
′ ) for some 0 ≠ 𝑟 ∈ 𝑅. This 

implies that there exists 𝑓𝑛+1: 𝑋𝑛+2 → 𝑌𝑛+1 such that 𝑑𝑛+1
′ (𝑓𝑛+1) = 𝑟𝑓𝑛𝑑𝑛+1. Thus we 

get the following diagram 

 

 
 

is hold. 

 

Hence, we can say that there exists an 𝑒 −  𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑣𝑒 module 𝑋𝑛+1 such that the 

above diagram is commutative. 
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Now, let 𝐟′ = 𝑓𝑛
′: 𝕏 → 𝕐  be another chain map that make he following diagram 

commutative 

 

 
 

To show f ≃𝑒 f ′, we will construct a homomorphism 𝑠𝑛. By induction, let 𝑓0
′ − 𝑓0: 𝑋0 →

𝑌0 be a homomorphism. Since 𝛿(𝑓0
′ − 𝑓0) = 𝛿𝑓0

′ − 𝛿𝑓0 = 𝑓𝜀 − 𝑓𝜀 = 0, then  𝑓0
′ −

𝑓0 ∈ 𝐾𝑒𝑟(𝛿). Since,  𝐼𝑚(𝑑1
′ ) ≤𝑒 𝐾𝑒𝑟(𝛿), that implies 𝑟(𝑓0

′ − 𝑓0) ∈ 𝐼𝑚(𝑑1
′ ), for some 

0 ≠ 𝑟 ∈ 𝑅. So there exists an 𝑠0: 𝑋0 → 𝑌0 with the commutative diagram 

 

 
 

such that 𝑑1
′ 𝑠0 = 𝑟(𝑓0

′ − 𝑓0). Since 𝑋−1 = 0, we take 𝑠−1 = 0.  So, we get 𝑟[𝑓0
′ − 𝑓0] =

𝑑1
′ 𝑠0 + 𝑟(𝑠−1𝑑0) for all 𝑛 ∈ ℤ and for some 0 ≠ 𝑟 ∈ 𝑅. 

Now, suppose that there exist 𝑠0, 𝑠1, … , 𝑠𝑛, then the equality 

 

 
 

𝑟[𝑓𝑛
′ − 𝑓𝑛] = 𝑑𝑛+1

′ 𝑠𝑛 + 𝑟(𝑠𝑛−1𝑑𝑛) for all 𝑛 ∈ ℤ and for some 0 ≠ 𝑟 ∈ 𝑅 is satisfied. 

Now, we will show that there exists a homomorphism 𝑠𝑛+1: 𝑋𝑛+1 → 𝑌𝑛+2 such that 

𝑟[𝑓𝑛+1
′ − 𝑓𝑛+1] = 𝑑𝑛+2

′ 𝑠𝑛+1 + 𝑟(𝑠𝑛𝑑𝑛+1). Namely, it implies that 𝑑𝑛+2
′ 𝑠𝑛+1 =

𝑟[𝑓𝑛+1
′ − 𝑓𝑛+1 − 𝑠𝑛𝑑𝑛+1]. 

 

Also, 𝑑𝑛+1
′ (𝑟[𝑓𝑛+1

′ − 𝑓𝑛+1 − 𝑠𝑛𝑑𝑛+1]) = 𝑟𝑑𝑛+1
′ 𝑓𝑛+1

′ − 𝑟𝑑𝑛+1
′ 𝑓𝑛+1 − 𝑟𝑑𝑛+1

′ 𝑠𝑛𝑑𝑛+1 =
𝑟𝑓𝑛

′𝑑𝑛+1 − 𝑟𝑓𝑛𝑑𝑛+1 − 𝑟𝑑𝑛+1
′ 𝑠𝑛𝑑𝑛+1 = 𝑟[𝑓𝑛

′ − 𝑓𝑛]𝑑𝑛+1 − 𝑟𝑑𝑛+1
′ 𝑠𝑛𝑑𝑛+1 =

𝑟[𝑑𝑛+1
′ 𝑠𝑛 + 𝑟(𝑠𝑛−1𝑑𝑛)]𝑑𝑛+1 − 𝑟𝑑𝑛+1

′ 𝑠𝑛𝑑𝑛+1 = 𝑟𝑑𝑛+1
′ 𝑠𝑛𝑑𝑛+1 + 𝑟𝑠𝑛−1𝑑𝑛𝑑𝑛+1 −

𝑟𝑑𝑛+1
′ 𝑠𝑛𝑑𝑛+1 = 0, since 𝑑𝑛𝑑𝑛+1 = 0, where 𝑑𝑛+1

′ 𝑓𝑛+1
′ = 𝑓𝑛

′𝑑𝑛+1 from 2.4 and 

𝑑𝑛+1
′ 𝑓𝑛+1 = 𝑓𝑛𝑑𝑛+1 from 2.3 If we take 𝑔 = 𝑓𝑛+1

′ − 𝑓𝑛+1 − 𝑠𝑛𝑑𝑛+1 then we can see 

that 𝑑𝑛+1
′ (𝑔) = 0. This implies 𝑔 ∈ 𝐾𝑒𝑟(𝑑𝑛+1

′ ). Since 𝐼𝑚(𝑑𝑛+2
′ ) ≤𝑒 𝐾𝑒𝑟(𝑑𝑛+1

′ ), then 

𝑟𝑔 ∈ 𝐼𝑚(𝑑𝑛+2
′ ), for some 0 ≠ 𝑟 ∈ 𝑅, it means that, there exists an 𝑠𝑛+1: 𝑋𝑛+1 → 𝑌𝑛+2  

with the following commutative diagram 
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is hold and such that 𝑟[𝑓𝑛+1
′ − 𝑓𝑛+1] = 𝑑𝑛+2

′ 𝑠𝑛+1 + 𝑟(𝑠𝑛𝑑𝑛+1). In conclusion that 

f ≃𝑒 f ′. 

 

Theorem 7. Let (𝕏, 𝜀) be a right complex over 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 𝐴, (𝕐, 𝛿) a right complex 

over 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒 𝐵 and 𝑓: 𝐴 → 𝐵 a homomorphism. If each 𝑌𝑛 is 𝑒 −  𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 and 

(𝕏, 𝜀) is 𝑒 −  𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, then 

 

 
 

there exists a chain map f ∶  {𝑓} ∶  𝕏 → 𝕐 such that the above diagram is commutative. 

Moreover, if  f′ is another chain map that satisfies the same condition, then f ≃e f′ . 

 

Proof. The proof can be done as Theorem 6 in similar way. 

 

 

3. RESULTS AND RECOMMENDATIONS  

 

In this paper, we present some new definitions, theorems and results about e-exact 

sequences of theory, which is the generalization of exact sequence of module theory, 

like U-exact sequence theory. Similarly, many results of homological algebra can be 

obtained for e-exact sequences such as the Lambek lemma, Snake lemma, Connecting 

homomorphism and Exact triangle for this theory. 
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