

İSTANBUL TİCARET ÜNİVERSİTESİ FEN BİLİMLERİ DERGİSİ

İstanbul Commerce University Journal of Science

http://dergipark.org.tr/ticaretfbd

Research Article / Araștırma Makalesi

E-EXACT SEQUENCE AND SOME RESULTS

E-TAM DİZİ VE BAZI SONUÇLAR

Abuzer GÜNDÜZ¹

https://doi.org/10.55071/ticaretfbd.1434248

Corresponding Author (Sorumlu Yazar) abuzergunduz@sakarya.edu.tr Received (Geliş Tarihi) 09.02.2024 Accepted (Kabul Tarihi) 26.06.2024

Abstract

Let *R* be a commutative ring with identity, *M* be a R - module and *N* be a submodule of *M*. *N* is called to be essential (large) in *M* if $N \cap Rm \neq 0$ for any nonzero element $m \in M$ and we showed by $N \leq_e M$. A sequence of R - modules and R - morphisms

$$\longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \xrightarrow{f_{i+1}} \dots$$

is called exact at M_i if $Im(f_{i-1}) = Ker(f_i)$. Also this sequence is called e - exact at M_i if $Im(f_{i-1}) \leq_e Ker(f_i)$ and it is called e - exact if it is e - exact at each M_i . In this note, we present the concept of the characterization of E - homotopy and E - exact sequence and comparing theorem for e - exact sequence.

Keywords: E-injective modules, e-exact sequences, contravariant functor, homological algebra.

Öz

R birimli ve değişmeli bir halka, *M* bir *R* modül ve *N*, *M* 'nin bir alt modülü olsun. Eğer sıfırdan farklı bir $m \in M$ elemanı için $N \cap Rm \neq 0$ gerçekleniyorsa *N*'ye *M* 'nin bir büyük alt modülü denir ve $N \leq_e M$ ile gösterilir. Bir R - modül dizisi için

Revised

(Revizyon Tarihi)

15.06.2024

$$\longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \xrightarrow{f_{i+1}} \dots$$

her M_i için $Im(f_{i-1}) = Ker(f_i)$ oluyorsa bu diziye tam (exact) dizi denir. Ayrıca her M_i için $Im(f_{i-1}) \leq_e Ker(f_i)$ oluyorsa bu diziye e-exact dizi denir. Bu çalışmada tam (exact) diziler teorisinin bir genişlemesi olan E exact diziler teorisi için E - homotopy and E resolution tanımlanmış ve zincir map ve karşılaştırma teoremi gibi ilgili bir kısım sonuçlar verilmiştir.

Anahtar Kelimeler: E-injektif modüller, e-tam diziler, contravariant functor, homolojik cebir.

¹ Sakarya University, Faculty of Science, Department of Mathematics, Sakarya, Turkey. abuzergunduz@sakarya.edu.tr, Orcid.org/ 0000-0003-3351-2443.

1. INTRODUCTION

Let *R* be a commutative ring with identity and *M*, A_i be an *R* – *module*, for i = 1,2. Consider

 $A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3$

an exact sequence of R -modules. Hence we have $Im(f_1) = Ker(f_2) (= f_2^{-1}(\{0\}))$. We can think a natural question: if we change a submodule U of R, what does happen for the trivial submodule $\{0\}$ in the above definition? This sequence is called $U_3 - exact$ at A_3 if $Im(f_1) = f_2^{-1}(U_3)$, where U_3 is a submodule of A_3 . Firstly, In (Davaz, & Parnian-Garameleky, 1999), Davaz and Parnian-Garameleky answered this question. Also, In (Davvaz, 2002), Davaz and Shabani-Solt obtained a generaliation of some notations in homological algebra and new basic properties of U -homological algebra for U - exact sequence theory. Besides, in (Anvariyeh, & Davvaz, 2002), Anvariyeh and Davvaz studied over U - split sequences. In (Anvariyeh, & Davvaz, 2005), Anvariyeh and Davvaz proved further results about quasi-exact sequences such as an analogue of Schanuel's Lemma for quasi-exact sequences. On the other hand, a submodule N of M is said to be essential (large) in M if the intersection of N with each nonzero submodule of M is nonzero, namely, $N \cap Rm \neq 0$ for any nonzero element $m \in M$ and we showed by $N \leq_e M$. A sequence of R - modules

$$\dots \qquad \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \xrightarrow{f_{i+1}} \dots$$

is called exact at M_i if $Im(f_{i-1}) = Ker(f_i)$. In (Akray & Zebari, 2020), Akray and Zebari introduced the e - exact sequences as a generalization of exact sequences, like U - exact theory. The previous sequence is called e - exact at M_i if $Im(f_{i-1}) \leq_e Ker(f_i)$ and it is called e - exact if it is e - exact at each M_i . Particularly, they defined the sequence

$$0 \longrightarrow A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \longrightarrow 0$$

to be short e - exact if $Ker(f_i) = 0$, $Im(f_1) \leq_e Ker(f_2)$ and $Im(f_2) \leq_e A_3$. Also from (Akray & Zebari, 2020), an $R - morphism f_1: A_1 \rightarrow A_2$ is called epic if $Im(f_1) \leq_e A_2$ and essential monic if $Ker(f_1) = 0$. Obviously, the class of e - exactsequences is larger than the class of *exact* sequences. For instance, consider the short e - exact sequence

$$0 \longrightarrow 16\mathbb{Z} \xrightarrow{f_1} \mathbb{Z} \xrightarrow{f_2} \mathbb{Z}/16\mathbb{Z} \longrightarrow 0$$

where $f_1(16n) = 8n$ and $f_2(n) = 8n + 16\mathbb{Z}$. Since f_1 is monic, $Im(f_1) \leq_e Ker(f_2)$ and f_2 are epic, the sequence is e - exact. But the sequence is not exact, since f_2 is not an epimorphism.

In (Gunduz & Osama 2022), Gunduz and Osama defined a characterization of e-injective module in terms of contravariant functor Hom(-, E).

We recall from (Tercan & Yücel 2016) some basic definitions. An element m of M is said to be torsion of M if the exists a regular element $r \in R$ such that rm = 0. The set of all torsion elements T(M) is a submodule of M. Also, an R – module M is called a *torsion* if T(M) = M and called *torsion* – free when $T(M) = \{0\}$.

The following theorem says that the contravariant functor Hom(-, M) is a left e - *exact* functor when M is a *torsion* - *free* R - *module*.

Theorem 1. (Akray & Zebari, 2020) Suppose that the following sequence of R – module and R – morphism

$$M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \longrightarrow 0$$

is e - exact. Then for all torsion - free R - module M, the sequence

 $0 \longrightarrow Hom(M_3, M) \xrightarrow{f_2^*} Hom(M_2, M) \xrightarrow{f_1^*} Hom(M_1, M)$

is e - exact. The converse is true if $M_3/Im(f_2)$ and $M_2/Im(f_1)$ are torsion – free R – modules.

Definition 1. (Gunduz & Osama, 2022) Let *R* be a ring and *E* an *R* – module. *E* is said to be e - injective if the following condition is satisfied: For any monic map $f_1: A_1 \rightarrow A_2$ and any map $f_2: A_1 \rightarrow E$, there exist $0 \neq r \in R$ and $f_3: A_2 \rightarrow E$ such that $f_3f_1 = r. f_2$.

$$0 \longrightarrow A_1 \xrightarrow{f_1} A_2$$
$$\downarrow_{f_2} \\ E \\ f_3$$

Theorem 2. (Gunduz & Osama 2022) Let *R* be a ring and *E* an R – *module*. Then the following statements are equivalent:

i) E is an e - injective R - module.
ii) Hom(-, E) is an e - exact sequence.

Throughout section 2, all modules are assumed to be *torsion* – *free*. In this section, we introduce the definition of e - homotopy and e - resolution with some theorems such as chain map for e - exact sequence comparing theorem for e - exact sequence.

2. CHARACTERIZATION OF E-HOMOTOPY AND E-RESOLUTION

To define e - homotopy and e - resolution, recall that some basic definitions. Let $\{K_n\}_{n \in \mathbb{Z}}$ be a family of R - modules and $\{d_n: K_n \to K_{n-1}\}$ a family of R - homomorphisms. The family $\{K_n, d_n\}$ is called *chain complex* if $d_n d_{n-1} = 0$ for each n.

We take $\mathbb{K} = \{K_n\}, d = \{d_n\}$ and show a chain complexes as follows:

$$(\mathbb{K}, d): \qquad \dots \longrightarrow K_{n+1} \xrightarrow{d_{n+1}} K_n \xrightarrow{d_n} K_{n-1} \longrightarrow \dots$$

We also recall that $H_n(\mathbb{K}, d) = Z_n/B_n$, $n \in \mathbb{N}$ is called n - th homology module of K, where $Z_n = Ker(d_n)$ and $B_n = Im(d_{n+1})$.

Let (\mathbb{K}, d) and (\mathbb{L}, d') be chain complexes. The sequence $f = \{f_n : K_n \to L_n\}$ is called a chain map if the following diagram is commutative. In words for the diagram

$$(\mathbb{K}, d): \qquad \dots \longrightarrow K_{n+1} \xrightarrow{d_{n+1}} K_n \xrightarrow{d_n} K_{n-1} \longrightarrow \dots$$
$$\downarrow^{f_{n+1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n-1}}$$
$$(\mathbb{L}, d'): \qquad \dots \longrightarrow L_{n+1} \xrightarrow{d'_{n+1}} L_n \xrightarrow{d'_n} L_{n-1} \longrightarrow \dots$$

that satisfies $f_{n-1}d_n = d'_n f_n$

For the theory of e - exact, we will define $f^* = H_n(f)$ from $H_n(K_n, d_n)$ to $H_n(L_n, d'_n)$ as follows:

Theorem 3. Let (\mathbb{K}, d) and (\mathbb{L}, d') be chain complexes. If $f = \{f_n\}$ is a chain map then it induces R – module homomorphisms as follows

$$H_n(f) = f^* = H_n(K_n, d_n) \rightarrow H_n(L_n, d'_n)$$

such that $x + B_n \mapsto f_n(rx) + B'_n$, where $B_n = Im(d_{n+1})$, $B'_n = Im(d'_{n+1})$ and for some $0 \neq r \in R$.

Proof. To show f^* is well defined, suppose that $x + B_n = y + B_n$, then $x - y \in B_n$.

Let $x, y \in Ker(d_n)$ and implies that $x - y \in Ker(d_n)$. Since $Im(d_{n+1}) \leq_e Ker(d_n)$, we have $r(x - y) \in Im(d_{n+1})$ for some $0 \neq r \in R$. Hence $f_n(r(x - y)) = f_n(r(x) - r(y)) \in B'_n$ and so $f_n(rx) - f_n(ry) \in B'_n$. Therefore $f_n(rx) + B'_n = f_n(ry) + B'_n$ and we get $f_n^*(x) = f_n^*(y)$. Also, it can be seen that f^* is a homomorphism. Let $x + B_n$, $y + B_n \in H_n(K_n, d_n)$ then $f^*[(x + B_n), +(y + B_n)] = f^*[(x + y) + B_n] =$ $f_n(r(x + y)) + B'_n = f_n(rx + ry) + B'_n = f_n(rx) + f_n(ry) + B'_n = (f_n(rx) + B'_n) + (f_n(ry) + B'_n) = f^*(x + B_n), \text{ as desired.}$ **Definition 2. (E-homotopy).** Let (\mathbb{K}, d) and (\mathbb{L}, d') be two chain complexes and $f = \{f, g: K \to L\}$ be two chain maps as 2.1. If there is a sequence $s = \{s_n\}$ such that $r[f_n - g_n] = d'_{n+1}s_n + r(s_{n-1}d_n)$ for all $n \in \mathbb{Z}$ and for some $0 \neq r \in R$, then f and g are chain e – homotopic which is denoted by $f \simeq_e g$, where $s_n: K_n \to L_{n+1}$ is an R – module homomorphism that is called a chain e – homotopy.

Lemma 1. The e – homotopy relation " $f \simeq_e g$ " is an equivalence relation.

Proof. If we choose $s'_n = -s_n$ for all $n \in \mathbb{Z}$ and for some $0 \neq r \in R$, then $r[f_n - g_n] = d'_{n+1}(-s_n) + r((-s_{n-1})d_n)$ and implies that $r[g_n - f_n] = d'_{n+1}s_n + r(s_{n-1}d_n)$, namely " $g \simeq_e f$ " and " \simeq_e " is symmetric.

If we choose $s_n = 0$, $\forall n \in \mathbb{Z}$ and for some $0 \neq r \in R$, then $r[f_n - g_n] = 0$ and implies that " $f \simeq_e f$ " and " \simeq_e " is reflexive.

To check transitivity, let $f \simeq_e g$ and $g \simeq_e h$. Then for some $0 \neq r_i$, $r_j \in R$ and $i, j \in \mathbb{I}$ (an index set) there exist $s_n, t_n : K_n \to L_{n+1}, R$ – module homomorphisms such that we have $r_i[f_n - g_n] = d'_{n+1}s_n + r_i(s_{n-1}d_n)$ and $r_j[g_n - h_n] = d'_{n+1}t_n + r_j(t_{n-1}d_n)$. Define $x_n : K_n \to L_{n+1}$ homeomorphism such that $x_n = s_n + t_n$. This implies that $r[f_n - h_n] = r(f_n - g_n) + r(g_n - h_n) = d'_{n+1}s_n + d'_{n+1}t_n + r(s_{n-1}d_n) + r(t_{n-1}d_n) = d'_{n+1}(s_n + t_n) + r((s_{n-1} + t_{n-1})d_n) = d'_{n+1}x_n + r(x_{n-1}d_n)$, where for some $0 \neq r = r_i r_j \in R$. Namely " \simeq_e " is transitivity. Hence, " \simeq_e " is an equivalence relation.

Theorem 4. If " $f \simeq_e g$ " and " $h \simeq_e k$ ", then " $hf \simeq_e kg$ ", where hf is equal $h \circ f$.

Proof. Let $f, g: (\mathbb{K}, d) \to (\mathbb{L}, d')$ be chain complexes. Then, there exist $s_n: K_n \to L_{n+1}$ and $t_n: L_n \to M_{n+1}, R - module$ homomorphisms such that $r_i[f_n - g_n] = d'_{n+1}s_n + r_i(s_{n-1}d_n)$ and $r_j[h_n - k_n] = d''_{n+1}t_n + r_j(t_{n-1}d'_n)$, some $0 \neq r_i, r_j \in R$, where each g_n is defined as $g_n: K_n \to L_n$.

$$(\mathbb{K}, d): \qquad \dots \longrightarrow K_{n+1} \xrightarrow{d_{n+1}} K_n \xrightarrow{d_n} K_{n-1} \longrightarrow \dots$$

$$\downarrow f_{n+1} \xrightarrow{s_n} \downarrow f_n \xrightarrow{s_{n-1}} \downarrow f_{n-1}$$

$$(\mathbb{L}, d'): \qquad \dots \longrightarrow L_{n+1} \xrightarrow{d'_{n+1}} L_n \xrightarrow{d'_n} L_{n-1} \longrightarrow \dots$$

$$\downarrow h_{n+1} \xrightarrow{t_n} h_n \xrightarrow{d'_{n-1}} \downarrow h_{n-1}$$

$$(\mathbb{M}, d''): \qquad \dots \longrightarrow M_{n+1} \xrightarrow{d''_{n+1}} M_n \xrightarrow{d''_n} M_{n-1} \longrightarrow \dots$$

Define $x_n: K_n \to M_{n+1}, \forall n \in \mathbb{Z}$ and some $0 \neq r = r_i r_j \in R$ such that $x_n = h_{n+1} s_n + t_n g_n$, then we get $r[h_n f_n - k_n g_n] = r[h_n f_n] - r[h_n g_n] + r[h_n g_n] - r[k_n g_n] = r(h_n [f_n - g_n]) + r([h_n - k_n]g_n = h_n(r[f_n - g_n]) + r[h_n - k_n]g_n = h_n(d'_{n+1}s_n + r(s_{n-1}d_n)) + (d''_{n+1}t_n + r(t_{n-1}d'_n)g_n = h_n d'_{n+1}s_n + r(h_n s_{n-1}d_n + d''_{n+1}t_n g_n) + rt_{n-1}d'_n g_n = d''_{n+1}[h_{n+1}s_n + t_n g_n] + r(h_n s_{n-1} + t_{n-1}g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + t_{n-1}g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + h_n g_n) + rt_{n-1}d'_n g_n = d''_{n+1}[h_{n+1}s_n + t_n g_n] + r(h_n s_{n-1} + t_{n-1}g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + t_{n-1}g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + t_{n-1}g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + t_{n-1}g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + t_{n-1}g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + t_{n-1}g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + t_{n-1}g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + t_n g_n) + r(h_n s_{n-1} + t_n g_{n-1})d_n = d''_{n+1}x_n + r(h_n s_{n-1} + t_n g_{n-1})d_n$

 $r(x_{n-1}d_n)$, as desired. Here $h_n d'_{n+1} = d''_{n+1}h_{n+1}$ and $d'_n g_n = g_{n-1}d_n$ are used by the above diagram. Hence " $hf \simeq_e kg$ " and the proof is completed.

Theorem 5. If two chain maps $f, g: K \to L$ are e - homotopic, then $H_n(f) = H_n(g)$.

Proof. Suppose that $r[f_n - g_n] = d'_{n+1}s_n + r(s_{n-1}d_n)$ for all $0 \neq r \in \mathbb{R}$. Let $x + B_n \in H_n(K)$ for $x \in \mathbb{Z}$. Since $d_n(x) = 0$ and $H_n(f) = f^*: H_n(K) \to H_n(L)$ such that $x + B_n \mapsto f_n(rx) + B'_n$, then $r[f_n - g_n](x) = d'_{n+1}s_n(x) + r(s_{n-1}d_n)(x) = d'_{n+1}s_n(x)$. Since $x \in Ker(d_n)$, $d_n(x) = 0$ and $d'_{n+1}s_n(x) \in B'_n$, we get $r[f_n - g_n](x) = f_n(rx) - g_n(rx) \in B'_n$, which implies $f_n(rx) \in B'_n = g_n(rx) \in B'_n$. Hence $H_n(f)(x + B_n) = H_n(g)(x + B_n)$, and so $H_n(f) = H_n(g)$.

To give the following theorems, recall that Let (X, ε) be a left complex over a module A, where

 $\mathbb{X}:\ldots \xrightarrow{d_{n+1}} X_n \xrightarrow{d_n} \ldots \longrightarrow X_1 \xrightarrow{d_1} X_0 \xrightarrow{d_0} 0$

and $\varepsilon: X_0 \to A$ such that $\varepsilon \circ d_1 = 0$.

To get further results, we will give the following definitions.

Definition 3. If the above sequence is e - exact then it is called e - resolution. Moreover if each X_n is an e - projective module then it is called e - projective resolution.

Likewise, recall that let (\mathbb{Y}, δ) be the right complex over a module *B*, where

 $\mathbb{Y}: 0 \longrightarrow Y^0 \xrightarrow{d^0} Y^1 \xrightarrow{d^1} \dots \xrightarrow{d^{n-1}} Y^n \xrightarrow{d^n} \dots$

and $\delta: B \to Y_0$ such that $d_0 \circ \delta = 0$.

Definition 4. If the above sequence is e - exact, then it is called e - resolution. Moreover, if each Y^n is an e - injective module then it is called e - injective resolution.

Under the above new definitions, the following theorem is characterized by comparing theorem for e - exact theory that explains why the above definitions are important.

Theorem 6. Let $(\mathbb{X}, \varepsilon)$ be a left complex over R – module A, (\mathbb{Y}, δ) a left complex over R – module B and $f: A \to B$ a homomorphism. If each X_n is e – projective and (\mathbb{Y}, δ) is e – resolution, then

there exists a chain map $f : \{f\} : \mathbb{X} \to \mathbb{Y}$ such that the above diagram is commutative. Moreover, if f' is another chain map that satisfies the same condition, then $f \simeq_e f'$.

Proof. To proof this, we will use induction. Since δ is an epimorphism and X_0 is e - projective, there exists a homomorphism $f_0: X_0 \to Y_0$ such that $\delta f_0 = r[f\varepsilon]$, for some $0 \neq r \in \mathbb{R}$. Thus, we have the following diagram

is hold. Now, suppose that $f_1, f_2, ..., f_n$ are homomorphisms. By hypothesis, we have the following diagram

such that $d'f_n = r[f_{n-1}d_n]$ for some $0 \neq r \in R$. By the above diagram $d'f_nd_{n+1} = r[f_{n-1}d_nd_{n+1}] = 0$. Since $d_nd_{n+1} = 0$, it implies $f_nd_{n+1} \in Ker(d'_n)$. Also, since $Im(d'_{n+1}) \leq_e Ker(d'_n)$, then $r(f_nd_{n+1}) \in Im(d'_{n+1})$ for some $0 \neq r \in R$. This implies that there exists $f_{n+1}: X_{n+2} \to Y_{n+1}$ such that $d'_{n+1}(f_{n+1}) = rf_nd_{n+1}$. Thus we get the following diagram

is hold.

Hence, we can say that there exists an e - projective module X_{n+1} such that the above diagram is commutative.

Now, let $\mathbf{f}' = f'_n: \mathbb{X} \to \mathbb{Y}$ be another chain map that make he following diagram commutative

To show $f \simeq_e f'$, we will construct a homomorphism s_n . By induction, let $f'_0 - f_0: X_0 \rightarrow Y_0$ be a homomorphism. Since $\delta(f'_0 - f_0) = \delta f'_0 - \delta f_0 = f\varepsilon - f\varepsilon = 0$, then $f'_0 - f_0 \in Ker(\delta)$. Since, $Im(d'_1) \leq_e Ker(\delta)$, that implies $r(f'_0 - f_0) \in Im(d'_1)$, for some $0 \neq r \in R$. So there exists an $s_0: X_0 \rightarrow Y_0$ with the commutative diagram

such that $d'_1 s_0 = r(f'_0 - f_0)$. Since $X_{-1} = 0$, we take $s_{-1} = 0$. So, we get $r[f'_0 - f_0] = d'_1 s_0 + r(s_{-1}d_0)$ for all $n \in \mathbb{Z}$ and for some $0 \neq r \in R$. Now, suppose that there exist s_0, s_1, \dots, s_n , then the equality

 $r[f'_n - f_n] = d'_{n+1}s_n + r(s_{n-1}d_n)$ for all $n \in \mathbb{Z}$ and for some $0 \neq r \in R$ is satisfied. Now, we will show that there exists a homomorphism $s_{n+1}: X_{n+1} \to Y_{n+2}$ such that $r[f'_{n+1} - f_{n+1}] = d'_{n+2}s_{n+1} + r(s_nd_{n+1})$. Namely, it implies that $d'_{n+2}s_{n+1} = r[f'_{n+1} - f_{n+1} - s_nd_{n+1}]$.

Also, $d'_{n+1}(r[f'_{n+1} - f_{n+1} - s_n d_{n+1}]) = rd'_{n+1}f'_{n+1} - rd'_{n+1}f_{n+1} - rd'_{n+1}s_n d_{n+1} = rf'_n d_{n+1} - rd'_{n+1}s_n d_{n+1} = r[f'_n - f_n]d_{n+1} - rd'_{n+1}s_n d_{n+1} = r[d'_{n+1}s_n + r(s_{n-1}d_n)]d_{n+1} - rd'_{n+1}s_n d_{n+1} = rd'_{n+1}s_n d_{n+1} + rs_{n-1}d_n d_{n+1} - rd'_{n+1}s_n d_{n+1} = 0$, since $d_n d_{n+1} = 0$, where $d'_{n+1}f'_{n+1} = f'_n d_{n+1}$ from 2.4 and $d'_{n+1}f_{n+1} = f_n d_{n+1}$ from 2.3 If we take $g = f'_{n+1} - f_{n+1} - s_n d_{n+1}$ then we can see that $d'_{n+1}(g) = 0$. This implies $g \in Ker(d'_{n+1})$. Since $Im(d'_{n+2}) \leq_e Ker(d'_{n+1})$, then $rg \in Im(d'_{n+2})$, for some $0 \neq r \in R$, it means that, there exists an $s_{n+1}: X_{n+1} \to Y_{n+2}$ with the following commutative diagram

is hold and such that $r[f'_{n+1} - f_{n+1}] = d'_{n+2}s_{n+1} + r(s_nd_{n+1})$. In conclusion that $f \simeq_e f'$.

Theorem 7. Let (X, ε) be a right complex over R – module A, (Y, δ) a right complex over R – module B and $f: A \to B$ a homomorphism. If each Y^n is e – injective and (X, ε) is e – resolution, then

there exists a chain map $f : \{f\} : \mathbb{X} \to \mathbb{Y}$ such that the above diagram is commutative. Moreover, if f' is another chain map that satisfies the same condition, then $f \simeq e f'$.

Proof. The proof can be done as Theorem 6 in similar way.

3. RESULTS AND RECOMMENDATIONS

In this paper, we present some new definitions, theorems and results about e-exact sequences of theory, which is the generalization of exact sequence of module theory, like U-exact sequence theory. Similarly, many results of homological algebra can be obtained for e-exact sequences such as the Lambek lemma, Snake lemma, Connecting homomorphism and Exact triangle for this theory.

Statement of Research and Publication Ethics

Research and publication ethics were observed in the study.

REFERENCES

- Akray, I., & Zebari, A. (2020). Essential exact sequences. Communications of the Korean Mathematical Society, 35(2), 469-480.
- Alizade, R., & Pancar, A. (1999). *Homoloji cebire giris*. Ondokuz Mayıs Universitesi Yayınları, Samsun.
- Anvariyeh, S. M., & Davvaz, B. (2005). On quasi-exact sequences. *Bull.Korean Math.* Soc., 42(1), 149-155.

- Anvariyeh, S. M., & Davvaz, B. (2002). U-Split-Exact Sequences. Far East J. Math Sci. (FJMS), 4, 2, 2009-219.
- Davaz, B. (2002). A generalization of homological algebra, J. Korean math. Soc. 39, no. 6, 881-898.
- Davaz, B. & Parnian-Garameleky, Y. A. (1999). A note on Exact Sequences, Bull. Malays. Math. Sci. Soc. (2) 22, no. 1, 53-56.
- Gunduz, A., & Osama, N. A. J. I. (2022). A Note On E-Injective Modules. Sakarya University Journal of Science, 26(6), 1262-1266.

Hungerford, T. W., & Hungerford, T. W. (1974). Categories. Algebra, 464-484.

Tercan, A., & Yücel, C. C. (2016). *Module theory. Extending Modules and Generalizations*, Bassel: Birkhäuser–Springer.