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Abstract : Novel zinc phthalocyanines were synthesized by the reaction of phthalonitriles containing methyl
2-hydroxy-6-methoxyisonicotinate. These compounds were obtained via aromatic nucleophilic substitution
reactions. All compounds have been determined by elemental analysis, FT-IR, NMR, MS and electronic
absorption. The solubility of phthalocyanines is very low in DMSO and DMF but high in alkaline aqueous
solution. The UV-Vis spectra of the Zn(II) phthalocyanines were recorded in different concentration in DMF,
DMSO and also in different solvents as DMF, DMSO, and water. Peripheral substitute zincphthalocyanines
(5 and 7) showed aggregation in water. Nonperipheral substitute zincphthalocyanine (7) showed monomeric
behavior in DMSO, DMF, and water. Beer’s law was obeyed for zinc phthalocyanines.

Keywords : Methyl 2-Hydroxy 6-methoxyisonicotinate, Phthalonitrile, Water Soluble Phthalocyanines.

1 Introduction
Phthalocyanines are aromatic chemical compounds that have many applications [1], [2]. These are dyes and pigments [3],
liquid crystal [4], [5], optical applications [6], [7], HIV inactivation [8], [9], electrochromism [10], [11], molecular solar cells
[12], [13], chemical sensors [13]–[15], semiconductors for organic field-effect transistors [16], [17], and photodynamic therapy
[18]–[20]. Phthalocyanines, whose central atom can contain 70 different metals, have high thermal and chemical stability. While
unsubstituted phthalocyanines are insoluble in common organic solvents andwater, substituted ones are soluble. Phthalocyanines
must contain some groups such as carboxyl in order to be soluble in water [21]. Various substituents can be added to the
periphery, nonperiphery or axial positions of phthalocyanines. These substituents are macrocyclic moieties [22]–[24], thiol
[25], naphthalene-amide groups [26], phenol groups [27]–[29], pyridine derivatives [30], [31], alcohols [32], [33]. In this study,
the synthesis and characterization of water soluble zinc phthalocyanines containing 2-Hydroxy-6-methoxyisonicotinic Acid, a
pyridine derivative, in peripheral and nonperipheral positions, and their UV-Vis spectra in different solvents and concentrations
are reported.

2 Experimental Methods
2.1 Materials
IR spectra was recorded on a Perkin Elmer Frontier FT-IR Spectrometer as KBR pellets. UV-VIS spectra were recorded
on a Perkin Elmer Lambda 35 UV/VIS Spectrometer. 1H-NMR and 13C-NMR studies were done on an Agilent 600 MHz
spectrometer (Giresun University NMR Laboratory). Mass spectra were measured on an Agilent GC-MSD - 7890B GC-
5977MSD (Amasya University-AUMAULAB). Elemental analyses were performed on a Leco TruspectMicro Analyzer.Methyl
2-hydroxy-6-methoxyisonicotinate, 4,5-dichlorophthalonitrile, 3- or 4-Nitrophthalonitrile were synthesized by following the
procedure reported in [34]–[37].

2.2 Synthesis
Synthesis ofMethyl 2-(2-Chloro-4,5-dicyanophenoxy)-6-methoxyisonicotinate (2):Methyl 2-hydroxy-6-methoxyisonicotinate
6,24g (34,10 mmol) was dissolved in dry DMF (50 mL) under nitrogen atmosphere at 70℃ and K2CO3 7,03g (50,94 mmol)
was added. After stirring for 2h, a solution of 4,5-dichlorophthalonitrile 6,68g (33,91 mmol) in dry DMF (70 mL) was added
dropwise over 5h. The reaction mixture was stirred at 70℃ under nitrogen atmosphere for 72 h. The mixture was then poured
in to ice-water (400 g). The precipitate was filtered off washed with (10% w/w) NaOH solution and water until the filtrate was
neutral. Recrystallization from ethanol gave a compound 2. The product is soluble in methanol, Ethyl alcohol, Ethyl acetate,
aceton, THF, 1,4-dioxane, acetonitrile, Toluene, benzene, chlorobenzene, DMF, DMSO, DCM, CHCl3 and insoluble in hexane.
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Yield: 6.91 g (59%); mp: 155℃; anal. calcd. for C16H10ClN3O4: C, 55.91; H, 2.93; N, 12.23%. Found: C, 55.71; H, 2.83; N,
12.34%. FT-IR :νmax , cm

–1 3102 (Aromatic CH), 3036, 2962 (aliphatic CH), 2901, 2743, 2581, 2237 (CN), 2023, 1730 (Ester
C=O), 1623, 1592, 1575, 1564, 1490, 1447,1399, 1376,1251, 1157, 1029, 772, 536. 1HNMR (400 MHz, CDCl3, δ, ppm) 7,94-
7,17 (m, Aromatic and Pyridine CH, 5H), 3,99 (s, OCH3, 3H), 3,74 (s, OCH3, 3H).

13CNMR (CDCl3):δ, ppm 164.53 (C=O),
163.72, 160.26, 153.84, 144.26, 135.53, 127.57, 115.02, 114.29 (CN), 114.13 (CN), 112.44, 106.79, 102.63, 54.31 (OCH3),
53.00 (OCH3). GC MS; 343

Synthesis of Methyl 2-(3,4-dicyanophenoxy)-6-Methoxyisonicotinate (3): Compounds 3 and 4 were synthesized as
discussed above. Yield: 2.55 g (61%); mp: 153℃; anal. calcd. for C16H11N3O4: C, 62.14; H, 3.58; N, 13.59%. Found: C, 62.34;
H, 3.48; N, 13.49%. FT-IR :νmax , cm

–1 3104 (Aromatic CH), 3078, 3047, 2965 (aliphatic CH), 2233 (CN), 1733 (Ester C=O),
1620, 1601, 1563, 1490, 1447, 1394, 1362, 10131, 770, 525. 1HNMR (400 MHz, CDCl3, δ, ppm) 7,84-7,13 (m, Aromatic ve
Pyridine CH, 5H), 3,97 (s, OCH3, 3H), 3,78 (s, OCH3, 3H).

13CNMR (CDCl3):δ, ppm 164.57 (C=O), 163.83, 159.93, 157.56,
144.14, 135.01, 125. 41, 125.22, 117.26, 115.22 (CN), 114.86 (CN), 110.94, 107.11, 103.33, 54.35 (OCH3), 52.97 (OCH3). GC
MS; 309

Synthesis of Methyl 2-(2,3-dicyanophenoxy)-6-Methoxyisonicotinate (4): Yield: 5.38 g (64%); mp: 155℃; anal. calcd.
for C16H11N3O4: C, 62.14; H, 3.58; N, 13.59%. Found: C, 62.24; H, 3.52; N, 13.66%. FT-IR :νmax , cm

–1 3104 (Aromatic CH),
3123 (Aromatic CH), 3104, 3000, 2960 (aliphatic CH.), 2235 (CN), 1741 (Ester C=O), 1709, 1627, 1589, 1567, 1395, 1238,
1031, 872, 769, 552, 454.. 1HNMR (400 MHz, CDCl3, δ, ppm) 7,77-7,16 (m, Aromatic ve Pyridine CH, 5H), 3,98 (s, OCH3,
3H), 3,74 (s, OCH3, 3H).

13CNMR (CDCl3):δ, ppm 164.56 (C=O), 163.66, 160.26, 156.68, 144.22, 133.92, 129.29, 126.66,
117.03, 114.93 (CN), 112.34 (CN), 109.81, 106.70, 102.93, 54.16 (OCH3), 52.86 (OCH3). GC MS; 309

Synthesis of zinc phthalocyanines (5): The mixture of Methyl 2-(2-Chloro-4,5-dicyanophenoxy)-6-methoxyisonicotinate
(2) 2.50 g (7,28 mmol) , Zn(CH3COO)2 · 2H2O 0.52 g (2,37 mmol) and dry quinoline (12 mL) was heated and stirred at 185-
190℃ for 24 h in a nitrogen atmosphere. Then, the mixture was cooled to room temperature; it was precipitated by adding
methanol and filtered off. The green precipitate were washed with hot methanol, hot ethanol, diethyl ether, hexane and hot
water. They were washed with methanol for 24 h in the soxhlet apparatus and dried in vacuo. The green products were stirred
in LiOH solution at room temperature for 3 days and filtered. HCl solution was added to the filtrate and filtered off. Compound
was washed with hot water and dried in vacuo. Yield: 1.81 g (72%); mp > 250℃; anal. calcd. for C60H32Cl4N12O16Zn: C, 52.06;
H, 2.33; N, 12.14%. Found: C, 52.12; H, 2.25; N, 12.24%. FT-IR :νmax , cm

–1 3818-2500 (Carboxylic acid OH), 2978 (aliphatic
CH), 1730 (Carboxylic acid C=O), 1617, 1575, 1492, 1455, 1395, 1368, 1241, 1185, 1105, 1085, 876, 749.

Synthesis of zinc phthalocyanines (6): Zinc phthalocyanines 6 and 7 were synthesized as discussed above. Yield: 1.14 g
(56%); mp > 250℃; anal. calcd. for C60H36N12O16Zn: C, 57.82; H, 2.91; N, 13.49%. Found: C, 57.78; H, 2.86; N, 13.54%.
FT-IR :νmax , cm

–1 3500-2500 (Carboxylic acid OH), 2957 (aliphatic CH), 1727 (Carboxylic acid C=O), 1615, 1573, 1474,
1472, 1394, 1347, 1220, 1211, 1098, 1052, 999, 974, 874, 776, 775.

Synthesis of zinc phthalocyanines (7): Yield: 1.03 g (51%); mp > 250℃; anal. calcd. for C60H36N12O16Zn: C, 57.82; H,
2.91; N, 13.49%. Found: C, 57.90; H, 2.96; N, 13.44%. FT-IR :νmax , cm

–1 3306-2500 (Carboxylic acid OH), 2957 (aliphatic
CH), 1728 (Carboxylic acid C=O), 1616, 1570, 1486, 1465, 1392, 1344, 1238, 1185, 1129, 1096, 1042, 879, 752.

3 Results and Discussion
3.1 Synthesis and Characterization
Scheme 1 presents the synthetic route to Zinc Phthalocyanines Containing 2-Hydroxy-6-methoxyisonicotinic Acid. The
phthalonitriles containing methyl 2-hydroxy-6-methoxyisonicotinate (2, 3, 4) were firstly prepared by treating 4,5-
dichlorophthalonitrile, 3 or 4-nitrophthalonitrile with 2-Hydroxy-6-methoxyisonicotinic Acid in DMF using K2CO3 as the
base for nucleophilic displacement reaction and gave moderate yield (59-64 %). The zinc phthalocyanines (5-7) containing
2-Hydroxy-6-methoxyisonicotinic Acid are obtained directly by cyclotetramerization of the corresponding phthalonitriles in
the presence of the Zn(CH3COO)2 · 2H2O in quinoline. In these reactions, it was observed that some of the ester groups
transformed into carboxylic acid. It was observed that the resulting product dissolved in aqueous sodium hydroxide and there
were peaks belonging to carboxylic acid groups in the FT-IR spectra. Considering that not all ester groups were converted to
carboxylic acid, the products were hydrolyzed in aqueous LiOH. The yields of phthalocyanines 5, 6 and 7 were 72%, 56%
and 51%, respectively. The phthalocyanines showed solubility in DMF, DMSO and water, but insolubility in common organic
solvents. The new phthalocyanines and phthalonitriles were characterized by UV-Vis, FT-IR, 1HNMR, 13CNMR, MS spectra
and elemental analysis. All the spectroscopic results of compounds show good agreement with target structures. The FT-IR
spectra of synthesized phthalocyanines and phthalonitriles are very similar with the exception of small stretching shifts. In the
FT-IR spectrum of phthalonitriles (2, 3, 4), aromatic CH, aliphatic CH, nitrile CN, carbonyl C=O, aromatic C=C, ether Ar-O-Ar
stretching vibrations appeared at ca. 3100, 2964, 2231, 1597 and 1278 cm–1, respectively. The new phthalocyanines (5-7) have
carboxylic acid, aromatic CH, aliphatic CH, nitrile CN, carbonyl, aromatic C=C, ether Ar-O-Ar stretching vibrations appeared
at ca. 3091, 2964, 2237, 1733, 1592 and 1251 cm–1, respectively. While the strong -CN band of phthalonitriles (2-4) appeared at
ca 2231 cm–1, this band completely disappeared after cyclotetramerization to compounds (5-7) and strong carboxylic acid and
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Scheme: Synthetic route for Zn(II) Phthalocyanines (5, 6 and 7) i: 4,5-dichloroftalonitrile, DMF, K2CO3, N2, 70℃, 72h ii:
4-nitroftalonitrile, DMF, K2CO3, N2, 70℃, 72h iii: 3-nitroftalonitrile, DMF, K2CO3 , N2, 70oC, 72h iv: quinoline,

Zn(CH3COO)2 · 2H2O, N2, 24h, 190℃

carbonyl band appeared at ca 3500-2500, 1730 respectively (Figure 1 and 2). In contrast to the phenoxy groups, the solubility
of these phthalocyanines is very low in DMSO and DMF. 1HNMR and 13CNMR spectra of phthalocyanines (5-7) could not be
measured due to the low solubility [23].

3.2 UV-Vis Spectra
UV-Vis spectrum of phthalocyanine is characteristic. The spectrum observed two strong absorption regions. These regions are B
band Q band [1], [2]. The UV-Vis spectra of Zinc(II)phthalocyanines (5-7) were archived in DMSO, DMF andwater (Figure 3, 6,
9). The results were shown in Table 1. Nonperipheral substitute zincphthalocyanine (7) showed monomeric behavior in DMSO,
DMF and Water, evidenced by a single (narrow) Q-band at 688-696. However peripheral substitute zincphthalocyanines (5 and
6) showed aggregation in water (Figures 3 and 6). Also, compound 5 aggregated in DMSO (Figure 3, 4). B-Band absorbtions
of zinc phthalosyanines in different solvents were observed at 342-346 nm for 5, 338-352 for 6 and 306-330 nm for 7. Figure
4, 5, 7, 8, 10 and 11 show UV-Vis spectra of phthalocyanines (5, 6 and 7) in the concentration range 1× 10−6 − 1.50× 10−5

M in DMSO and DMF. As shown in the 4, 5 7, 8, 10 and 11, the Q band decreases in intensity with decreasing concentration of
phthalocyanines (5, 6 and 7). Beer’s law was obeyed for 5, 6 and 7 in the concentration range 1× 10−6 − 1.50× 10−5 M.
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Figure 1: FT-IR Spectrum of Methyl 2-(2-Chloro-4,5-dicyanophenoxy)-6-methoxyisonicotinate (2)

Figure 2: FT-IR Spectrum of the Zn(II)phthalocyanine (5) containing chlorine and methyl 2-hydroxy-6-methoxyisonicotinate
in the peripheral position

Table 1: UV-vis spectral results for zinc(II)phthalocyanines (5-7) in various solvents at a concentration of 0, 8× 10−5 M

Compound Solvent Q-Band B-Band
λmax (nm) log ϵ λmax (nm) log ϵ

5 DMSO 676, 635, 607 4.624; 4.921; 4.235 346, 381 4.851; 4.542
5 DMF 676, 642, 611 5.083; 4.388; 4.379 353 4.768
5 Water 671, 639 4.284; 4.769 342 4.732
6 DMSO 677, 640, 611 5.199; 4.555; 4.513 352 4.858
6 DMF 675, 645, 609 5.153; 4.434; 4.457 353 4.765
6 Water 671, 639, 585 4.433; 4.892; 4.095 286, 338 4.579; 4.770
7 DMSO 690, 660, 622 5.123; 4.363; 4.375 317 4.742
7 DMF 688, 657, 621 5.190; 4.436; 4.454 330 4.693
7 Water 696, 627 4.752; 4.224 306 4.574
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Figure 3: Uv-Vis Spectra of the Zn(II)phthalocyanine (5) containing chlorine and methyl 2-hydroxy-6-methoxyisonicotinate
in the peripheral position in different solvents (Pc/NaOH mol ratio in aqueous solution: 1/4) (Concentration: 0, 8× 10−5 M

Figure 4: Uv-Vis Spectra of the Zn(II)phthalocyanine (5) containing chlorine and methyl 2-hydroxy-6-methoxyisonicotinate
in the peripheral position in DMSO
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Figure 5: Uv-Vis Spectra of the Zn(II)phthalocyanine (5) containing chlorine and methyl 2-hydroxy-6-methoxyisonicotinate
in the peripheral position in DMF

Figure 6: Uv-Vis Spectra of the Zn(II)phthalocyanine (6) containing methyl 2-hydroxy-6-methoxyisonicotinate in the
peripheral position in different solvents (Pc/NaOH mol ratio in aqueous solution: 1/4) (Concentration: 0, 8× 10−5 M)
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Figure 7: Uv-Vis Spectra of the Zn(II)phthalocyanine (6) containing methyl 2-hydroxy-6-methoxyisonicotinate in the
peripheral position in DMSO

Figure 8: Uv-Vis Spectra of the Zn(II)phthalocyanine (6) containing methyl 2-hydroxy-6-methoxyisonicotinate in the
peripheral position in DMF
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Figure 9: Uv-Vis Spectra of the Zn(II)phthalocyanine (7) containing methyl 2-hydroxy-6-methoxyisonicotinate in the
nonperipheral position in different solvents (Pc/NaOH mol ratio in aqueous solution: 1/4) (Concentration: 0, 8× 10−5 M)

Figure 10: Uv-Vis Spectra of the Zn(II)phthalocyanine (7) containing methyl 2-hydroxy-6-methoxyisonicotinate in the
peripheral position in DMSO

ECJSE Volume 11, 2024 295



Nesuhi Akdemir, Aslı Yıldırım

Figure 11: Uv-Vis Spectra of the Zn(II)phthalocyanine (7) containing methyl 2-hydroxy-6-methoxyisonicotinate in the
nonperipheral position in DMF

4 Conclusions
Zn(II) phthalocyanines containing 2-Hydroxy-6-methoxyisonicotinic Acid on the periphery or nonperiphery were successfully
synthesized. Characterization of all synthesized phthalonitriles and phthalocyanines were determined by elemental analyses,
UV-Vis, 1HNMR, 13CNMR, Mass spectra and FT-IR spectroscopy. The solubility of phthalocyanines is very low in DMSO
and DMF but high in alkaline aqueous solution. The UV-vis spectra of the zinc phthalocyanines were recorded in different
solvents. Peripheral substitue zincphthalocyanines (5 and 7) showed aggregation in water. Beer’s law was obeyed for zinc
phthalocyanines (5-7).
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