
Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

European Journal of Technique

journal homepage: https://dergipark.org.tr/en/pub/ejt

Vol.14, No.1, 2024

A Communication System for Dynamic Leader
Selection in Distributed UAV Swarm Architecture

Abdulmelik Bekmez1 Kadir Aram2* ,

1Fatih Sultan Mehmet Vakıf University, Computer Engineering Department, 34445, Istanbul, Turkey. . (e-mail:
abdulmelik.bekmez@gmail.com).
2 *Fatih Sultan Mehmet Vakıf University, Computer Engineering Department, 34445, Istanbul, Turkey (e-mail: karam@fsm.edu.tr).

1. INTRODUCTION

Robot swarms are important for automation systems in many

areas, such as search and rescue operations, environmental

monitoring, environmental cleaning, area surveillance,

agricultural activities, and transportation of heavy loads [1-5] .

Unmanned aerial vehicle (UAV) swarms provide a

collaborative structure to perform complex operations with a

single independent UAV.

Swarm robot systems are generally controlled through two

main methods: centralized and distributed. In centralized

systems, control originates from a single central point. On the

other hand, in decentralized systems, each agent operates

autonomously, making independent decisions and taking

actions without relying on a central control point.

Various methods have been employed in the design of

distributed UAV swarm control. These include a hybrid-

flocking control algorithm, amalgamating vector field

guidance, augmented Cucker-Smale model, and potential field

techniques to attain path following, collective flocking

behavior, and collision avoidance [6]. Another approach

involves a mixed game theory utilizing a hierarchical learning

algorithm for large-scale multi-agent systems, employing

cooperative game, Stackelberg game, and mean field game for

efficient coupling between leaders and followers [7].

Additionally, a distributed method, relying on monocular

vision information, integrates a control model, target detection

through a modified YOLOV3-tiny method, and orientation and

distance estimation using geometric approaches [8]. Zhu and

Deng proposed a distributed swarm control framework with

limited interaction. In this framework, UAVs select limited

interactive neighbors, combining interaction force and obstacle

avoidance to ensure safety and effective guidance [9].

Various strategies are employed in the formation control of

robot swarms, including leader-follower [10], virtual structure

[11], and behavioral-based approaches [12].

The leader-follower strategy involves designating one agent as

the leader, with the remaining agents following its movements.

This study adopts the leader-follower strategy due to its

capacity to minimize the number of connections. Numerous

studies have explored variations of this strategy, employing

different methodologies.

Zhang et al. introduced three strategies for formation

reconfiguration, focusing on leader disengagement, follower

detachment, and adding new members to minimize the need for

frequent connection changes [13]. Restrepo and Loria proposed

ARTICLE INFO

ABSTRACT

Received: Jan., 18. 2024

Revised: Feb., 13, 2024
Accepted: Feb, 15, 2024

 Distributed swarm robot systems are made up of several robots that communicate with one
another and often work together to complete a task or reach a predetermined objective. These
systems frequently consist of many platforms, like unmanned aerial aircraft, mobile robots,
or other types of vehicles.

This paper offers a comprehensive exploration of the design, modeling, and real-world
hardware and software implementation of a distributed swarm system. The decision was
made to employ standard Pixhawk hardware for the swarm agents. Pixhawk, a freely
available hardware and software platform for autonomous flight control, is commonly
utilized in autonomous cars, multirotor vehicles, drones, and various robotic applications.
Operating autonomously from the ground control station, swarm agents dynamically
identify leaders during operation and execute leader tracking navigation to model swarm
behavior. Ensuring generality and dynamism in all protocols and communication was a
primary focus during the research phase. To maintain this dynamism, each protocol and
communication process is implemented in distinct threads on the computer, and
synchronization is achieved through synchronization primitives, shared memory, and
interthread communication.

Keywords:
Formation Control

Leader-Follower
Robotics

Distributed

Communication

Corresponding author: Kadir Aram

ISSN: 2536-5010 | e-ISSN: 2536-5134

DOI: https://doi.org/10.36222/ejt.1434751

96

https://orcid.org/0009-0008-4211-941X
https://orcid.org/0000-0002-5780-6334
user
Typewritten text
Research Article

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.1, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

two controllers for formation-tracking control of velocity-

controlled unicycles in a leader-follower configuration,

addressing scenarios with known and unknown leader

velocities [14]. Lee et al. conducted a study on swarm control

algorithms for unmanned surface vehicles (USVs), validating

the effectiveness of a leader-follower swarm control method

through sea area tests [15]. Pauli and Fichter proposed a leader-

follower formation control algorithm for UAV swarms,

ensuring precise lateral and vertical separation during turns and

adeptly handling communication limitations among agents

[16].

To use a leader-follower strategy in a distributed system, the

leader robot must also be dynamically selected by the swarm

agents. One approach utilizes behavior-based control and a

repulsive force method to navigate maze-like environments,

automatically designating a leader when robots are stranded

[17]. Another strategy concentrates on choosing a minimal set

of leaders, employing the sub modularity ratio and defining

metrics based on consensus tracking criteria [18].

The study encompasses several key aspects, including the

dynamic determination of a single leader by swarm agents, the

communication protocols and techniques employed in this

process, the implementation of these protocols, and the

subsequent testing of the architecture. Upon reviewing the

literature, it became evident that existing research on

distributed swarm systems is predominantly theoretical and

algorithmic. This study aims to bridge this gap by adapting

algorithms for the communication of a distributed swarm

system and the navigation of agents to real hardware. The

second section delves into the hardware structure,

communication protocol, and autopilot software. Following

this, the communication architecture, dynamic leader selection

process, and leader tracking strategy are elucidated. The third

section showcases the interface and simulation environment of

the study. The final section engages in a comprehensive

discussion of the results.

2. MATERIALS AND METHODS

This study involves multiple stages, particularly in

implementing the leader-follower strategy. In this strategy, the

robots are required to autonomously designate a leader and then

organize themselves into a formation around this leader,

following them to the specified location. The consecutive steps

for these processes are detailed below.

2.1. Materials
The study is designed to be implemented on real hardware,

and for this purpose, Pixhawk has been chosen as the hardware
for autonomous flight control. Pixhawk, an open-source
platform for autonomous flight control hardware and software,
includes a control board that seamlessly integrates with diverse
sensors and actuators, providing extensive capabilities for
flight control and automation [19]. Widely employed in various
robotic applications like multirotor vehicles, drones, and
autonomous vehicles, Pixhawk serves as a standard control
platform. Several autopilot software, including Ardupilot and
PX4, have been developed based on this standard.

Ardupilot and PX4 are the most popular open-source

autopilot systems. They are designed to operate a wide range

of autonomous vehicles, including submarines, rotary-wing

platforms, and fixed-wing aircraft [20].

PX4 is an embedded robotics middleware and programming

environment with a multithreaded, publish-subscribe design

pattern. It offers a software interface for microcontroller

applications. The PX4 autopilot platform can operate

independently on Pixhawk standard hardware or be coupled

with a companion computer for tasks demanding additional

processing power or an external GPU [21]. The PX4 autopilot

software was used because it is an open-source platform, uses

an open-source hardware standard, and is well integrated with

widely used software such as ROS2.

ROS is an open-source software environment tailored for

both commercial and research-based robotic applications [22].

It's preferred for its versatility, enabling development in various

languages, fostering communication between processes

through a publisher-subscriber architecture, supporting project-

specific message types, allowing packaging and sharing of

applications, and providing extensive package support for

common robotic challenges. ROS features tools like RVIZ for

data visualization [23]. In ROS, processes are termed nodes,

and they communicate via messages, with publisher nodes

sending messages to subscriber nodes through topics [24].

ROS2 was created to address the limitations of ROS, which

include a centralized network structure, a lack of network

security mechanisms, and dependence on third-party software

for integration into microprocessors [25]. ROS2 adopts a

distributed network system, employing the network layer's

Data Distribution Service (DDS). Additionally, for

communication between drones and between drones and

ground stations, the Zenoh protocol was implemented.

Zenoh, a Pub/Sub-Query protocol, intricately unifies

computations, data in motion, and data at rest. It was

purposefully designed to cater to the demands of the shift from

micro-controllers to the cloud, offering a seamless integration

of diverse network topologies and technologies. This enables

Zenoh to deliver messages with heightened speed and

efficiency, fulfilling the need for high-density bandwidth while

keeping latency to a minimum. As a result, it has evolved into

an essential component of the Cloud-to-Edge Continuum [26].

Zenoh facilitates communication between two processing

units on the same computer and extends its functionality to

units on different computers within the same local network.

This functionality resembles the DDS network software found

in ROS2, sharing the dynamic discovery feature with DDS.

Notably, Zenoh exhibits greater efficiency than DDS in

wireless networks[27]. In the upcoming swarm system design,

where swarm agents lack specific IP addresses and need to

communicate via RF communication, the Zenoh protocol will

be employed. This choice is driven by Zenoh's capability to

operate in systems without IP addresses. Consequently, swarm

agents will communicate through the serial interface provided

by telemetry modules, utilizing the Zenoh protocol.

Gazebo is a 3D simulation platform that enables the

development and testing of robots to be operated in indoor and

outdoor environments [28]. It is frequently used in robotics

research projects, competitions and commercial applications.

PX4 autopilot software supports the simulation of rotary-wing

platforms, fixed-wing, and VTOL robots with the Software In

The Loop technique in development processes using the

Gazebo environment. The Gazebo Garden version was used

during the study.

97

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.1, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

The UAV used for this research is based on a Holybro X500

quadrotor equipped with a Pixhawk flight controller. The

appearance of the robot in the simulation environment is given

in the Figure 1.

Figure 1. X500 in Gazebo Simulation

2.2. Communication Architecture

A crucial aspect of a distributed swarm architecture is the

communication mechanism among swarm agents and other

system elements. To establish a distributed framework, each

agent must support peer-to-peer communication. Defining the

communication protocols and message formats for these

interactions is imperative. For agent-to-agent communication,

the "swarm/<agent_name>" topical format is utilized when one

agent sends a message to another. For instance, if agent1

intends to convey a message to agent2, it sends a P2P message

to the "swarm/agent2" topical. This P2P message comprises the

sender's name, the message type, and the P2PType data,

encapsulating message-specific information. A P2P message

includes 4 types of messages. These are:

• Heartbeat

• HeartbeatAck

• Pooling

• Selection

HeartBeat Message: A dynamically generated swarm leader
sends the Heartbeat message to the swarm members. This
message indicates that the swarm is connected and allows the
swarm leader to assign tasks to the swarm members.

HeartbeatAck Message: The HeartbeatAck message indicates
the message the swarm member sends to the leader. The swarm
member sends the swarm leader position and orientation data
about itself in this message. This message also determines the
status of the swarm member's connection to the leader.

Pooling Message: Pooling message, a type employed for
dynamic swarm leader selection, comprises four subtypes.
These are:

• StartPool

• StartPoolAck

• SyncPool

• SyncPoolAck

StartPool Message One agent sends a StartPool message to
another agent to initiate the pooling protocol to create a swarm.

StartPoolAck Message The "StartPoolAck" message serves
as the response to an incoming "StartPool" message.
Depending on the agent's present state, it dispatches a
"Success" message if it is available and an "AlreadyInPool"
message if it is already part of a pool. The "AlreadyInPool"
message contains details about the current pool state.

SyncPool Message The "SyncPool" message is sent to
agents during the pool creation process to synchronize the
instantaneous pool with other potential swarm agents at a
specific frequency. This message contains the pool data
maintained by the agent.

SyncPoolAck Message SyncPoolAck message is sent by the
agent receiving the SyncPool message to the sending agent as
a reply. If the pools of the agents are the same, the 'Same'
message is sent; if they are different, a 'Different' message is
sent. The ‘Different’ message also holds the names of the
elements in the pool. It also contains the status of whether the
agent's pool is locked or not.

Selection Message: The Selection message dynamically

specifies the type of message that each agent shares its selection

with the other agents in the pool with a specific frequency in

the selection part, which is the last part of the swarm leader

selection process.

2.3. Dynamic Leader Selection

In order to have a distributed architecture, a swarm system
should not be utterly dependent on any central authority.
However, swarm systems with a fully distributed architecture
are subject to communication constraints. A simple calculation
of the number of connections is shown in equation 1.

𝑐 =
(𝑛−1)×𝑛

2
 (1)

Here: c is connection count; n is agent count.

For example, if a swarm system with ten agents wants to

create a communication topology between each agent, it must

create 45 peer-to-peer channels. For these reasons, the swarm

system is designed to determine the swarm's leader and

maintain this connection dynamically.
The process of dynamically selecting a leader consists of the

following sub-parts.

- Selection pool initialization phase

- Expanding the selection pool

- Phase to lock the selection pool

- Election phase

- Leader selection

Selection pool initialization: While in this state, the agent
broadcasts a self-introduction message via the
“swarm/advertize“ topical. Through this topic, the agent
signals its readiness for potential connections and swarming,
accompanied by sending its name to facilitate establishing a
connection. Simultaneously, all available agents monitor this
topic, including the agent who transmitted this message.
Another agent receiving this message sends a “StartPool”

98

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.1, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

message to the sending agent. Then, it waits for the
“StartPoolAck” message to arrive. The agent receiving the
“StartPool” message, if it is not already in a pool, sends a
Success message to start the pool and gives feedback to the
other agent. However, if it is already in a pool and this pool is
still accepting members, it sends an “AlreadyInPool” message
and adds the agent that sent the message to the group. If the
recipient of the “StartPool” message is not in any of these
situations, it ignores the incoming message and does not send
any response.

Expanding the selection pool: After the pool is initialized for
dynamic leader election, the agents perform two types of
operations.

- Send a pooling request to agents sending ‘Advertize’
messages

- Ensuring pool synchronization between agents in the pool

Agents that are expanding the pool also keep the last time it
was updated. This time, data is updated if a member is added
or removed from the pool, preventing the pool from being
created and closed immediately. If a new member is added to
the pool, the time data is updated, and as a result of
synchronization messages, other agents also update their pools
and the time data they keep.

Lock Selection Pool: Once the selection pool stabilizes for two

seconds, it becomes locked for all agents. Agents that have

successfully locked the pool continue transmitting SyncPool

messages to others in the pool at a specific frequency. If there

are agents whose pools are still unlocked, the pool locking

status is indicated with the SyncPoolAck message. This ensures

that if, for any reason, there are agents whose pools remain

unlocked, the synchronization of pool locking among all agents

is guaranteed. In the case where received pools differ, both

agents merge their pools. Following the pool merging process,

other agents update their pools through synchronous messages

sent to one another. Similar to expanding the selection pool, the

last update time is retained in the case of locking. This time,

data is updated during an asynchronous state, and if there is no

update for two seconds, the pool selection process is initiated.

Election Phase: The voting process can be tailored to the
specific swarm architecture or problem at hand. In the devised
architecture, each agent autonomously casts a vote for itself as
the potential swarm leader, with each vote assigned a weight
and randomized during implementation. Agents within the pool
exchange their votes at a designated frequency. Upon receiving
a vote message, the recipient agent scrutinizes the incoming
vote. If it is still locked within the pool, the agent promptly
updates its status to "Selection" and initiates the voting process.
If the incoming vote weight surpasses its own, the agent
updates its vote with the incoming one and the corresponding
time variable.

Conversely, if the incoming vote carries less weight, the
agent maintains its current vote. This mechanism ensures
unanimity and synchronization among the agents. If, after 2
seconds, the voting pool converges on a consistent vote, the
leader selection process within the pool is triggered, similar to
other scenarios.

Leader Selection: Once a unanimous vote is secured in the
election pool, the leader initiates a heartbeat message
transmission to its swarm at a specified frequency. This
transmission serves the dual purpose of confirming the leader's

continued activity and assigning tasks to the swarm members.
Concurrently, the leader awaits the reception of
“HeartBeatAck” messages, indicating the ongoing activity of
swarm members and facilitating the exchange of necessary
data, such as Pose messages. If a “HeartBeatAck” message isn't
received from a swarm member within a defined timeframe, the
leader expels that agent from the swarm and discontinues the
transmission of heartbeat messages to them. Conversely, if a
swarm member fails to receive a heartbeat message from the
leader within a specified period, it refrains from sending a
“HeartbeatAck” message. Even if a heartbeat message is
received subsequently, the swarm member departs from the
swarm, opting to join another or create a new one. The flow
chart of the leader selection process is shown in Figure 2.

Figure 2. Leader Selection Flow Cart

2.4. Formation Process
The strategy involves the leader robot moving to a

predefined target point while the other robots follow it.

Continuous communication is essential between the leader and

the followers. The leader robot continuously broadcasts its

orientation and position, which is then transmitted to the

follower robots. The followers, utilizing the leader's position,

maintain a predetermined formation by following the leader's

movements. The leader's current location serves as the goal for

the follower robots, and they align their orientation with that of

the leader. Throughout the tracking process, a constant distance

between the leader and the followers is maintained.

99

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.1, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

Figure 3. Leader-Follower Formation Scheme

In Figure:

XL, YL : leader's position,

θL :is the leader's orientation

XF, YF: follower robot's position

θF :follower robot's orientation.

 l :the distance between the leader and the follower.

Equation 2 shows the distance between the leader robot and

the follower robot.

𝑑𝑖𝑠𝑡 (𝑙) = √(𝑋𝐿 − 𝑋𝐹)2 + (𝑌𝐿 − 𝑌𝐹)2 (2)

The PX4 autopilot software employs a position controller for

guiding swarm agents from point A to point B. Using the

Kalman Filter algorithm, a position estimation method, the

position controller establishes a local coordinate plane,

referencing the global position at the start time. Upon receiving

a follow command from the leader through the interface, the

leader communicates with each swarm agent, specifying the

agent to be followed, the following direction, and the general

heading angle for leader-follow navigation. Swarm members

utilize peer-to-peer communication to subscribe to the Pose

data of the designated agent. After receiving the agent's name,

they follow the leader's command, creating a 10-meter vector

in the opposite direction of the swarm's head rotation angle and

a 5-meter direction vector based on the specified direction for

the agent to stay. Position determination is accomplished by

adding these vectors to the position of the agent being followed.

3. EXPERIMENTS

Swarm ground control station software has been developed

for efficient swarm management, allowing dynamic

connections and individual control of each agent. Agents

introduce themselves to the ground control station via the

swarm/GSAdvertize topical. The ground control station

software consistently monitors this topic, sending connection

requests to agents that identify themselves and initiate the

connection. For the connection to be maintained, the agent

must send a Heartbeat command with a specific frequency,

indicating that the connection is active; otherwise, it

disconnects from the ground control station software. To

facilitate location tracking and control of swarm agents across

the global map, a map interface was developed using

OpenStreetMap data. This interface displays the locations of

agents connected to the ground control station. The general

map view of the ground control station is shown in Figure 4.

Figure 4. General Map View

A close-up map view of the ground control station is shown in

Figure 5.

Figure 5. Close-up Map View

The interface enables the selection of the agent to be controlled,

displaying instant telemetry data and the control panel of the

selected agent. Additionally, individual swarm agents can be

moved from one point to another using position controllers.

The user interface for position control of the swarm agents is

shown in Figure 6.

Figure 6. Position Controller User Interface

100

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.1, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

The position of the swarm robots in the Gazebo simulation

environment is shown in Figure 7.

Figure 7. Swarm Robots in Gazebo Simulation

With the selection of the leader agent, the swarm system can be

commanded to enter the leader-following state. Figure 8 shows

the follower robots forming a v-formation behind the leader

robot.

Figure 8. Swarm Robots in V-Formation

The view of the leader following the process in the Gazebo

simulation environment is shown in Figure 9.

4. CONCLUSION

This study delves into the intricate realm of swarm systems
with distributed architectures, acknowledging the inherent

complexity compared to centralized architectures. The focal
point is the analysis of formation control within a distributed
architecture designed to operate on tangible hardware.

Utilizing PixHawk, an open-source autonomous flight

control hardware and software platform, PX4 as open-source

autopilot software, and employing ROS2 for implementation,

the study takes a practical approach. Gazebo serves as the

simulation environment for testing. Because swarm agents lack

IP addresses in this system, communication relies on the Zenoh

protocol. A standardized communication process is established

for dynamic leader selection, and specific message formats are

crafted for agents to execute these operations. Each robot is

assigned a randomly determined vote weight during the leader

election, and the leader is determined based on accumulated

votes. The simulation demonstrates the leader's announcement

and subsequent command for followership, adopting a V-

formation for navigation. Simulation outputs affirm the

successful realization of the study. Future endeavors involve

extending the study to explore alternative leader selection

methods and accommodating multiple leaders.

Figure 9. Leader Follower in Gazebo Simulation

REFERENCES

[1] W. Luo, S. S. Khatib, S. Nagavalli, N. Chakraborty, and K. Sycara,

“Asynchronous distributed information leader selection in robotic

swarms,” in 2015 IEEE International Conference on Automation

Science and Engineering (CASE), 2015, pp. 606–611. doi:
10.1109/CoASE.2015.7294145.

[2] M. Carpentiero, L. Gugliermetti, M. Sabatini, and G. B. Palmerini,

“A swarm of wheeled and aerial robots for environmental
monitoring,” in 2017 IEEE 14th International Conference on

Networking, Sensing and Control (ICNSC), 2017, pp. 90–95. doi:

10.1109/ICNSC.2017.8000073.
[3] M. Duarte et al., “Application of swarm robotics systems to marine

environmental monitoring,” in OCEANS 2016 - Shanghai, 2016, pp.

1–8. doi: 10.1109/OCEANSAP.2016.7485429.
[4] J. Asbach, S. Chowdhury, and K. Lewis, “Using an Intelligent UAV

Swarm in Natural Disaster Environments,” in International Design

Engineering Technical Conferences and Computers and Information

101

EUROPEAN JOURNAL OF TECHNIQUE, Vol.14, No.1, 2024

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

in Engineering Conference, 2018, p. V02AT03A013.

[5] J. Scherer et al., “An autonomous multi-UAV system for search and

rescue,” in Proceedings of the first workshop on micro aerial vehicle
networks, systems, and applications for civilian use, 2015, pp. 33–

38.

[6] Y. Song et al., “Distributed swarm system with hybrid-flocking
control for small fixed-wing UAVs: Algorithms and flight

experiments,” Expert Syst. Appl., vol. 229, p. 120457, 2023.

[7] S. Dey and H. Xu, “Intelligent Distributed Swarm Control for Large-
Scale Multi-UAV Systems: A Hierarchical Learning Approach,”

Electronics, vol. 12, no. 1, p. 89, 2022.

[8] Y. Jia, M. Chen, Y. Gao, and H. Wang, “A Distributed Method to
Form UAV Swarm based on Moncular Vision,” in 2022 IEEE 28th

International Conference on Parallel and Distributed Systems

(ICPADS), 2023, pp. 41–48.
[9] B. Zhu and Y. Deng, “Distributed UAV swarm control framework

with limited interaction for obstacle avoidance,” Aircr. Eng. Aerosp.

Technol., no. ahead-of-print, 2022.
[10] R. Rafifandi, D. L. Asri, E. Ekawati, and E. M. Budi, “Leader--

follower formation control of two quadrotor UAVs,” SN Appl. Sci.,

vol. 1, pp. 1–12, 2019.
[11] N. H. M. Li and H. H. T. Liu, “Formation UAV flight control using

virtual structure and motion synchronization,” in 2008 American

Control Conference, 2008, pp. 1782–1787.
[12] D. Xu, X. Zhang, Z. Zhu, C. Chen, P. Yang, and others, “Behavior-

based formation control of swarm robots,” Math. Probl. Eng., vol.
2014, 2014.

[13] H. Zhang, G. Zhang, R. Yang, Z. Feng, and W. He, “Resilient

Formation Reconfiguration for Leader--Follower Multi-UAVs,”
Appl. Sci., vol. 13, no. 13, p. 7385, 2023.

[14] A. Lazri, E. Restrepo, and A. Lor\’\ia, “Robust leader-follower

formation control of autonomous vehicles with unknown leader
velocities,” in 2023 European Control Conference (ECC), 2023, pp.

1–6.

[15] J.-H. Lee et al., “Unmanned Surface Vehicle Using a Leader--
Follower Swarm Control Algorithm,” Appl. Sci., vol. 13, no. 5, p.

3120, 2023.

[16] N. Pauli and W. Fichter, “Leader-Follower Formation Control with
Longitudinal Separation along Lateral and Vertical Shifted Follower

Paths,” in AIAA SCITECH 2023 Forum, 2023, p. 484.

[17] L.-B. Wee and Y.-C. Paw, “Simultaneous Mapping Localization and
Path Planning for UAV Swarm,” in 2023 IEEE Aerospace

Conference, 2023, pp. 1–6.

[18] H. Y. Liu, J. Chen, K. H. Huang, G. Q. Cheng, and R. Wang, “UAV
swarm collaborative coverage control using GV division and

planning algorithm,” Aeronaut. J., vol. 127, no. 1309, pp. 446–465,

2023.
[19] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Pixhawk:

A system for autonomous flight using onboard computer vision,” in

2011 ieee international conference on robotics and automation,
2011, pp. 2992–2997.

[20] A. Allouch, O. Cheikhrouhou, A. Koubâa, M. Khalgui, and T.

Abbes, “MAVSec: Securing the MAVLink Protocol for
Ardupilot/PX4 Unmanned Aerial Systems,” in 2019 15th

International Wireless Communications & Mobile Computing

Conference (IWCMC), 2019, pp. 621–628. doi:
10.1109/IWCMC.2019.8766667.

[21] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based

multithreaded open source robotics framework for deeply embedded
platforms,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA), 2015, pp. 6235–6240. doi:

10.1109/ICRA.2015.7140074.
[22] A. BEKMEZ and A. Kadir, “Three Dimensional Formation Control

of Unmanned Aerial Vehicles in Obstacle Environments,” Balk. J.

Electr. Comput. Eng., vol. 11, no. 4, pp. 387–394, 2023.
[23] M. Quigley et al., “ROS: an open-source Robot Operating System,”

in ICRA workshop on open source software, 2009, p. 5.

[24] L. Joseph and J. Cacace, Mastering ROS for Robotics Programming:
Design, build, and simulate complex robots using the Robot

Operating System. Packt Publishing Ltd, 2018.

[25] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot Operating System 2: Design, architecture, and uses in the

wild,” Sci. Robot., vol. 7, no. 66, p. eabm6074, 2022.

[26] J. J. Lopez Escobar, R. P. Diaz-Redondo, and F. Gil-Castineira,
“Unleashing the power of decentralized serverless IoT dataflow

architecture for the Cloud-to-Edge Continuum: a performance
comparison,” Ann. Telecommun., pp. 1–14, 2024.

[27] A. Corsaro et al., “Zenoh: Unifying Communication, Storage and

Computation from the Cloud to the Microcontroller,” vol. DSD

2023, 2023.

[28] Z. Tüfekçi and G. Erdemir, “Experimental Comparison of Global

Planners for Trajectory Planning of Mobile Robots in an Unknown

Environment with Dynamic Obstacles,” in 2023 5th International

Congress on Human-Computer Interaction, Optimization and
Robotic Applications (HORA), 2023, pp. 1–6.

BIOGRAPHIES

Abdulmelik Bekmez is currently studying in his bachelor's degree in the
Department of Computer Engineering, Engineering Faculty, at the Fatih Sultan
Mehmet Vakıf University. His current research areas include robotics and
formation control.

Kadir Aram obtained his BSc and MSc degree in computer and control

education Marmara University. He completed his PH.D. in Computer Science

and Engineering at Istanbul Sabahattin Zaim University in 2023. He is research
assistant in Computer Engineering department at Fatih Sultan Mehmet Vakıf

University. His research interest are mobile robotics and natural language

processing.

102

