
ITU Journal of Wireless Communications and Cybersecurity

ITU/JWCC

Ransomware, Spyware, and Trojan Malware Detection for Android Using
Machine Learning

Swati Shilaskar1 , Shripad Bhatlawande1 , Akhil Bhalgat1, 2 , and Niranjan Bharate1, 3

1 Department of Electronics and Telecommunication Engineering Vishwakarma Institute of Technology, Pune, 411037,
India

2 School of Management, University of Texas, Dallas, 75080, USA
3 Devtech Consulting, Pune, 411015, India

Abstract: The threat posed by malware has increased with the growth of technology. This makes malware detection
a crucial problem. It specifically pertains to the heightened security risks that the underlying programs and their users
frequently encounter. On the CIC-MalMem2022 dataset, experiments were executed. KNN, Decision Tree, Random
Forest, GaussianNB, and AdaBoost were used for binary classification and multiclass classification. Additionally, the
effectiveness of the employed algorithms has been evaluated. The machine learning models were optimized by tuning
the hyperparameters. Random Forest and AdaBoost both achieved binary classification accuracy of 99.99%. Optuna
Hyperparameter tuning for Random forest based multiclass classification performed with an accuracy of 88.31%.

Keywords: Android, malware detection, CICMalmem-22, machine learning, Optuna.

Makine Öğrenimini Kullanarak Android için Fidye Yazılımı, Casus Yazılım
ve Truva Atı Kötü Amaçlı Yazılım Tespiti

Özet: Teknolojinin gelişmesiyle birlikte kötü amaçlı yazılımların oluşturduğu tehdidin de artış göstermesi kötü amaçlı
yazılım tespitini önemli bir sorun haline getirmektedir. Bu da özellikle temel programların ve kullanıcılarının sıklıkla
karşılaştığı yüksek güvenlik riskleriyle ilgilidir. CIC-MalMem2022 veri setinde deneyler gerçekleştirildi. İkili sınıflandırma
ve çok sınıflı sınıflandırma için KNN, Karar Ağacı, Rastgele Orman, GaussianNB ve AdaBoost kullanıldı. Ayrıca
kullanılan algoritmaların etkinliği de değerlendirilmiştir. Makine öğrenimi modelleri, hyperparametreler ayarlanarak
optimize edildi. Random Forest ve AdaBoost’un her ikisi de %99,99’luk ikili sınıflandırma doğruluğuna ulaştı. Rastgele
orman tabanlı çok sınıflı sınıflandırma için Optuna Hiperparametre ayarı %88,31 doğrulukla gerçekleştirildi.

Anahtar Kelimeler: Android, kötü amaçlı yazılım tespiti, CICMalmem-22, makine öğrenme, Optuna.

RESEARCH PAPER

Corresponding Author: Swati Shilaskar, swati.shilaskar@vit.edu

Reference: S. Shilaskar, S. Bhatlawande, A. Bhalgat, and N. Bharate, (2024), “Ransomware, Spyware, and Trojan
Malware Detection for Android Using Machine Learning,” ITU Journ. Wireless Comm. Cyber., 1, (1) 1–8.

Submission Date: Feb, 14, 2024
Acceptance Date: May, 17, 2024
Online Publishing: Sept, 30, 2024

S. Shilaskar, S. Bhatlawande, A. Bhalgat, N. Bharate 1

https://orcid.org/0000-0002-1450-2939
https://orcid.org/0000-0001-8405-9824
https://orcid.org/0009-0000-9829-5211
https://orcid.org/0009-0007-1973-1240


ITU Journal of Wireless Communications and Cybersecurity

1 INTRODUCTION
The term "malware," which is derived from "malicious soft-
ware," describes any program designed to damage com-
puter systems or steal confidential information. One of the
biggest threats to computer security is malware since it may
hurt both individuals and businesses. Malware becomes
increasingly sophisticated as technology develops, which
makes it more challenging to identify and avoid. As a result,
efficient malware detection systems are now more crucial
than ever. With a global market share of 71.64%, Android
phones are predicted to be owned by 3.3 billion people
globally, making them the most frequently used operating
system [1]. Therefore, this makes Android a prime target
for malware attacks. It greatly jeopardizes users’ security
and privacy. End-to-end technique for analyzing character-
istics extracted from Android applications is described in [2]
and is based on Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNNs). It automatically con-
nects static and dynamic features to assess if a program is
harmful. They had a 96.76% accuracy rate. To report cur-
rent problems faced while detecting malware, [3] used the
visualization of data and adversarial learning on ML-based
classifiers to efficiently find various malwares groups, tak-
ing into account threats from adversarial instances and the
enormous rise in malware variants. They addressed a deep
feature extraction approach to analyze malware in the con-
text of recent deep learning (DL) advancements. These
features from CNN were obtained and entered into Support
Vector Machine (SVM) classifier in order to categorize mal-
ware [4]. By showcasing the inadequacies and constraints
of the existing malware analysis tools, Severi et al. [5] de-
veloped a new system. They wanted to gather the system’s
full set of traces and enable replication using the Malrec
platform. Petrik et al. [5] [6] carried out Simple binary clas-
sification from raw data and device memory dumps were
used to identify malware. The results indicated that it is not
accurate enough to determine the various characteristics of
stride length and time. The usefulness of DL algorithms in
the classification of malware was examined [7]. This study
evaluated the malware detection algorithms Long short-
term memory (LSTM), Gated Recurrent Unit (GRU), and
CNN for static and behavior-based detection. Concurrently,
a combination of CNN and LSTM models was developed.
With 99.31% accuracy, the suggested hybrid model sur-
passed the competition. In addition, a random forest classi-
fier was created by Ahmadi, Wüchner and Mao et al. [8] [9]
([10]) to identify malware using a number of factors, namely
system calls, the file system, and other features. A DL-
based approach for automated Android malware classifica-
tion is presented by McLaughlin et al. [11]. The solution
integrates deep neural networks and static feature analysis
to extract properties from the code and Android applica-
tion’s metadata. CNN and LSTM networks are combined to
form deep neural network’s architecture of the system. The

system achieved 99% accuracy on a dataset of 10,000 An-
droid applications. The study highlights the importance of
feature selection and engineering in achieving high detec-
tion accuracy and demonstrates the promise of DL models
for automatic detection of malware. The approach used by
Vinayakumar, et al. [12] for extraction of features from the
code and metadata of Android applications combines static
analysis and LSTM networks. To understand malware pat-
terns and characteristics, the LSTM network is trained on
a vast sample of harmless and malicious Android applica-
tions. On the dataset of 3,824 Android applications, the
system obtained an accuracy of 98.12%. The study shows
that LSTM networks are successful in detecting Android
malware and emphasizes the significance of feature se-
lection and engineering in achieving high detection accu-
racy. The suggested approach has the potential to iden-
tify previously undiscovered and unknown malware. Anal-
ysis of the efficacy of a single extracted feature from APK
files for binary classification in malware detection was per-
formed . It was examined on a dataset of 4,992 Android
applications and using the SVM, attaining a 95.1% accu-
racy [13] . The suggested approach has limits in identifying
increasingly complicated and sophisticated malware, which
may necessitate additional characteristics. In order to find
patterns in system-wide data, namely the storage available
and transferred packet consumption, the authors proposed
a customized DL system based on prevailing models like
Encoder and the ResNet model [14]. This system would be
used to detect sensitive app behaviors. using a machine
learning-based approach to malware classification for An-
droid called Random Forest classification [15]. To extract
features from the code and metadata of Android applica-
tions, the proposed approach utilizes a hybrid approach of
static analysis and feature engineering. Carrier, T. et al.
[16] propose an approach to extract properties from the
memory of Android applications that requires both static
and dynamic features. Then, machine learning classifier
is developed using the information gathered to distinguish
between benign and adverse applications, including those
that have been hidden. The system’s accuracy on the CiC-
Malmem -22 dataset was 99.7% .

2 METHODOLOGY

The proposed method uses machine learning classifiers
like Random Forest, KNN and Decision Tress to detect ma-
licious applications. The proposed technique also classi-
fies the malignant applications into Benign, Ransomware,
Spyware and Trojans. The short flowchart of the proposed
method is shown in Fig. 1.

The proposed method leverages the CiCMalmem-2022
dataset, designed specifically to address the challenge of
obfuscated malware detection. Obfuscated malware refers
to malicious software deliberately concealed to evade de-
tection and removal. This dataset was meticulously cu-

2 S. Shilaskar, S. Bhatlawande, A. Bhalgat, N. Bharate



ITU Journal of Wireless Communications and Cybersecurity

Fig. 1 Process flow of the system.

rated to emulate real-world scenarios, featuring prevalent
strains of obfuscated malware encountered in actual cyber
threats. This dataset comprises a total of 58,569 records.
The collection of harmful and benign dumps yields, 29,298
benign and 29,298 malicious entries. Within the malicious
category, the samples are further classified into three main
classes: ransomware, spyware, and Trojan horses, with
9,535, 9,866, and 9,907 entries respectively. It’s worth not-
ing that while ransomware, spyware, and Trojan horses are
subdivided into subclasses, these subclasses were not uti-
lized in the current study. The dataset comprises several
distinct feature sets, each offering insights into different
aspects of malware behavior. These feature sets include
pslist, dlllist, handles, ldrmodules, malfind, psxview, mod-
ules, and svcscan. pslist, which provides details on process
listing, such as processes, parent processes, and average
thread count per process, encompassing 5 features; dlllist,
which encompasses details about DLL (Dynamic Link Li-
brary) usage, covering DLLs loaded by processes and the
average number of DLLs per process, with 2 features; han-
dles, offering insights into handle usage, providing informa-
tion on the total number of handles and the average num-
ber of handles per process, with 9 features; ldrmodules,
capturing details about loaded modules, including modules
not loaded, initialized, and in memory, comprising 6 fea-
tures; malfind, focused on memory scanning for malware,
detecting memory injections, with 3 features; psxview, pro-
viding an overview of process views, including processes
not listed, not in specific process pools, and not in specific
lists, consisting of 14 features; modules, offering insights
into loaded modules, with 1 feature; and svcscan, provid-
ing information on scanned services, kernel drivers, and
process services, consisting of 7 features. These feature
sets, each with its respective number of features, collec-

tively contribute to the comprehensive analysis of malware
behavior in the dataset. 26 Features extracted by using
listed VolMemLyzer feature extractor are listed in [17]. The
accuracy of 99.99% is achieved for binary classification in
the pioneering work described in this paper.

For the dataset to be appropriate for categorization,
some data preparation procedures are needed. These
techniques are crucial for increasing the potency of clas-
sification models and transforming data into a machine-
learnable format. In this study, the categorical variables In
order to prepare them for machine learning classification,
Benign and Malicious are given the two different values of
0 and 1, respectively. The CIC-MalMem2022 dataset, on
the other hand, is a dataset that is evenly balanced with two
classes: benign and malware. It shows resilience to overfit-
ting since the dataset is evenly balanced. Additionally, we
removed elements from the dataset that don’t affect ma-
chine learning’s effectiveness. These characteristics have
zero weights and have no bearing on how the learning al-
gorithms perform. In this research, The k-fold validation
method is employed here. With this technique, the data is
at random segregated into two groups: training and test-
ing set. Then, this dataset is divided into ’k’ samples, with
’k-1’ samples being utilized for training and ’k’ samples for
testing . This entire procedure is performed k times with
different training and testing datasets each time. The op-
timal model is then chosen based on the lowest error pro-
duced via the use of several statistical methods for error es-
timates. Random Forest is a supervised classification and
regression ensemble learning system [18] . It entails build-
ing numerous decision trees that produce predictions using
a randomly selected subset of features. During training, the
technique includes randomization to reduce overfitting and
make the model more resilient [19]. During prediction, the
algorithm takes the input data and sends it through each
decision tree, with the final prediction determined by the
majority vote of all the trees [20]. Random forest is a versa-
tile and strong algorithm that may offer a measure of feature
relevance and can be utilized for a variety of purposes. A
common machine learning method for classification and re-
gression issues is decision trees. Creating a tree-like model
of decisions and probable outcomes is one of them. The al-
gorithm looks for the ideal properties to divide the data into
subsets and produce decision nodes that maximize infor-
mation gain or minimize impurity during training. The model
can be visualized as an if-then flowchart, with every inter-
nal node showing a test on a feature, each branch denoting
the test’s output, and every leaf node denoting an outcome
or prediction [21]. Decision trees can handle both category
and numerical data and are easily interpretable. They are,
however, susceptible to overfitting and can be sensitive to
slight changes in the training data. AdaBoost, or Adaptive
Boosting, is an ensemble learning technique that combines
numerous weak classifiers to produce a powerful classifier.

S. Shilaskar, S. Bhatlawande, A. Bhalgat, N. Bharate 3



ITU Journal of Wireless Communications and Cybersecurity

It accomplishes this by iteratively training weak classifiers
on different subsets of the training data, with a focus on
examples that were misclassified in prior iterations. The
information and experience of these weak classifiers are
aggregated to generate the final classifier. AdaBoost suc-
cessfully identifies complicated decision limits that precisely
represent the underlying structure of the data via this iter-
ative boosting method. The technique for regression prob-
lems locates the K data points in the training set that are
closest to the input data point and assigns the most fre-
quent class or the mean value of the K closest neighbors
to those data points. Any distance metric, including Man-
hattan distance and Euclidean distance, can be used to
determine how similar two data points are. It also offers
precise end-user predictions established on the basic cate-
gorization principles of resemblance or distance [22]. The
Gaussian Naive Bayes method is a probabilistic algorithm
that computes the probability of various classes given input
characteristics. It entails conducting calculations like me-
dian, variance, and probabilistic density projections, which
can be computationally demanding, particularly when deal-
ing with big datasets or high-dimensional feature spaces.
Grid Search: Finding the set of hyperparameters that re-
sults in the best model performance necessitates construct-
ing a grid of hyperparameter values and carefully examining
all potential combinations of these values. In order to per-
form a grid search, we might need to specify a boundary
because the parameter space for the machine learning ap-
proach could comprise spaces with actual or infinite values
for some parameters. The hyperparameters that yield the
best results are often chosen after the model’s performance
has been evaluated using a performance metric like accu-
racy, precision, or recall. The implementation is shown with
a flowchart in Fig. 2.

Optuna Hyperparameter Tuning: It employs a rapid algo-

Fig. 2 Flowchart of Grid Search.

rithm based on Bayesian optimization to search the hyper-
parameter space and discover the best set of hyperparame-
ters for a given model. The framework operates by defining
the area of search space for the hyper parameters and the
optimization target in an experiment object. Then, with the
purpose of minimizing the objective function, it employs a
mix of Tree structured Parzen estimators (TPE) and other
optimization algorithms to intelligently sample the hyperpa-
rameters and assess their performance [23]. This is shown
in Fig. 3.

Fig. 3 Selection of Optuna hyperparameters.

Algorithm 1 describes hyperparamaeter selection pro-
cess for Optuna optimization.

Algorithm 1 Optuna Hyperparameter Algorithm

1. Input dataset

2. for metric 1 to 100 do

3. Splitting dataset into 70% training set and 30% test
set

4. Fit Min_Max_Scaler to training set.

5. for i in n_trials do

6. select new a_(n+1) by optimizing function

7. a_(n1)ārgmax Alpha(a;R_n )

8. query objective function to get b_(n+1)

9. amplify data R_(n1)

10.10. Compute metric for best model over test set

11. if run-time > time_limit then

12. end

4 S. Shilaskar, S. Bhatlawande, A. Bhalgat, N. Bharate



ITU Journal of Wireless Communications and Cybersecurity

2.1 Model Implementation and Evaluation
In this section, the proposed system uses an ensemble ap-
proach for binary classification of malware, into malignant
and benign. The six classifiers that were used in the ap-
proach are mentioned in the Table 1.

Table 1 Accuracy for binary classification of malware

Classifier Accuracy in%
Decision Tree 99.96 ± 0.02
KNN 99.92 ± 0.21
Random Forest 99.99 ± 0.005
Gaussian NB 99.25 ± 0.06
AdaBoost 99.99 ± 0.05
Logistic Regression 99.57 ± 0.17

To further classify the malignant files into their respective
malware families, we also performed a multiclass classifica-
tion of the CiCMalmem-22 dataset. In order to improve the
parameters of the base learner and get the highest clas-
sification accuracy for Android malware applications, Hy-
perparameter tuning techniques such as, Grid search and
Optuna were used. The correlation matrix heatmap is a
graphical representation of data that is used to identify the
strongest correlations between various characteristics and
the target feature. Each feature in a dataset is represented
by a different colour, which informs about the relationships
between the features. For the demonstration, we created a
heatmap of the correlation matrix, Fig. 4. As given in the
Fig. 4 numbers are given to the feature names and are
listed in next paragraph.

Selection of the features is then carried out to remove
redundant and unnecessary features. This helps in
dimensionality reduction of the data and make it more
efficient. Only features with correlation value of 0.95
and above were eliminated, and the rest of were con-
sidered. Total 55 features are present in the dataset,
out of which 3 are eliminated due to non variability.
52 features used to train the classifiers are given as
follows: 1. pslist.nproc, 2. nppid, 3. avg_threads,
4. handlers 5. dlllist.ndlls, 6.avg_dlls_per_proc, 7.
handles.nhandles, 8. avg_handles_per_proc, 9. nfile,
10. nevent, 11. ndesktop, 12. nkey, 13. nthread, 14.
ndirectory, 15. nsemaphore, 16. ntimer, 17. nsection,
18. nmutant; 19. ldrmodules.not_in_load, 20. init, 21.
mem, 22. load_avg, 23. init_avg, 24. mem_avg 25.
malfind.ninjections, 26. commitCharge, 27. protec-
tion, 28. uniqueInjections 29. psxview.not_in_pslist,
30. eprocess_pool, 31. ethread_pool, 32. pspcid_list,
33. csrss_handles, 34. session, 35. deskthrd, 36.
pslist_false_avg, 37. eprocess_pool_false_avg, 38.
ethread_pool_false_avg, 39. not_in_pspcid_list_false_avg,
40. csrss_handles_false_avg, 41. session_false_avg,
42. deskthrd_false_avg 43. modules.nmodules, 44.
svcscan.nservices, 45. kernel_drivers, 46. fs_drivers,

47. process_services, 48. shared_process_services,
49. nactive; 50. callbacks.ncallbacks, 51. nanonymous,
52. ngeneric. Only 32 features are selected as shown
in Fig. 5. The selected feature as listed in Fig. 5 are
pslist.nproc, nppid, avg_threads, avg_handlers; dlllist.ndlls,
avg_dlls_per_proc; handles.ndesktop, nkey, nsemaphore,
nsection, nmutant; ldrmodules.not_in_load, load_avg,
malfind.ninjections, commitCharge, uniqueInjections,
modules.nmodules, psxview.not_in_pslist, eprocess_pool,
ethread_pool, eprocess_pool, false_avg, ethread_pool,
false_avg; svcscan.nservices, kernel_drivers, fs_drivers,
process_services, nactive; callbacks.ncallbacks, nanony-
mous, generic.

Fig. 4 Correlation heatmap of all features.

Fig. 5 Correlation heatmap of the reduced features.

In the suggested learning technique, the Random For-
est algorithm was first run with the default parameters, to
gauge the level of its accuracy. To further optimize the al-
gorithm, Grid search method was employed. Fig. 6 shows
the comparison of how depth of the tree impacts accuracy
for Random Forest with 20, 60, and 130 trees.

As can be seen from the figure, stable accuracy is
achieved at 23 depths of tree. We notice similar trends for
other tree sizes. When the amount of trees in the Random

S. Shilaskar, S. Bhatlawande, A. Bhalgat, N. Bharate 5



ITU Journal of Wireless Communications and Cybersecurity

Fig. 6 Time for trees and maximum allowed depth.

Forest increases, so does its computational time. Overall
trend is depicted in Fig. 7

Fig. 7 Accuracy comparison with 20, 60 and 130 trees for vary-
ing depth of tree.

To optimize decision trees, varying depths were evalu-
ated. The maximum allowed depth was 10 through 50, and
their accuracy criterion was evaluated. The depth that gives
the best performance was chosen, as shown in Table 2.
The maximum accuracy is achieved at the depth tree of 23
with accuracy of 85.05%. It becomes stagnant as soon as
the depth of trees is increased; however, the computational
time also increases substantially.

By comparing the weights of numerous existing features,
a case search method known as nearest neighbor deter-
mines how similar two instances are. The number of neigh-
bors in a group of training data which lie closest to a specific
value in the validation or testing set is represented by the K
parameter of K-NN classifiers. K-values between 2 and 40
were examined. In Fig. 8, accuracy as K-values changed
is observed.

Accuracy continues to decline as the K value of K - Near-
est Neighbors increases. To improve the classification per-
formance more samples are included to train the Gaus-
sianNB model. The datapoints that are away from the dis-

Table 2 Accuracy mean and standard deviation performance of
decision tree for varying depths

Depth Time (s) Accuracy (mean ± std) in %
10 1.6 80.81 ± 0.63
11 2.32 81.45 ± 0.73
12 1.83 82.22± 0.39
13 1.95 82.97± 0.20
14 1.88 83.51 ± 0.34
15 2.3 83.94 ± 0.31
16 2.1 84.18 ± 0.27
17 2.42 84.50 ± 0.33
18 2.06 84.65 ± 0.37
19 2.57 84.91 ± 0.34
20 2.32 84.89 ± 0.50
21 2.39 84.96 ± 0.25
22 2.68 85.03 ± 0.16
23 2.45 85.05 ± 0.25
24 2.65 85.02 ± 0.17
25 2.37 85.05 ± 0.13

Fig. 8 Graph of accuracy with respective to varying K values.

tribution mean are taken in consideration for building the
model. The parameter is named var_smoothing for Gaus-
sianNB. It is plotted on x axis and accuracy on y axis to
show the performance, as seen in Fig. 9.

Highest accuracy is achieved at the variance smooth-
ing of 1.00E- 6. The accuracy starts to plateau as the
va_smoothing reaches 1.00E – 10. As the n_estimators
are increased its accuracy tends to decrease. The highest
recorded accuracy was achieved at n_estimators = 45 seen
in Fig. 10.

To further optimize the model, hyperparameters were
tuned using Optuna. A cutting-edge system for automated
hyperparameter optimization. Optuna provides a define-
by-run user API that enables dynamic search space con-
struction as well as effective sampling and pruning algo-
rithms. The standard tree structured Parzen estimator
(TPE) Bayesian sampling procedure was employed. An ob-
jective function is defined, that takes the accuracy score
of a tree trained and evaluated with the hyperparameters

6 S. Shilaskar, S. Bhatlawande, A. Bhalgat, N. Bharate



ITU Journal of Wireless Communications and Cybersecurity

Fig. 9 Accuracy graph of GaussianNB for varying curve smooth-
ing values.

Fig. 10 Accuracy graph for AdaBoost with varying n_estimators.

provided by the trial. Integer values for max_depth and
min_samples_split are set to (20,27) and (2,5) respectively.
Then, by using the optimize() method TPE was tuned, and
70 trials were executed. The best hyperparameters and
score are shown in Table 3.

Table 3 Multiclass classification accuracy achieved after imple-
mentation of Optuna

Classifier Accuracy (mean ± std) in%
Decision Tree 85.26 ± 0.31
KNN 84.55 ± 0.11
Random Forest 88.31 ± 0.21
Gaussian NB 68.80 ± 0.80
AdaBoost 70.31 ± 0.57

3 CONCLUSION
Numerous categorization techniques from machine learn-
ing have been used, as detailed in this work, to determine
the best method for identifying malware infections on An-
droid devices. In this work, the potential of machine learn-
ing classifiers namely GaussianNB, AdaBoost, Logistic Re-
gression, Random Forest, Decision Tree, and KNN is in-

vestigated to detect malware infections. The data source
for the dataset was CiCMalmem-22. Random Forest and
AdaBoost achieved a remarkably high accuracy of nearly
99.99%, respectively, of the samples properly identified in
the trials. It is based on a 5-fold cross-validation for binary
classification. This paper is also the only study that pro-
vides state of the art, multiclass classification of malware
into their respective families. For multiclass classification
of malware into Ransomware, Spyware and Trojan families,
these classifiers were further tuned using Grid search and
Optuna Hyperparameter Tuning techniques. In which, Ran-
dom Forest hyperparameter tuned further by utilizing Op-
tuna performed with highest accuracy, i.e., 88.31%. This
also resulted in decreased computational times.

DECLARATION
There are no conflicts of interests to declare.

ACKNOWLEDGEMENTS
We would like to thank Vishwakarma Institute of Technol-
ogy, Pune, for providing the ecosystem to work on research
project.

REFERENCES
[1] admin@enterpriseappstoday.com. “Enterpriseapp-

stoday.” (2010), [Online]. Available: https://www.
enterpriseappstoday . com / stats / android -
statistics.html#:~:text=There%20are%203.3%
20billion%20Android,The%20latest%20version%
2C%20Android%2012.0. (accessed: 15.05.2024).

[2] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: Android
malware characterization and detection using deep
learning,” Tsinghua Science and Technology, vol. 21,
no. 1, pp. 114–123, 2016. DOI: 10.1109/TST.2016.
7399288.

[3] X. Liu, Y. Lin, H. Li, and J. Zhang, “A novel method
for malware detection on ml-based visualization tech-
nique,” Computers & Security, vol. 89, p. 101 682,
2020.

[4] M. Asam, S. J. Hussain, M. Mohatram, et al., “De-
tection of exceptional malware variants using deep
boosted feature spaces and machine learning,” Ap-
plied Sciences, vol. 11, no. 21, p. 10 464, 2021.

[5] M. Brengel and C. Rossow, “Memscrimper: Time-and
space-efficient storage of malware sandbox mem-
ory dumps,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assess-
ment, Springer, 2018, pp. 24–45.

[6] S. S. H. Shah, A. R. Ahmad, N. Jamil, and A. u. R.
Khan, “Memory forensics-based malware detection
using computer vision and machine learning,” Elec-
tronics, vol. 11, no. 16, p. 2579, 2022.

S. Shilaskar, S. Bhatlawande, A. Bhalgat, N. Bharate 7

https://www.enterpriseappstoday.com/stats/android-statistics.html#:~:text=There%20are%203.3%20billion%20Android,The%20latest%20version%2C%20Android%2012.0
https://www.enterpriseappstoday.com/stats/android-statistics.html#:~:text=There%20are%203.3%20billion%20Android,The%20latest%20version%2C%20Android%2012.0
https://www.enterpriseappstoday.com/stats/android-statistics.html#:~:text=There%20are%203.3%20billion%20Android,The%20latest%20version%2C%20Android%2012.0
https://www.enterpriseappstoday.com/stats/android-statistics.html#:~:text=There%20are%203.3%20billion%20Android,The%20latest%20version%2C%20Android%2012.0
https://www.enterpriseappstoday.com/stats/android-statistics.html#:~:text=There%20are%203.3%20billion%20Android,The%20latest%20version%2C%20Android%2012.0
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1109/TST.2016.7399288


ITU Journal of Wireless Communications and Cybersecurity

[7] H. Safa, M. Nassar, and W. A. R. Al Orabi, “Bench-
marking convolutional and recurrent neural networks
for malware classification,” in 2019 15th International
Wireless Communications & Mobile Computing Con-
ference (IWCMC), IEEE, 2019, pp. 561–566.

[8] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov,
and G. Giacinto, “Novel feature extraction, selection
and fusion for effective malware family classification,”
in Proceedings of the sixth ACM conference on data
and application security and privacy, 2016, pp. 183–
194.

[9] T. Wüchner, M. Ochoa, and A. Pretschner, “Robust
and effective malware detection through quantitative
data flow graph metrics,” in Detection of Intrusions
and Malware, and Vulnerability Assessment: 12th
International Conference, DIMVA 2015, Milan, Italy,
July 9-10, 2015, Proceedings 12, Springer, 2015,
pp. 98–118.

[10] Ö. Aslan, M. Ozkan-Okay, and D. Gupta, “Intelli-
gent behavior-based malware detection system on
cloud computing environment,” IEEE Access, vol. 9,
pp. 83 252–83 271, 2021.

[11] N. McLaughlin, J. Martinez del Rincon, B. Kang, et
al., “Deep android malware detection,” in Proceed-
ings of the seventh ACM on conference on data and
application security and privacy, 2017, pp. 301–308.

[12] R. Vinayakumar, K. Soman, P. Poornachandran, and
S. Sachin Kumar, “Detecting android malware using
long short-term memory (lstm),” Journal of Intelligent
& Fuzzy Systems, vol. 34, no. 3, pp. 1277–1288,
2018.

[13] D. Zhu, Y. Ma, T. Xi, and Y. Zhang, “Fsnet: Android
malware detection with only one feature,” in 2019
IEEE Symposium on Computers and Communica-
tions (ISCC), IEEE, 2019, pp. 1–6.

[14] H. Ma, J. Tian, K. Qiu, et al., “Deep-learning–based
app sensitive behavior surveillance for android pow-
ered cyber–physical systems,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 8, pp. 5840–5850,
2020.

[15] M. S. Alam and S. T. Vuong, “Random forest classifi-
cation for detecting android malware,” in 2013 IEEE
international conference on green computing and
communications and IEEE Internet of Things and
IEEE cyber, physical and social computing, IEEE,
2013, pp. 663–669.

[16] T. Carrier, “Detecting obfuscated malware using
memory feature engineering,” 2021.

[17] T. Carrier., P. Victor., A. Tekeoglu., and A. H.
Lashkari., “Detecting obfuscated malware using
memory feature engineering,” in Proceedings of the
8th International Conference on Information Systems
Security and Privacy - ICISSP, INSTICC, SciTePress,
2022, pp. 177–188, ISBN: 978-989-758-553-1. DOI:
10.5220/0010908200003120.

[18] K. M. Han J. Pei J., Data Mining: Concepts and Tech-
niques. 2011.

[19] K. Alkhatib and S. Abualigah, “Predictive model for
cutting customers migration from , banks: Based
on machine learning classification algorithms,” in
2020 11th International Conference on Information
and , Communication Systems (ICICS), IEEE, 2020,
pp. 303–307.

[20] X. Pan, L. Zhu, Y.-X. Fan, and J. Yan, “Predicting
protein–rna interaction amino acids using random for-
est based on submodularity subset selection,” Com-
putational biology and chemistry, vol. 53, pp. 324–
330, 2014.

[21] L. Rokach and O. Maimon, Decision trees." Data
mining and knowledge discovery handbook. Springer
New York, 2005.

[22] N. Ahmed, R. Ahammed, M. M. Islam, et al., “Ma-
chine learning based diabetes prediction and devel-
opment of smart web application,” International Jour-
nal of Cognitive Computing in Engineering, vol. 2,
pp. 229–241, 2021.

[23] S. Shekhar, A. Bansode, and A. Salim, “A compar-
ative study of hyper-parameter optimization tools,”
in 2021 IEEE Asia-Pacific Conference on Computer
Science and Data Engineering (CSDE), IEEE, 2021,
pp. 1–6.

8 S. Shilaskar, S. Bhatlawande, A. Bhalgat, N. Bharate

https://doi.org/10.5220/0010908200003120

	INTRODUCTION
	METHODOLOGY
	Model Implementation and Evaluation

	CONCLUSION

