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ABSTRACT: In recent years, a solution developed using deep learning methods has been 

used to solve difficult problems in a field. The capability of deep learning models is that they 

require large and heavily sampled data sets. Computer Algebra Systems developed over time 

have made significant progress, especially in the field of symbolic mathematics solutions 

solved by machine learning. It is a persistent problem how appropriate it is to use such formal 

systems in some aspects of algorithmic decision-making. In this study, a deep learning study 

in the field of symbolic mathematics and mathematics education is evaluated and the 

suitability of artificial intelligence applications to formal propositions is discussed. Symbolic 

computation systems have a strong potential for enhancing math education. Furthermore, 

within the framework of the Incompleteness Theorem, to show why the construction of a 

mathematical grammar is not a complete solution for Mathematics education systems. 

Key Words: Symbolic Mathematics, Formal Systems, Computer Algebra Systems, 

Artificial Intelligence, Mathematics Learning. 

ÖZ: Son yıllarda, derin öğrenme yöntemleri kullanılarak geliştirilen bir çözüm, bir alandaki 

zor problemleri çözmek için kullanılmaktadır. Derin öğrenme modellerinin özelliği, büyük 

ve yoğun örneklenmiş veri setlerine ihtiyaç duymalarıdır. Zaman içerisinde geliştirilen 

Bilgisayar Cebiri Sistemleri, özellikle makine öğrenmesi ile çözülen sembolik matematik 

çözümleri alanında önemli ilerlemeler kaydetmiştir. Bu tür biçimsel sistemlerin algoritmik 

karar vermenin bazı yönlerinde kullanılmasının ne kadar uygun olduğu süregelen bir 

sorundur. Bu çalışmada özellikle sembolik matematik ve matematik eğitimi alanında yapılan 

bir derin öğrenme çalışması değerlendirilerek yapay zeka uygulamalarının formal önermelere 

uygunluğu tartışılmıştır. Sembolik hesaplama sistemleri matematik eğitimini geliştirmek için 

güçlü bir potansiyele sahiptir. Ayrıca, Eksiklik Teoremi çerçevesinde, matematiksel bir 

gramer yapısı oluşturmanın Matematik eğitim sistemleri için neden tam bir çözüm 

olamayacağının gösterilmesi amaçlanmıştır. 

Anahtar Kelimeler: Sembolik Matematik, Biçimsel Sistemler, Bilgisayar Cebir 

Sistemleri, Yapay Zeka, Matematik Öğrenimi. 

EXTENDED ABSTRACT 

This paper explores the applicability of deep learning methods in formal mathematical 

systems, specifically focusing on the question of whether deep learning can solve Hilbert's 
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Entscheidungsproblem. The study investigates the integration of deep learning algorithms 

and artificial cognitive systems in formal mathematical systems, particularly in the context 

of symbolic math. It highlights the proposition that "mathematical correctness cannot be 

expressed in any formalist framework" and discusses the implications of Godel's 

incompleteness theorem on the applicability of deep learning methods in formal 

mathematical systems. The paper introduces the concept of explainable AI (XAI) and its 

relevance in the context of deep learning in formal mathematical systems. The findings 

suggest that deep learning algorithms, as artificial cognitive systems, can enhance algorithm 

optimization in formal mathematical systems, including symbolic math. 

The study advocates for the integration of artificial cognitive systems and machine learning 

techniques in mathematics education to improve algorithm optimization. The paper also 

discusses the development of a grammatical dictionary for mathematical notifications using 

deep learning methods, as demonstrated in a study by Lample. Overall, the results indicate 

the potential of deep learning algorithms to address mathematical problems and optimize 

algorithms in formal mathematical systems, while acknowledging the limitations imposed by 

Godel's incompleteness theorem. 

Considering the mathematical notations used in an approach examined in this study, some 

defects were observed according to the incompleteness theory. However, the method here 

also shows us that Gödel's theorem is correct. Because in the data sets here, all possible 

expressions used in the training of the artificial intelligence model are numbered as sequential 

proof that can be shown as  ∏  𝑛  . These numbered expressions are sets of t propositions that 

depend on one or more variables in the model. Within this set (s) there must be a proposition 

function denoted as the kth which can be expressed as Pk (x). If we set out from the expression 

number (1), we can express the proposition in the 871st row as the 871st proposition in the 

form of P871(x), depending on the variable x. So if there will be all the correct axioms in such 

a set that includes all symbolic expressions, there must also be a negative example of them 

to be expressed as ~P871(x). In other words, the statement that there is no evidence for the 

871st statement should also be included in this set of propositions. Then, the proposal we 

expressed with ~P will neither be found in the validation, train, and test sets. If it were found, 

the deep learning model would learn through errors or contrary mathematical expressions. 

Let 𝑋𝑡𝑟𝑎𝑖𝑛 be the training dataset with 𝑛 samples and 𝑚 features, and 𝑦𝑡𝑟𝑎𝑖𝑛 be the 

corresponding labels (0 or 1). Similarly, 𝑋𝑡𝑒𝑠𝑡 is the test dataset for input. Here, Neural 

Network architecture is a simple feedforward neural network with a single hidden layer with 

two parameters. 𝑊(1) and 𝑏(1) Weights and biases of the hidden layer and 𝑊(2) and 

𝑏(2) Weights and biases of the output layer. Prediction on test set we can apply forward 

propagation using the updated parameters on 𝑋𝑡𝑒𝑠𝑡 to obtain predicted probabilities 𝑦̂𝑡𝑒𝑠𝑡 . 

For represent the process of training and testing a deep learning algorithm in training process 

like follows. The training process aims to find the optimal parameters Θ (which includes 

weights and biases) that minimize the training loss (ℒ𝑡𝑟𝑎𝑖𝑛)  for the given training data: 

Θ∗ =  𝑎𝑟𝑔𝑚𝑖𝑛Θℒ𝑡𝑟𝑎𝑖𝑛(𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛 , Θ) (3) 

Where ℒ𝑡𝑟𝑎𝑖𝑛 quantifies the difference between the model's predictions and the true labels on 

the training data. In testing process, Let  𝑋𝑡𝑒𝑠𝑡  be a test sample and 𝐷 be the same deep 
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learning algorithm. The testing process involves evaluating the model's performance on the 

test sample. The goal is to predict the label for 𝑋𝑡𝑒𝑠𝑡   using the learned parameters Θ∗ where 

𝑦̂𝑡𝑒𝑠𝑡 = 𝐷(𝑋𝑡𝑒𝑠𝑡 , Θ∗) . However, if  𝑋𝑡𝑒𝑠𝑡  is substantially different from the training data 

distribution or represents an outlier, then the model might not perform well: 

𝑦̂𝑡𝑒𝑠𝑡 ≠  𝑦𝑡𝑟𝑢𝑒 (4) 

Where  𝑦𝑡𝑟𝑢𝑒  is the true label for 𝑋𝑡𝑒𝑠𝑡. 

The conclusion have reached in this study within the framework of all these views is that the 

deep learning method has a long way to go in symbolic mathematics and math learning 

systems. Quantum versions of the artificial neural network studies we have carried out on 

classical computers will bring us one step closer to the solution of the incompleteness 

theorem. 

1. INTRODUCTION 

There are many predictions of artificial intelligence applications. These 

studies, which are carried out in many different disciplines from autonomous driving, 

medicine and drug research, natural language processing to artificial vision, allow 

almost human work to be done by computers and even mobile devices. While these 

applications of artificial intelligence meet our need for automatas, another 

expectation continues to develop steadily. Since it was introduced in the 1950s, two 

different trends have occurred within the concept of artificial intelligence. These are 

called strong and weak artificial intelligence. Strong artificial intelligence supporters 

anticipate that artificial learning can one day be developed to a level that reaches 

human consciousness. The ultimate goal here is to develop a program, algorithm, or 

mechanical design that endows machines with human-level cognitive capabilities 

(Searle, 1980). 

Deep learning approaches, which are a sub-discipline of artificial intelligence, 

give very successful results in the research areas that we mentioned above today. 

Apart from these, another area where the impacts of artificial intelligence are 

investigated is the research on symbolic mathematics. Computer Algebra Systems 

(CAS) have been developed to be used in mathematical modeling on computers up 

to the present day. In these studies, automatic theorem provers and solvers called 

Boolean Satisfiability Problem (SAT) / Satisfiability Modulo Theories (SMT), 

which aim to verify the results in logic problems, have been developed. Some of 

these are currently used for the solutions they need in practice, such as symbolic 

calculations in graph theory, topology, algebra, or in response to the problems 

frequently encountered by researchers. Today, systems such as Mathematica 

(Wolfram) and Magma (Magma), among the most popular of these, perform 

calculations using algorithms developed for the solution of mathematical problems. 
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The use of computer algebra systems (CAS) has improved math instruction in 

a number of ways. CAS give students the opportunity to practice math and 

programming while fostering the development of computational thinking abilities 

like abstraction, pattern identification, decomposition, and algorithms. For instanse 

in paper (Kaneko, Maeda, Hamaguchi, Nozawa & Takato, 2013) The educational 

impact of resources used in math classes can be improved by using CAS to create 

accurate 2D visuals that are simple to integrate into superior mathematical writings. 

The paper proposes a scheme for demonstrating and improving the effect of CAS 

use in mathematics education by appropriately using the precise 2D-graphics 

generated by CAS and KETpic. In study (Makishita, 2014) By encouraging students 

to solve problems rather than just calculate, the use of CAS in the classroom can 

improve their comprehension of algebra and encourage a more in-depth study of 

mathematical ideas. The paper discusses the use of Computer Algebra Systems 

(CAS) in mathematics education and teacher training courses, particularly in the 

field of geometry. It aims to improve students' ability to use mathematics by 

incorporating CAS into classroom materials and activities. In addition to making life 

easier for math teachers, CAS can be utilized as automatic online graders and 

problem generators for assessments (Heid, Thomas, Zbiek, 2012). Also the paper 

(Heid, Thomas, Zbiek, 2012) discusses how Computer Algebra Systems (CAS) can 

improve math education by allowing for new explorations of mathematical concepts, 

active linking of dynamic representations, engagement with real data, and 

simulations of real and mathematical relationships. CAS can also enhance students' 

understanding of algebraic procedures and structures. The paper (Seidametova, 

2020) discusses how computer algebra systems, such as Mathematica, can be used 

in math education to help students practice programming and mathematics skills, 

and develop computational thinking. It provides an example of using Mathematica 

for mathematical research on the D(s)-function associated with the Riemann Zeta 

function. However, it does not specifically mention any improvements related to 

computer algebra systems (CAS) in mathematics education. These studies focus on 

exploring the utilization of CAS within the context of mathematics education, 

particularly within algebra courses. One innovative approach proposed involves 

employing CAS as "training aids" in algebra, where the system handles arithmetic 

tasks on behalf of the student, thereby enabling them to concentrate on cultivating 

their equation-solving skills. The papers also emphasize the implementation of CAS 

in the introduction of novel concepts, the expansion of procedures, and the 

exploration of fresh structures in algebra. Another pioneering methodology 

mentioned is the integration of CAS into the "Application of Mathematics" subject 

in Japanese high schools, with the objective of enhancing students' mathematical 

abilities by means of CAS and real-world applications. The papers also address the 

difficulties encountered by educators in effectively incorporating graphics generated 
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by CAS into printed materials and put forth schemes for demonstrating and 

enhancing the educational impact of CAS utilization in mathematics education. One 

paper showcases an instance wherein CAS (Mathematica) is employed for 

mathematical research pertaining to the D(s)-function associated with the Riemann 

Zeta function, thereby underscoring the utilization of CAS for problem-solving in 

mathematics and the provision of research. 

The articles propose several potential paths for future investigation and 

unanswered queries concerning the utilization of computer algebra systems (CAS) 

in the domain of mathematics education. One suggested direction for further 

investigation is to delve into the influence of CAS on the instruction and acquisition 

of algebra within school settings, encompassing its effects on tasks, modes of 

interaction, and dynamics within the classroom. Moreover, the papers recommend 

additional research on the implementation of CAS in specific domains, such as 

geometry, where CAS can prove to be particularly effective for students. There is a 

call for future research that centers on the utilization of CAS in school algebra, with 

a particular emphasis on comprehending the theoretical advancement and learning 

outcomes for students. The papers underscore the necessity for research on how to 

effectively incorporate CAS graphics into printed educational materials, addressing 

the challenges faced by teachers in utilizing CAS graphics. One paper suggests that 

future research should focus on analyzing the causal relationship between the use of 

CAS graphics and educational outcomes in collegiate mathematics education. 

Additionally, the documents indicate the necessity for further investigation into the 

utilization of CAS in diverse mathematical subjects and applications, exploring the 

potential of CAS in problem-solving, research, and the development of 

computational thinking abilities. In general, the papers imply that there is still much 

to learn about the use of CAS in the field of mathematics education, and further 

research is necessary to fully grasp its impact and potential. 

Computer algebra systems can be efficient in understanding mathematics with 

artificial intelligence. Recent research has shown that machine learning techniques, 

such as support vector machines, can improve the performance of computer algebra 

systems by using example problems (England, 2018). In (England, 2018) author 

discusses the potential for machine learning tools like Support Vector Machines to 

improve the performance of Computer Algebra Systems, but it does not specifically 

address the efficiency of computer algebra systems in understanding mathematics 

with artificial intelligence. Additionally, explainable AI techniques can provide new 

insights for symbolic computation, inspiring new implementations within computer 

algebra systems that do not directly rely on AI tools (Pickering, Almajano, England 

& Cohen, 2024). The use of artificial cognitive systems (ACS) in teaching and 

learning mathematics has also been proposed, with the understanding that ACS can 

serve as tools for cognitive reorganization. These ACS tools, such as Matlab and 
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Mathcad, can aid in the understanding of knowledge produced through their use in 

mathematics education. 

A similar study subject in the field of researching mathematical problems with 

the help of artificial intelligence is the NP (Nondeterministic Polynomial)-hard and 

NP-completeness problems. Although the studies in this area are not directly 

included in mathematics research, the part is related to the question we ask in the 

title, as they investigate the limit of computability in one aspect. NP time and related 

problems are a few of the still unsolved problems in computability theory and 

computational complexity theory. From the symbolic mathematical point of view, 

this is that the proposition or axioms within the solution of studies and problems 

require the correct understanding and classification by artificial intelligence. The 

condition for an artificial intelligence model to be trained according to today's Deep 

Learning approach have a sufficiently large data set. If a suitable data set can be 

produced, an answer to the question NP = P can be found with the artificial 

intelligence approach (Pochart, Jacquot, Mikael, 2022; Ardon,2022). However, the 

direct relationship between the question we are dealing with in this paper and the NP 

problems is related to the formation of sets in which these problems will be 

expressed, as we will mention later. 

Previous works in symbolic mathematics were generally research aimed at 

developing a formal corpus. With the help of these dictionaries, theorem-proving 

artificial learning algorithms have been developed. In this field, a remarkable study 

on theorem-proving systems, in which machine learning applications are used in 

particular, has been published by Müller et al (Müller, Gauthier, Kaliszyk, Kohlhase 

& Rabe, 2017). In this study, in order to create formal mathematical expressions, 

they proposed a standard conversion method. The researchers introduced a total of 

50,000 alignments with the method they developed. With the approach they applied, 

they turned the mathematical expressions into URIs compatible with the meta-meta-

theory (MMT) format. MMT is a framework for information representation uses 

formal language such as logic, type theories, ontologies, and set theories, etc. 

Translating mathematical expressions into formal and verifiable expressions 

is one of the first steps in symbolic mathematics studies. Wang et al. converted the 

mathematical expressions in Latex format into Mizar-Latex expressions using 

artificial neural networks in their study (Wang, Kaliszyk, Urban, 2018). Mizar is a 

formal language designed to write advanced mathematical definitions and proofs and 

is also used as the name of a computer program that can check the proofs in this 

language. During their studies, the authors managed to convert 1 million aligned 

Mizar-LATEX pair with an artificial neural network with sequence-to-sequence 

(seq2seq) architecture with a 65% success rate (Wang, Kaliszyk, Urban, 2018). 

Thus, they created a symbolic machine-processable corpora that can be used in 

artificial intelligence applications, and in the studies, we will mention later. 
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Apart from these approaches, there are also studies on reinforcement learning-

based theorem provers. Bansal et al. have developed a reinforcement learning 

environment called HOList (Bansal, Loos, Rabe, Szegedy & Wilcox, 2019). HOL 

contains a large solution set of basic mathematical theorems in calculus. In addition, 

based on this study, they developed a version called DeepHOL that can be adapted 

to deep learning applications. They used components named goal, tactic, arglist, and 

neg_arglist in the training sets and in their studies where they obtained a 58% proof 

success rate. 

Another reinforcement learning-based study is the approach applied by 

Kaliszyk et al. Here, they developed a Monte-Carlo tree search implementation using 

a prolog-based software library (Kaliszyk, Urban, Michalewski & Olšák, 2018). In 

their results, they achieved 40% more success than existing mlCoP based systems. 

Another important paper (Irving, Szegedy, Alemi, Eén, Chollet & Urban, 2016) 

using deep learning methods and especially based on Kazliyk's work is that of Alemi 

et al. The researchers used the symbolizations of mathematical expressions using 

Mizar-Corpus. This is the first study to apply the deep learning approach for theorem 

proofing systems. They used approximately 52 thousand theorems from Mizar 

corpus in their data sets. Especially, they developed their models using 

Convolutional Neural Network layers, which are frequently used today. It is seen 

that they have achieved a 67% proof success in their results. 

Another important study on the mathematical analysis made with 

convolutional neural networks, including Deep Learning applications, is that of Long 

et al (Long, Lu, Dong, 2019). In this study, an artificial neural network has been 

developed to be used in the solution of partial differential equations such as 

Boltzmann equations and Schrödinger Equation, which are used in solving some 

physics problems. In the symbolic neural network named SymNet created by the 

researchers, learning filter functions were used by using a python library that solves 

more symbolic expressions and is similar to CAS systems. However, as stated, a 

framework has been developed for solving differential equations using an 

algorithmic rule and an existing library. In this study, the authors developed an 

approach that solves these time-dependent differential equations, which are solved 

based on empirical observations, using sum rules. 

The most notable work (Lample & Charton, 2019) on symbolic mathematical 

calculations was recently published by Lample et al. The different aspect of the 

mentioned study is that it is a proven-based on a model similar to the Natural 

Language Processing (NLP) structure, unlike the CAS approaches applied so far. 

The authors applied the seq2seq method, which is a kind of encoder-decoder 

approach is frequently used today in language processing in their model. While 

creating this model, they created a kind of grammatical structure using the 

mathematical solutions available in the training sets of the model and achieved 
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successful results for symbolic integration and differential equations. Although the 

approach used in Lample's work which is similar to the automata used by Chomsky 

to solve grammatical trees (Chomsky & Schützenberger, 1959), their programming 

and algorithmic approaches are entirely different. 

The obtained results prompted us to ask the question in the title of this paper 

right here. Could be found a grammar consisting of propositions that can be applied 

to all or some of the mathematical calculations with artificial intelligence? 

The aim of this study is to investigate the extent to which machine learning 

methods employed in symbolic mathematics systems can serve the requirements 

encountered in mathematics education and mathematical research, within the 

framework of the incompleteness theorem, taking into account the aforementioned 

questions and issues.  

2. METHODOLGY 

Since the first emergence of artificial intelligence applications, studies have 

been carried out on mathematics/algebra as well as on many subjects of machines. 

Alan Turing developed and researched the concept of Turing machines in this regard, 

primarily creating a conceptual system in which natural numbers or other 

symbolic/formal mathematical expressions can be obtained. However, the subject he 

investigated is essentially Hilbert's problem known as Entscheidungsproblem 

(Hilbert & Ackerman, 1928). 

The problem known as Entscheidungsproblem can be defined in short as 

follows; is there a general method that can solve all the problems of mathematics as 

a principle? In terms of computer science, searching for such a method is equivalent 

to creating an algorithm. Hilbert's claim was that a formal mathematical system of 

axioms and methods would contain all provable statements in it. However, in 1931, 

the German Mathematician Kurt Gödel proved that Hilbert's claim was not valid in 

the fourth proposition in his doctoral dissertation (Gödel, 1931). It is called the 

incompleteness theorem. The incompleteness theorem briefly states the following; 

in a system of propositions that will explain all mathematical propositions (natural 

numbers, basic arithmetic operations, differential equations, etc.), there must be a 

statement that is true but cannot be proven.  If proof of "x cannot prove" is found in 

a system of propositions, there will be a contradiction in the system to be created. If 

there is no contradiction in a system of propositions, the proof of the statement "x 

cannot prove" cannot be found in this set. Later, Alan Turing proved the correctness 

of this theorem put forward by Gödel using conceptual Turing machines (Turing, 

1936). Generally, this problem is referred to as the "halting problem". The theoretical 

approach of Turing machines and halting problem requires long-term reading and 

analysis. But we can summarize it as follows. According to Alan Turing, he thought 

of a machine that can make calculations as a machine with a tape scanner head and 

called them a Turing Machine. Mathematical expressions of 0 and 1 values or 
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sequences of algorithms can be found on these bands. These Machines are simply 

will be able to apply four mathematical operations or rules determined again. The 

values of 0 and 1 on the band can be changed by moving the band to the right or left. 

Alan Turing later questioned the verifiability of formal mathematical theories with 

these machines. With the help of the Universal Turing machine he developed, he 

discussed whether the steps determined depending on a rule will have an end.  He 

concludes that no program can be written to tell any Turing machine whether it will 

stop when it runs with the input given, or that a Universal Turing machine cannot be 

built to indicate it. 

3. RESULTS 

Gödel's incompleteness theorem has caused us to ask the question in the title 

on the applicability of deep learning methods in formal mathematical systems. If we 

take this question further, can an artificial intelligence model be developed that will 

find solutions to all the problems of mathematics if it is possible to solve symbolic 

mathematical problems with the methods that will be created based on formal 

systems? 

In order to describe mathematical expressions, an alphabet of symbols is 

required at first. This alphabet will contain natural numbers, a symbol to separate 

them, and expressions to be used as variables. Withal, arithmetic operations, 

parentheses, and logic operators will be required for operation priority. In the study 

published by Lample, five data sets were used to solve symbolic expressions. As a 

result, a grammatical dictionary has been developed for mathematical notifications 

in these data sets. 

 

871|𝑠𝑢𝑏 𝑌′ 𝑚𝑢𝑙 𝐼𝑁𝑇 −  5 sin 𝑥𝑚𝑢𝑙 𝐼𝑁𝑇 +  5 cos 𝑥                 (1) 

 

For example, the expression (1) used in the validation set shows that an 

expression has been developed as we mentioned above and that the artificial 

intelligence model in the study was trained according to this approach. However, the 

method here also shows us that Gödel's theorem is correct. Because in the data sets 

here, all possible expressions used in the training of the artificial intelligence model 

are numbered as sequential proof that can be shown as  ∏  𝑛  . These numbered 

expressions are sets of t propositions that depend on one or more variables in the 

model. Within this set (s) there must be a proposition function denoted as the kth 

which can be expressed as Pk (x). If we set out from the expression number (1), we 

can express the proposition in the 871st row as the 871st proposition in the form of 

P871(x), depending on the variable x. So if there will be all the correct axioms in such 

a set that includes all symbolic expressions, there must also be a negative example 

of them to be expressed as ~P871(x). In other words, the statement that there is no 

evidence for the 871st statement should also be included in this set of propositions. 
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Then, the proposal we expressed with ~P will neither be found in the validation, 

train, and test sets. If it were found, the deep learning model would learn through 

errors or contrary mathematical expressions. 

Let's denote the Entscheidungsproblem as E, and the set of all mathematical 

statements as S. We can define a hypothetical deep learning algorithm D that 

attempts to solve E: 
 

𝐷 ∶ 𝑆 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒, 𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑} (2) 

Where 𝐷(𝑠) = 𝑇𝑟𝑢𝑒 indicates that the deep learning algorithm concludes that 

statement 𝑠 is true.  𝐷(𝑠) = 𝐹𝑎𝑙𝑠𝑒 indicates that the deep learning algorithm 

concludes that statement 𝑠 is false. 𝐷(𝑠) = 𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 indicates that the deep 

learning algorithm cannot make a definitive determination for statement 𝑠. However, 

the key limitation here is that Turing's incompleteness theorem and the 

undecidability of the Entscheidungsproblem still apply. No matter how advanced the 

deep learning algorithm is, it cannot escape Gödel's results which show that for any 

formal system expressive enough to encompass arithmetic, there will always be 

statements that are undecidable within that system. 

This algorithm 𝐷 is a basic illustration and doesn't reflect the complexities of 

real-world deep learning architectures. Let's consider a binary classification 

problem, where we're trying to classify data points into two classes (0 and 1). The 

algorithm 𝐷 can be represented as follows: 

Lemma 1: Let 𝑋𝑡𝑟𝑎𝑖𝑛 be the training dataset with 𝑛 samples and 𝑚 features, 

and 𝑦𝑡𝑟𝑎𝑖𝑛 be the corresponding labels (0 or 1). Similarly, 𝑋𝑡𝑒𝑠𝑡 is the test dataset for 

input. Here, Neural Network architecture is a simple feedforward neural network 

with a single hidden layer with two parameters. 𝑊(1) and 𝑏(1) Weights and biases 

of the hidden layer and 𝑊(2) and 𝑏(2) Weights and biases of the output layer. 

Prediction on test set we can apply forward propagation using the updated 

parameters on 𝑋𝑡𝑒𝑠𝑡 to obtain predicted probabilities 𝑦̂𝑡𝑒𝑠𝑡 . 

Proof 1: For represent the process of training and testing a deep learning 

algorithm in training process like follows. The training process aims to find the 

optimal parameters Θ (which includes weights and biases) that minimize the training 

loss (ℒ𝑡𝑟𝑎𝑖𝑛)  for the given training data: 

Θ∗ =  𝑎𝑟𝑔𝑚𝑖𝑛Θℒ𝑡𝑟𝑎𝑖𝑛(𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛 , Θ) (3) 

Where ℒ𝑡𝑟𝑎𝑖𝑛 quantifies the difference between the model's predictions and the true 

labels on the training data. In testing process, Let  𝑋𝑡𝑒𝑠𝑡  be a test sample and 𝐷 be 
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the same deep learning algorithm. The testing process involves evaluating the 

model's performance on the test sample. The goal is to predict the label for 𝑋𝑡𝑒𝑠𝑡   
using the learned parameters Θ∗ where 𝑦̂𝑡𝑒𝑠𝑡 = 𝐷(𝑋𝑡𝑒𝑠𝑡, Θ∗) . However,  if  𝑋𝑡𝑒𝑠𝑡  is 

substantially different from the training data distribution or represents an outlier, 

then the model might not perform well: 

𝑦̂𝑡𝑒𝑠𝑡 ≠  𝑦𝑡𝑟𝑢𝑒 (4) 

Where  𝑦𝑡𝑟𝑢𝑒 is the true label for 𝑋𝑡𝑒𝑠𝑡. 

It is once again shown that the result we will achieve mechanically (deep 

learning in this example) confirms the proposition that "mathematical correctness 

cannot be expressed in any formalist framework" (Rav, 2007). 

The fundamental question we address here revolves around whether artificial 

systems can be developed to solve symbolic mathematical problems, ultimately 

advancing artificial intelligence applications. If these functions can also be explained 

with mathematical expressions, will the artificial systems that can do this exactly? J. 

R. Lucas asked in 1961, is there an algorithm that proves a theorem, similar to the 

question we asked (Lucas, 1996). According to him if a computer is going to prove 

a theorem it should use a theorem-proving algorithm. However, there should also be 

statements that are accepted a priori but cannot be proven to correct in the computer 

program used. However, the developments in computer technology since the '60s, 

especially in the field of deep learning, have gone beyond the known algorithmic 

approaches. The approach of Lamp et al. can also be seen as the research of a 

theorem-proving model that will prove these theorems. However, according to 

Lucas, machines cannot perform an uncertain and infinite process. This indicates the 

necessity of a grammatical dictionary containing symbolic mathematical 

expressions. The storage and processing powers available today have increased 

significantly compared to previous years. However, integrating basic expressions 

into datasets for solving symbolic mathematical problems remains a challenging 

process, particularly for mathematical theorems that are still undiscovered. The 

erroneous propositions that we tried to express as ~P above and that we expect to 

take place in the artificial intelligence model should also be evaluated as this 

theorem-proving theorem. When we look at it from this point of view, the complexity 

of the system will increase and, in a sense, a new NP-hard problem will arise. 

From another perspective, in the deep learning approach, the learning action 

ultimately takes place by making use of existing data sets. Since there is a set of 

activation functions that will give the highest result for each training/test/validate 

set, how do you find an activation function to prove that the propositions of these 

sets are false?  Then, during the training of the model, it will be necessary to add 
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steps that will show the falsity of the declarations in the list of propositions to be 

created for all mathematical grammar.  Activation functions are linear or non-linear 

functions used to calculate weighted inputs and bias in artificial neural networks. 

The type of activation function to be used is decided according to the output of the 

artificial neural network. An activation function processes the data sent at the input 

of the network, usually by gradient descent, and then generates an output for the 

neural network containing the parameters in the input data. 

Today, especially in automatic machine learning examples, solutions without 

human interaction are produced in creating the model and determining the 

appropriate functions. How will the method of determining the most appropriate 

parameters for a classification or regression problem, moreover, activation functions, 

be applied in symbolic mathematical applications under the conditions we question. 

Today, some solutions of linear and non-linear functions are made with CAS-like 

algorithms. If the application of determining the most suitable of these functions with 

artificial intelligence will include unproven theorems, as we mentioned above, the 

model determination problem will again be linked to the subject of computability. 

As a result, it is not possible today to obtain a data set that will comply with these 

principles. Perhaps such proposition sets may be components of an unproven 

Mandelbrot (Peitgen & Richter, 1986) set. 

The studies collectively advocate for the integration of artificial cognitive 

systems (ACS) and machine learning techniques in mathematics education, 

providing theoretical justification for their implementation and highlighting their 

potential to optimize algorithms in symbolic computation. Additionally, they 

introduce explainable AI (XAI) techniques within this context, offering fresh 

insights into computer algebra systems. Emphasizing the importance of 

understanding knowledge generated through these tools, the papers underscore the 

role of cognitive reorganization and technology in mathematics education. Through 

case studies and examples, they demonstrate the effectiveness of machine learning 

and XAI techniques, particularly in variable ordering for cylindrical algebraic 

decomposition, while also shedding light on their performance compared to existing 

heuristics and their ability to elucidate decision-making processes in symbolic 

computation. 

Last two years, Large language models, like GPT-3.5 (Brown, Mann, Ryder, 

Subbiah, Kaplan, Dhariwal & Amodei, 2020), are trained using a large amount of 

text data to learn intricate linguistic patterns. They decrease language modelling loss, 

which gauges the difference between predicted and real words in phrases, during 

training by optimizing the parameters. They are exceptional tools for a variety of 

natural language processing jobs because of this process, which gives them the 

capacity to produce text that is coherent and contextually relevant. Large language 

models are anticipated to perform well in testing and generalization on a variety of 
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language tasks outside of their training data. Their performance, like that of deep 

learning algorithms, may suffer from inputs that dramatically depart from the 

patterns they have learnt.  Outliers, unusual wording, or specialist subjects can make 

it difficult for them to give precise, appropriate answers. A language model's 

generation might not agree with an input that is unusual or highly specialized, just 

as a deep learning model's prediction might not agree with a "false" test sample. 

For large language models, the idea of generalization is still essential. Despite 

their enormous versatility, they are nonetheless susceptible to the drawbacks of 

generalization. The resemblance of the input to their training data distribution has a 

significant impact on their ability to generate text. Therefore, when using large 

language models, making sure the training data is of high quality and taking into 

account the range of activities they excel at are crucial considerations. 

4. CONCLUSION AND DISCUSSION 

Symbolic computation systems possess a considerable potential for enhancing 

the field of mathematics education. These systems, exemplified by MAPLE and 

muMATH, have the capacity to effectively instruct in various scientific and 

engineering disciplines through the resolution of algebraic and differential equations, 

as well as by facilitating precise discussions regarding the outcomes. They afford 

students the opportunity to acquire knowledge under the guidance of instructors, 

thereby rendering lectures more captivating and stimulating. The utilization of 

computer algebra systems on microcomputers and handheld devices is projected to 

exert a significant influence on the field of high school mathematics education, akin 

to the impact of electronic pocket calculators. These systems are capable of 

addressing a vast majority of topics covered in high school and undergraduate 

mathematics, and future advancements in hardware will expedite their integration 

into the realm of education. Furthermore, the advantages of employing symbolic 

computations in the domain of power engineering education are explored, 

emphasizing the merits of interactive environments for computation, visualization, 

and modeling.  

The Incompleteness theorem, formulated by Godel, posits that there exist 

veritable mathematical propositions that cannot be demonstrated within a specified 

axiomatic framework. This signifies that no matter how thorough a formal system 

is, there will perpetually be veracious propositions that cannot be deduced from the 

system's axioms. The essence of the Incompleteness theorem coincides with the 

constraints of constructing a mathematical grammatical structure. The grammatical 

structure may furnish regulations and principles for mathematical deduction, yet it is 

incapable of encompassing all conceivable mathematical propositions and their 

substantiations. Hence, it is unable to ensure a comprehensive comprehension and 

portrayal of mathematics within an educational framework. The constraints of a 

mathematical syntax framework become evident when contemplating the extensive 
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range and variety of mathematical assertions and demonstrations. Mathematics, by 

its inherent essence, is distinguished by its abundance and intricacy, encompassing 

a plethora of ideas, theories, and occurrences. Endeavoring to encapsulate this 

abundance within an inflexible syntax framework proves to be a fundamentally 

challenging endeavor, if not a complete impossibility. 

Moreover, the Incompleteness theorem emphasizes the intrinsic 

incompleteness of any formal system, emphasizing the existence of truths that lie 

beyond the grasp of formal proof. In the domain of mathematics instruction, it can 

be inferred that irrespective of the thoroughness with which a curriculum is 

structured or the accuracy with which concepts are elucidated, there will invariably 

exist elements of mathematical veracity that elude codification within the confines 

of a designated framework.  

From the perspective afforded by deep learning techniques, the reverberations 

of Gödel's Incompleteness theorem are palpable and resound within the domain of 

artificial intelligence and the intricate world of mathematical modeling. Deep 

learning, which represents a subset of machine learning that takes inspiration from 

the intricate structure and remarkable functionality of the human brain, places 

significant reliance on mathematical frameworks and formal systems to effectively 

handle and navigate through immense quantities of data, thereby facilitating the 

extraction of meaningful patterns and valuable insights. At its very fundamental core, 

deep learning functions and operates within the framework of neural networks, 

which are intricate and complex structures composed of interconnected layers of 

artificial neurons. These neural networks are trained using vast and extensive 

datasets, where various mathematical optimization techniques are employed and 

utilized in order to meticulously adjust and fine-tune the network's parameters, 

ultimately aiming to minimize and reduce the occurrence of prediction errors. The 

overwhelming success and triumph of deep learning models is inherently reliant and 

dependent on their inherent and innate ability to effectively learn and comprehend 

intricate and convoluted mappings that exist between the inputs and outputs of the 

system. This unparalleled and exceptional ability enables them to execute a wide 

range of complex tasks seamlessly and flawlessly, which can range from the highly 

sophisticated task of image recognition to the intricate and nuanced field of natural 

language processing, all the while delivering and producing astounding and 

remarkable levels of accuracy. Much like Gödel effectively and convincingly 

demonstrated the existence and presence of true mathematical statements that exist 

beyond the realm and scope of any formal system, deep learning models are 

inherently and intrinsically bound and constrained by the limitations and confines of 

the data they are exposed to during the crucial training phase. 

Hence, while a mathematical grammatical structure may function as a 

valuable pedagogical tool, providing a methodical approach to mathematical 
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reasoning and problem-solving, it alone cannot ensure a comprehensive 

understanding and representation of mathematics within an educational system. 

Instead, educators must acknowledge the inherent limitations of formal systems and 

endeavor to cultivate in students a deeper recognition for the innate richness, 

intricacy, and incompleteness of mathematical truth. 

Applying deep learning to symbolic mathematical systems presents numerous 

obstacles. The aforementioned challenges encompass a range of complexities when 

it comes to the process of extrapolating findings to cases beyond the originally 

studied distribution, primarily stemming from the predominant utilization of 

statistical inference mechanisms as opposed to symbolic reasoning mechanisms. In 

addition to the points, it is important to note that there exists an insufficiency in the 

level of transparency and interpretability, both of which pose formidable obstacles 

to comprehending the intricacies of decision-making processes within intricate 

mathematical frameworks. Furthermore, effectively integrating domain-specific 

prior knowledge crucial to these systems proves challenging. Lastly, selecting 

appropriate model classes is problematic due to the diverse nature of mathematical 

problems and the limitations of existing deep learning architectures. 

Neuro symbolic hybrid systems (Flavio, Alberto, Alessandro, 2023; Zhao, 

Yang, 2022) have the potential to address the challenges faced in mathematics 

education when using deep learning methods. These systems integrate concepts from 

symbolic reasoning, such as computational logic, with deep neural networks. By 

doing so, these systems enhance the capabilities of deep neural networks by 

incorporating explainability, the ability to integrate prior knowledge, and 

modularity. The presented hybrid system, which aims to solve arithmetic problems, 

showcases the difficulty of applying symbolic reasoning to deep learning models. 

Deep learning models often struggle to generalize reasoning patterns to cases that 

are outside their training data. In contrast, the proposed hybrid system utilizes 

substitution rules in an iterative manner to solve arithmetic expressions and surpasses 

other models in terms of accuracy. 

The conclusion we have reached within the framework of all these views is 

that the deep learning method has a long way to go in symbolic mathematics. 

Quantum versions of the artificial neural network studies we have carried out on 

classical computers will bring us one step closer to the solution of the incompleteness 

theorem. 
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