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Stalnaker’s Hypothesis: 
A Critical Examination of Hájek’s Counter Argument

Mehmet Hilmi Demir

Abstract: According to what is known as Stalnaker’s hypothesis, the probability 
of a conditional statement is equal to the conditional probability of the statement’s 
consequent given the statement’s antecedent. Starting with David Lewis, many 
have attempted to show that this hypothesis cannot be true for non-trivial 
probability functions. These attempts, which are known as the triviality results, 
cannot refute the hypothesis conclusively, because the triviality results usually 
rest on controversial assumptions such as the closure of conditionalization. 
In addition to the triviality results, there is one often cited argument against 
Stalnaker’s hypothesis that does not seem to rest on a controversial assumption. 
The argument is Alan Hájek’s 1989 reductio argument, which purportedly shows 
that Stalnaker’s hypothesis leads to outright contradiction. In this paper, I critically 
evaluate Hajek’s reductio argument and show that it is not a valid argument. His 
argument is simply an instance of the petitio principii fallacy. On the positive side, 
I argue that my critical evaluation of Hajek’s argument brings us one step closer 
to the reconciliation of the analytical and empirical examinations of Stalnaker’s 
hypothesis. 
Keywords: Conditional Probability; Probability of a Conditional Statement; 
Triviality results; Stalnaker; Hájek.

Özet: Literatürde Stalnaker hipotezi olarak bilinen iddiaya göre, bir şartlı önermenin 
olasılığı, o önermenin art bileşenin ön bileşeninine şartlı olasılığına eşittir. David 
Lewis’in 1976 tarihli makalesinden beri birçok felsefeci bu iddianın sadece basit 
ve sıradan (trivial) olasılık fonksiyonları için geçerli olduğu, diğer daha işlevli 
(non-trivial) olasılık fonksiyonlarına uygulanamayacağını göstermeye çalışmışlar 
ve bu hedef doğrultusunda birçok ispat sunmuşlardır. Ancak sıradanlık sonuçları 
(triviality results) olarak bilinen bu tür ispatların Stalnaker hipotezini tam 
olarak reddetmeye yeterli olmadığı anlaşılmıştır. Çünkü bu ispatların büyük bir 
çoğunluğu koşullamanın kapalılığı (closure of conditionalization) gibi tartışmalı 
olan varsayımlara dayanmaktadır. Literatürde tartışmalı herhangi bir varsayıma 
dayalı olmadığı iddia edilen ve sıklıkla gönderme yapılan bir başka argüman 
daha mevcuttur. Alan Hájek’in 1989 tarihli makalesinde olmayana ergi metodu 
ile geliştirdiği bu argüman, herhangi tartışmalı bir varsayıma dayanmadan, 
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Stalnaker hipotezinin doğrudan çelişkiye neden olduğunu göstermektedir. Bu 
makalede Hájek’in argümanının geçerliliği detaylı olarak incelenmekte ve sonuçta 
söz konusu argümanın petitio principii çıkarsama hatasını barındırdığı ve bu 
sebeple de geçerli olmadığı tespit edilmektedir. Pozitif katkı olarak ise bu varılan 
tespitin Stalnaker hipotezinin analitik ve ampirik değerlendirmeleri arasında var 
olan uyuşmazlığın giderilmesinde bir adım daha ileri gitmemizi sağladığı iddia 
edilmektidir.
Anahtar kelimeler: Şartlı Olasılık; Şartlı Önermelerin Olasılığı; Sıradanlık 
Sonuçları; Stalnaker; Hájek.

Introduction

According to what is known as Stalnaker’s hypothesis1, the probability 
of a conditional statement is equal to the conditional probability of the 
statement’s consequent given the statement’s antecedent. That is,

Pr (A à C) = Pr (C | A) whenever Pr (A) > 0.

This hypothesis, which was offered in the 1960s, has been criticized 
extensively. Starting with the paper by Lewis (1976) that is now a classic, 
“Probabilities of Conditionals and Conditional Probabilities”, many 
have offered what is known as the triviality results against this 
hypothesis2. More or less, the triviality results show that 
Stalnaker’s hypothesis (henceforth SH) holds only for very trivial 
probability functions; it fails for all the other more interesting and more 
relevant probability functions. It was, however, observed that all of the 
triviality results rest on at least one of the following two assumptions 
(Stalnaker, 1976; Hájek, 1989):

A1. Each class of probability functions is closed under certain 
operations (such as conditionalization or Jeffrey conditionalization).

A2. The proposition expressed by a conditional sentence is 
independent of the probability function defined on it.

¹  After Lewis’ triviality results, Stalnaker lost faith in his hypothesis. In a letter dated January 
1974 to van Fraassen, he says the following: “In fact, I am as taken with the distinction between 
the probability of the conditional and the conditional probability as I once was with their 
supposed identity” (available in Van Fraassen 1976, p.305). Despite this change in Stalnaker’s 
position, the hypothesis is still called Stalnaker’s hypothesis in the literature. In this paper, I 
follow this tradition and refer to the hypothesis as Stalnaker’s hypothesis.

²  For some examples of triviality results, see Lewis (1976, 1986), Hajek (1989, 1994, 2011), and 
Döring (1994).
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If these two assumptions are not true in general, then it is fair to 
conclude that SH is immune to the damaging triviality results3. A defense 
of SH along these lines is provided by Van Fraassen. In formal terms, Van 
Fraassen (1976, 1989) showed that there is no inconsistency in accepting 
SH while rejecting A1 and/or A2. The possibility of such a defense, as 
recently observed by Dietz and Douven (2011), implies that the triviality 
results cannot conclusively refute SH.

There are, however, other arguments that purportedly refute SH 
and do not rely on any of the assumptions stated above. Perhaps the 
most famous among those arguments4 is the one offered by Hájek in 
his 1989 article, “Probabilities of Conditionals Revisited”. In his paper, 
Hájek claims to prove that SH leads to outright contradiction. The 
only assumption that Hájek requires for his proof is that (A à C) is a 
proposition whenever A and C are. Since it is quite difficult to think of a 
less controversial assumption than this, SH cannot be defended against 
Hájek’s proof by questioning the underlying assumption. Do we have to 
conclude that SH is conclusively refuted by Hájek’s reductio proof? In 
this paper, I examine Hájek’s proof in order to answer this question. If 
Hájek’s proof is valid and non-circular, then the answer will be yes. But 
as I show below, Hájek’s proof is at best a circular one. One of the steps 
that Hájek uses in his reductio proof amounts to the negation of SH. With 
this step, he then proceeds to prove that SH is false. This makes Hájek’s 
proof circular. Given this problematic nature of Hájek’s proof and the 
availability of Van Fraassen’s line of defense against the triviality results, I 
conclude that, contrary to what is commonly accepted in the literature, the 
Stalnaker hypothesis has not been conclusively refuted.

The conclusion of this paper not only defends Stalnaker’s hypothesis 
against Hájek’s argument, but also serves the purpose of resolving 
a puzzling tension that exists between the analytical results and the 
empirical findings about SH. It has empirically been shown that human 
judgments of the probability of conditional statements fit quite well with 

³ Hajek (2011) recently offered another triviality result against SH. This most recent triviality 
result also rests on one of the aforementioned controversial assumptions, i.e. A1.

⁴ Douven and Dietz (2011) also have an argument against SH that does not rest on A1 or A2. 
In their argument, they rightly point out that SH implies the probabilistic independence of 
the antecedent of a conditional statement from the conditional statement itself. They find 
this implication “deeply problematic” and “plain wrong”. Their argument that aims to show 
the implausibility of the probabilistic independence thesis, however, is not a valid one. The 
examination of Douven and Dietz’s argument is beyond the scope of this paper. 
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the predictions of SH5. In other words, humans judge the probability of 
a conditional statement to be equal to the probability of the conditional 
statement’s consequent given its antecedent. But, as briefly mentioned 
above, because of the triviality results and arguments such as Hájek’s, it is 
generally accepted that analytical results refute SH. This means that there 
is a puzzling tension between the empirical and analytical analyses of SH. 
The conclusion of this paper helps to remove one of the arguments that 
lead to this puzzling tension.

The paper starts with a reconstruction of Hájek’s proof. The circular 
nature of Hájek’s proof is then shown. The paper is concluded with a 
positive discussion about the consistency between the empirical and 
analytical analyses of Stalnaker’s hypothesis.

2. A Step-by-Step Reconstruction of Hjek’s Proof

Hájek’s elegant proof rests on quite a simple idea. Since SH equates Pr 
(C|A) to Pr (AàC), for every conditional probability there must be a 
matching unconditional probability simply because Pr (AàC) itself is an 
unconditional probability. Thus, finding a conditional probability that 
does not have any matching unconditional probability will be sufficient 
enough for showing that SH is false. This is the strategy that Hájek uses in 
his proof. His proof, which applies only to finite models with at least three 
possible worlds6, assumes that there is an unconditional probability for 
every conditional probability, and then attempts to derive a contradiction. 
Under this reductio assumption, Hájek, without loss of generality, assumes 
that the probabilities of possible worlds are non-zero and arranges those 
probabilities in an increasing order. After that, his proof proceeds with 
two different cases. In Case 1, the highest value in the ordered probability 
series is less than ½, and in Case 2, the highest value is greater than or 
equal to ½. Since the proof in both cases has the same structure with little 
change in arithmetical details, I examine only Case 1. The following is a 
step-by-step reconstruction of Hájek’s proof for Case 1.

Step  0:  Every conditional probability equals some unconditional 
probability. 

⁵  Some examples of the empirical investigation of SH are the works of Hadjichristidis et al. 
(2001), Evans et al. (2003), Oberauer and Wilhelm (2003), Over and Evans (2003), Evans and 
Over (2004), and Over et al. (2007).

6  Hájek’s proof does not apply to models with one or two possible worlds because of the 
simplicity of such models. In such models, SH is trivially true.
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      This is the reductio assumption. 

Without loss of generality, Hájek assumes that there are n possible 
worlds and the probability of each of those worlds is non-zero. It is also 
possible to put those probabilities, whose sum is 1, in an increasing order. 
The second part of this step states that the highest value in the probability 
series is less than ½. This is the Case 1 that Hájek considers in his proof. 

This is the case because pi≤pi+1, as stated in Step 1. There are n-1 
values of the form             because in the ordered series above i is between 
2 and n, inclusive.

Step 3:   These n-1 values of the probabilities of the form       are conditional 
probabilities.

𝑺𝒕𝒆𝒑 𝟏:   0 < 𝑝1 ≤ 𝑝2 ≤ 𝑝3 ≤ ⋯ ≤ 𝑝𝑛 where  ∑𝑖
𝑛
𝑝𝑖 = 1, and  𝑝𝑛 < 1

2

𝑺𝒕𝒆𝒑 𝟐:   𝑝1 ≤  
𝑝1

≤
𝑝1

 ≤ ⋯  ≤
𝑝1

1 − 𝑝2 1 − 𝑝3 1 − 𝑝𝑛
≤  2𝑝1 ≤ 𝑝1+ 𝑝2 

𝑝1

1−𝑝𝑖

𝑝1

1−𝑝𝑖

The probabilities of this form are indeed conditional probabilities. To 
give an example, let’s assume that W1, W2, and W3 are the only possible 
worlds with the probability values of p1, p2, and p3. Let A, B, and C be 
the only statements that can be evaluated in these possible worlds. Further 
assume that only C is true in W1; all three statements are true in W2; and 
only A is true in W3. In this toy example, the value     𝑝 1     is equal to the 
conditional probability of C given not-B. 1−𝑝2

Step 4: These values need to be matched with unconditional 
probabilities strictly between p1 and p1+p2.

This follows from Steps 2 and 3. 

Step 5: The only unconditional probabilities between p1 and p1+p2  are  p2,p3,
…,pn.

This step is the most crucial one in Hájek’s proof. At first glance, 
it may seem that this straightforwardly follows from Step 1, where the 
probabilities of possible worlds are put in an increasing order. However, 
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it should be noted that Step 1 only states the set of the probabilities of 
possible worlds, and this set does not necessarily limit the set of all 
unconditional probabilities. Thus, this step requires further justification, 
and unfortunately, Hájek does not provide any. 

This follows from Steps 2 and 5. 

Step 7:  p2=p3=⋯=pn     

This follows from solving the equation   =pi, which is 
established in Step 6. 

Step 8:  There can be no unconditional probability strictly between p1  
and p1+p2.

This is a direct consequence of the previous step. 

Step 9: There is a conditional probability between p1 and p+p2, 
namely 

           is indeed a conditional probability. Just consider the 
conditional probability of (B and C) given A in the toy example given in 
Step 3. 

Step 10:  Contradiction.

       Steps 8 and 9 obviously contradict with each other. 

Thus:   Reductio assumption is false.

Corollary: 

Since SH implies the reductio assumption and the reductio assumption is 
false, SH does not hold for any finite model of probability with at least 3 
worlds.

Step 6: 
𝑝1

1 − 𝑝2
= 𝑝2 , 

𝑝1
1 − 𝑝3

= 𝑝3 ,   … 
𝑝1

1 − 𝑝𝑛
= 𝑝𝑛 

𝑝1

1−𝑝𝑖

𝑝2

1 − 𝑝1
. 

𝑝2

1 − 𝑝1
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3. The Form of Hájek’s Proof

Let me use the following symbols for the ease of presentation: RA for the 
reductio assumption in Step 0 and X for the crucial premise in Step 5. It 
is worth noting that the premise in Step 5 is independent of RA. In other 
words, RA does not imply X. All other steps in Hájek’s proof follow from 
previous steps by simple algebraic manipulations. Thus, the form of the 
proof is as follows.

RA
….
….
X

….
….

Contradiction.
Therefore not-RA.

If X were an implication of RA, then this proof form would be 
valid. But it is not. Knowing that every conditional probability has a 
corresponding unconditional probability does not tell us anything about 
the set of unconditional probabilities between p1 and p1 + p2. The other 
way of making this proof form valid is to give independent justification 
for the truth of X. No such explanation is provided. Moreover, a careful 
examination shows that accepting X amounts to rejecting SH. X states 
that the only unconditional probabilities that could be strictly between p1 
and p1 + p2 are p2, p3, p4,…,pn. If SH is true, however, then there are many 
more unconditional probabilities in that interval, because every value 
of conditional probabilities will also be the value of an 
unconditional probability7. For example, if SH is true, the value            , 
which is a conditional probability, is also an unconditional 
probability, because Pr(AàC) itself is an unconditional probability.

⁷ At this point, in defense of Hájek’s argument, one may reason in the following way : The only 
unconditional probabilities that could be strictly between p1 and p1 + p2 are p2, p3, p4,…,pn , 
because unconditional probabilities are probabilities of propositions which are sets of worlds. 
And the probability of a proposition is the sum of the probabilities of the worlds that constitute 
it. So, all propositions must have probabilities that are sums of the pi. But, if we assume that 
SH is true then the probability of a conditional statement, which is itself a proposition, will 
not necessarily be a probability of a set of worlds. Thus, to claim that it is generally accepted 
that conditionals correspond to sets of worlds and this justifies Hájek’s argument will simply 
be stating the negation of SH, and thus, will again be an instance of petitio principii. I thank 
Alan Hájek for raising this issue (personal communication, September 30, 2012).

𝑝2

1−𝑝1
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The only remaining way of making Hájek’s proof valid is to change 
its conclusion. The conclusion that Hájek could draw from his proof is 
not-(RA and X). But if this is the correct conclusion of the proof, then the 
corollary about SH does not follow, simply because of the fact that the 
following set of propositions is consistent: SH à RA, not-(RA and X), 
SH. Just assign True to SH and RA, and False to X.

4. Discussion and Concluding Remarks

The empirical investigation of how humans judge the probability of a 
conditional statement more or less started in the late 1990s. Since then, 
various experimental psychologists have conducted experiments for 
understanding the human judgment of the probability of conditional 
statements. Almost all of those experiments have found that the best 
predictor of the judgment of the probability of a conditional statement is 
the conditional probability of the conditional statement’s consequent given 
its antecedent. This is nothing but what Stalnaker’s hypothesis asserts, i.e. 
Pr (AàC) = Pr (C|A) whenever Pr (A) is not zero. In other words, SH has 
been subjected to extensive empirical testing. In order to emphasize the 
thoroughness of those empirical tests, it is worth briefly mentioning a set 
of experiments that were conducted for testing SH.

The early empirical tests of SH mostly used what is called basic 
conditionals in the experimental procedures. Basic conditionals are 
conditionals that have a neutral content; that is to say, their contents are as 
independent as possible from context and background knowledge. “If the 
card is yellow, then it has a circle on it” is such a conditional. However, 
conditionals that are used for decision making and planning are rarely 
basic conditionals. Thus, the earlier experiments account only for a 
limited and idealized subset of conditionals. Over et al. (2007), in their 
three experiments, used non-basic indicative conditionals and related 
counterfactuals. An example of a non-basic conditional that they used 
is: if the cost of petrol increases, then traffic congestion will improve. In 
that respect, their findings apply to a larger domain. In their experiments, 
they tested four different hypotheses about the probability judgments of 
a conditional statement. The first of those is the conjunctive probability 
hypothesis, which equates the probability of a conditional statement to the 
probability of its antecedent and the consequent. The second hypothesis 
is the material conditional hypothesis, which treats the probability of 
a conditional statement, say if A then B, as the probability of the truth 
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functional equivalent of the conditional statement, which is (not-A or 
B). The third is what Over et al. call the conditional probability thesis, 
which is identical to SH. The last one is the hypothesis that the probability 
of a conditional statement is proportional to the extent to which the 
antecedent’s probability raises the probability of the consequent, which 
is known as the delta-p rule. Each one of these four hypotheses is an 
implication of a different theory of conditionals. Moreover, these four 
hypotheses span the entire space of alternative hypotheses available in 
the literature. Over et al. test these hypotheses under different conditions 
and their findings show that the conditional probability hypothesis, i.e. 
Stalnaker’s hypothesis, is by far the best predictor of the experimental 
subjects’ judgments of the probability of conditional statements. Their 
findings imply that the conditional hypothesis is empirically verified not 
only for indicative conditionals but also for counterfactuals.

Robust findings such as those of Over et al. provide strong support 
for SH, but as we have seen above, there are analytical arguments that 
purportedly show that the hypothesis cannot be true. This situation 
presents quite a puzzling tension. In the face of this tension, Douven and 
Dietz rightly issue a call for help in their 2011 paper. What should we do? 
It seems that one could either downplay the significance of the empirical 
findings by trying to explain them away or one could take those findings 
seriously and go back to the drawing board. The latter option seems to 
be the better one in its potential to leading to new analytical findings or 
revising old ones.

The puzzling situation that we have here has a strong resemblance 
to the tension that was pointed out by Tversky and Kahnemann (1983) 
for the way humans judge the probability of conjunctive statements. As is 
well known by now, the empirical investigation of probability judgments 
showed us that humans, at least in some cases, assign a higher value to the 
probability of a conjunction of two statements than the probability value 
assigned to one of the conjuncts; this is the so-called conjunction fallacy. 
This finding contradicts with the classical Kolmogorovian probability 
axioms, which imply that the probability of a conjunction is less than 
or equal to the probability of one of the conjuncts alone. Taking such 
empirical findings seriously instead of downplaying them turned out to 
be the better option, because it led to new theories in modeling human 
probability judgment. To give an example, in a recent book, Busemeyer 
and Bruza (2012, p. 16-18) convincingly argue that quantum probability 
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axioms provide a better model (at least in some cases) in explaining human 
probability judgments of conjunctions, because in quantum probability 
the probability of A and B under certain circumstances can be higher than 
the probability of A. 

In a similar spirit, we should take the empirical findings about SH 
seriously and go back to the drawing board. At the drawing board, the 
first thing that needs to be done is to verify the validity of the analytical 
arguments offered against SH. This is what I have set out to do in this 
paper. My scrutiny of Hájek’s reductio argument, which does not seem 
to rest on controversial assumptions, shows that his argument is at best 
a circular one. In other words, his argument is at best an instance of the 
fallacy of petitio principii. With Hájek’s reductio argument out of the way, 
it is fair to conclude that we are one step closer to the reconciliation of the 
empirical and analytical findings about Stalnaker’s hypothesis. Needless 
to say, there is still a long way to go.

Mehmet Hilmi Demir, Orta Doğu Teknik Üniversitesi, Türkiye
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