

*Corresponding Author, e-mail: aamir.oghli@gazi.edu.tr

Research Article GU J Sci, Part A, 11(2): 304-323 (2024) 10.54287/gujsa.1438011

Gazi University

Journal of Science

PART A: ENGINEERING AND INNOVATION

http://dergipark.org.tr/gujsa

IoT-Based Energy Consumption Prediction Using Transformers

Abdul Amir ALIOGHLI1* Feyza YILDIRIM OKAY2

1 Gazi University, Department of Computer Science, Ankara, Türkiye
2 Gazi University, Department of Computer Engineering, Ankara, Türkiye

Keywords Abstract

Transformers

Time-Series

Prediction

IoT

With the advancement of various IoT-based systems, the amount of data is steadily increasing. The

increase of data on a daily basis is essential for decision-makers to assess current situations and formulate

future policies. Among the various types of data, time-series data presents a challenging relationship

between current and future dependencies. Time-series prediction aims to forecast future values of target

variables by leveraging insights gained from past data points. Recent advancements in deep learning-

based algorithms have surpassed traditional machine learning-based algorithms for time-series in IoT

systems. In this study, we employ Enc & Dec Transformer, the latest advancements in neural networks

for time-series prediction problems. The obtained results were compared with Encoder-only and

Decoder-only Transformer blocks as well as well-known recurrent based algorithms, including 1D-

CNN, RNN, LSTM, and GRU. To validate our approach, we utilize three different univariate time-series

datasets collected on an hourly basis, focusing on energy consumption within IoT systems. Our results

demonstrate that our proposed Transformer model outperforms its counterparts, achieving a minimum

Mean Squared Error (MSE) of 0.020 on small, 0.008 on medium, and 0.006 on large-sized datasets.

Cite

Alioghli, A. A., & Yildrim Okay, F. (2024). IoT-Based Energy Consumption Prediction Using Transformers. GU J Sci, Part A,

11(2), 304-323. doi:10.54287/gujsa.1438011

Author ID (ORCID Number) Article Process

0009-0001-7273-3292

0000-0002-6239-3722

Abdul Amir ALIOGHLI

Feyza YILDIRIM OKAY

Submission Date

Revision Date

Accepted Date

Published Date

15.02.2024

19.03.2024

03.04.2024

05.06.2024

1. INTRODUCTION

The latest Internet of Things (IoT), Analytics 'State of IoT—Spring 2023' report indicates a significant surge

in global IoT connections, marking an 18% increase in 2022, with 14.3 billion active IoT endpoints. Projections

by IoT Analytics suggest a further 16% growth in 2023, pushing the global number of connected IoT devices

to an expected 16.7 billion active endpoints (IoT Analytics, 2023). This continual rise indicates an ongoing

expansion of IoT device connections, with these devices increasingly found in homes, businesses, factories,

and hospitals (Pashamokhtari, 2020). With the rapid proliferation of the IoT, there is an exponential generation

of extensive time-series data (Hu et al., 2023). This data, characterized by repeated observations of various

variables over time, is a product of IoT, significantly contributing to the vastness and velocity of big data

applications (Adhikari & Agrawal, 2013). It encompasses diverse predictions such as energy consumption,

temperature fluctuations, light intensity measurements, among other factors.

Mathematically, a time-series is defined as {𝑥1, 𝑥2, 𝑥3 … 𝑥𝑇}, where 𝑡 = 1, 2, … , 𝑇 denotes time, ranging from

1 to 𝑇, and 𝑥𝑇 signifies a vector of random variables (Cochrane, 1997). The significance of time-series data

derived from IoT in scientific and technological research cannot be overstated. Analysis of this data reveals

hidden patterns and laws, enabling its application in environmental contexts. This analysis further aids in

uncovering correlations and periodicities between events, fostering a deeper understanding of their nature and

mechanisms. The insights derived provide robust support across various disciplines engaged in related research

mailto:aamir.oghli@gazi.edu.tr
https://doi.org/10.54287/gujsa.1438011
http://dergipark.org.tr/gujsa
https://doi.org/10.54287/gujsa.1438011
https://orcid.org/0009-0001-7273-3292
https://orcid.org/0000-0002-6239-3722
https://orcid.org/0009-0001-7273-3292
https://orcid.org/0000-0002-6239-3722

305
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

(Hu et al., 2023). With the vast array of data generated by IoT, accurate analysis and prediction of energy-

related data have emerged as critical areas. The role of such analysis is pivotal in curbing energy wastage

(Shapi et al., 2021). According to the international energy agency, global energy demand is declining by 3.8%

to 6% each year in developed countries, while it is increasing in developing countries due to their escalating

energy usage, ranging between 4% and 7% (Raheem et al., 2022). This imbalance in energy consumption

necessitates an accurate forecast more than ever before.

Time-series prediction expects the future distribution of target variables by analyzing past observations within

the time-series. This approach has been applied to various temporal inferencing problems, such as filtering,

smoothing, and predicting unobserved past events or alternative histories (Russell & Norvig., 2020). The

models utilized for energy consumption included time-series prediction, spanning from the past to the present,

can be categorized into three distinct groups based on their abilities and advancements (Shi et al., 2022):

traditional models, classical machine-learning, and deep learning models. Models such as ARIMA and

SARIMA (Hipel & McLeod, 1994; Box et al., 2015) were initially employed as traditional for linear and non-

linear time-series analysis, addressing stationary and non-stationary data, respectively. As machine learning

algorithms progressed, researchers ventured into implementing standard algorithms like SVM (Cao, 2003) in

this domain. Additionally, hybrid techniques combining ARIMA and SVM have been employed specifically

for short-term time-series prediction (Nie et al., 2012). neural networks and artificial neural networks have

demonstrated superior performance compared to classical machine learning and traditional techniques in

energy consumption IoT-based generated data (Nor et al., 2017) (Masum & Chiverton, 2018). Among the

widely used deep learning algorithms for time-series prediction are 1D-CNN (Markova, 2022), RNN

(Coulibaly & Baldwin, 2005), LSTM (Sahoo et al., 2019), and GRU (Afanasieva & Platov, 2019).

The literature review on deep learning for time-series prediction (Tealab, 2018; Torres et al., 2021), indicating

that all previous recurrent neural network-based algorithms have problems detecting relationships between

input features of time-series data, as well as being unable to capture long sequences. A recent significant

advancement in deep learning is the multi-head attention-based approach, which has shown remarkable results

in Natural Language Processing (NLP), introduced (Vaswani et al., 2017), this technique has found successful

applications in various domains, including computer vision and speech recognition (Carion et al., 2020), (Zeyer

et al., 2019). Various variations of Transformers have been implemented based on a survey on time-series for

transformers, as conducted (Wen et al., 2023). The transformer network comprises a sequence of encoder and

decoder blocks, with each block featuring a residual connection employed in the time-series data. Additionally,

each layer of transformers is utilized independently in various areas of time-series forecasting problems. To

the best of our knowledge, there are currently no studies incorporating the dataset we utilized and analyzing it

with Enc&Dec Transformer and its variants, including Encoder-only and Decoder-only Transformer models.

Our dataset contains smart home energy data, and the precise predictions made by these efficient algorithms

aid consumers in balancing their consumption and determining appropriate pricing strategies. Furthermore,

there is a lack of a defined methodology for assessing the performance of transformer-based neural networks

across varying volumes of time-series data, spanning low, medium, and high quantities, particularly

concerning multi-step predictions.

Therefore, in this paper, our approach involves using vanilla transformers to predict univariate multi-step time

series energy consumption data generated by IoT devices, as well as employing encoder-only and decoder-

only transformer layers separately. In particular, our aim is to demonstrate the superior success of our proposed

model, the Enc&Dec transformer, in analyzing IoT time series data compared to leading deep learning methods

in other literature. We evaluate our models on three dataset sizes in the energy domain: small, medium, and

large.

Motivated by our contributions to the literature, our study aims to achieve the following objectives:

• Implementation of the Enc & Dec Transformer in its fundamental form, specifically targeting

univariate time-series prediction within the energy domain data.

• implementing the Encoder-only and Decoder-only blocks of Transformers separately for the time-

series prediction problem.

• Comparison of the obtained results with prevalent deep learning-based algorithms commonly utilized

in time-series prediction across datasets of varying sizes, low, medium and high data volumes.

https://doi.org/10.54287/gujsa.1438011

306
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

The remaining sections of the paper are organized as follows: In Section 2, the existing studies in the literature

are discussed. Section 3 gives background information about recurrent-based neural network algorithms.

Section 4 presents and explains our developed model. Section 5 covers experimental analysis, including

dataset, hyperparameter optimization, experimental setup, and evaluation metrics, all of which are detailed. In

Section 6, the experimental results of models are discussed. Finally, in Section 7, the study is summarized, and

key points are emphasized. Furthermore, the detailed acronyms and their abbreviations used throughout the

entire study are listed in Table 1.

Table 1. List of Abbreviations and Acronyms

Abbreviation Definition Abbreviation Definition

1D-CNN One-Dimensional Convolutional

Neural Network

MIMIC-II Multiparameter Intelligent

Monitoring in Intensive Care II

ARIMA Autoregressive Integrated Moving

Average

MLP Multi-Layer Perceptron

ATM Automated Teller Machine MMC MovieLens

C-MAPSS Commercial Modular Aero-

Propulsion System Simulation

MSE Multi-Layer Perceptron

DUQ Duquesne Light Company MW Megawatts

EKPC East Kentucky Power Cooperative NLP Natural Language Processing

FD001 Flight Degradation Simulation

001,002,003,004

ReLU Rectified Linear Unit

GPU Graphics Processing Unit RMSE Root Mean Squared Error

GRU Gated Recurrent Unit RNN Megawatts

IoT Internet of Things RT Reuters-21578 Text

Categorization Collection

KDD Knowledge Discovery in Databases RUL Remaining Useful Life

LSTM Long Short-Term Memory SARIMA Seasonal Autoregressive

Integrated Moving Average

MAE Mean Absolute Error SOF Stack Overflow

MHA Multi-head Attention SVM Support Vector Machine

2. RELATED WORK

The original Transformer architecture is a multifaceted model comprising an encoder and a decoder. However,

drawing inspiration from NLP, within the expansive domain since its introduction for time-series data,

literature has found value in either utilizing both or just one of these components. According to Table 2,

summarized related works of transformers for time-series prediction are from modifications of structure-based

categorized into three parts including: Enc & Dec Transformer, Encoder-only Transformer, and Decoder-only

Transformer in different applications.

An initial application of the self-attention concept in time-series forecasting is Cross-Dimensional Self-

Attention, which is tailored for multivariate, geo-tagged time-series imputation (Ma et al., 2019). The proposed

novel approach aims to jointly capture self-attention across multiple dimensions, such as time, location, and

sensor measurements, while keeping computational complexity low. It processes each dimension sequentially,

yet in a manner that is independent of order, as presented in the study. Extensive experiments conducted on

four real-world datasets show that this method surpasses state-of-the-art imputation and forecasting techniques

in performance. In another extensive investigation, an encoder-decoder Transformer architecture is employed

for time-series forecasting, with a focus on influenza-like illness prediction (Wu et al., 2020). The study

introduces a vanilla Transformer architecture for both univariate and multivariate time-series predictions. The

findings demonstrate that the forecasting outcomes achieved by their method are notably comparable to the

current state-of-the-art approaches. Subsequently, an upgraded iteration of the Transformer was introduced (Li

et al., 2019), incorporating causal convolution within the self-attention module to enhance the model's

responsiveness to local context. Additionally, adjustments were made to mitigate the memory overhead of

Transformers, rendering them more adept at handling lengthy time series. A pioneering Temporal Fusion

https://doi.org/10.54287/gujsa.1438011

307
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

Transformer emerged (Lim et al., 2020), combining recurrent and attention layers to discern temporal

dependencies across various scales within numerous real-world datasets. At this time, the transformer-based

neural networks predominantly featured an encoder-decoder architecture.

Table 2. Summary of Related Works of Transformers for Time-Series Prediction

Model Reference Title Year Dataset Data Type

E
n

c&
D

ec
 T

ra
n

sf
o

rm
er

CDSA: Cross-Dimensional Self-

Attention for Multivariate, Geo-tagged

Time Series Imputation

2019
Traffic, KDD cup

2015&2018
Multivariate

Deep Transformer Models for Time

Series Forecasting: The Influenza

Prevalence Case

2020

ILI reports from Centers

for Disease Control and

Prevention

Univariate &

Multivariate

Enhancing the Locality and Breaking the

Memory Bottleneck of Transformer on

Time Series Forecasting

2020

Real-worlds (Traffic and

Electricity) and

Synthetic dataset

Univariate &

Multivariate

Temporal Fusion Transformers for

Interpretable Multi-horizon Time Series

Forecasting

2020

Real-world datasets

(Traffic, Electricity,

Volatility, and Favorita)

Multivariate

E
n
co

d
er

-o
n
ly

 T
ra

n
sf

o
rm

er
 Self-Attentive Hawkes Process 2020

Real-world datasets (RT,

SOF, and MMC) and

Synthetic dataset

Multivariate

Transformer Hawkes Process 2021

Retweets, MemeTrack,

Finanial, MIMIC-II,

SOF, 911-Calls,

Earthquake datasets

Univariate &

Multivariate

Remaining useful life estimation via

transformer encoder enhanced by a gated

convolutional unit

2021

C-MAPSS datasets

(FD001, FD002, FD003,

and FD004)

Multivariate

A Transformer-based Framework for

Multi-variate Time Series: A Remaining

Useful Life Prediction Use Case

2023

C-MAPSS datasets

(FD001, FD002, FD003,

and FD004)

Multivariate

D
ec

o
d

er
-o

n
ly

 T
ra

n
sf

o
rm

er

Evaluation of the Transformer

Architecture for Univariate Time Series

Forecasting

2021

Traffic, Tourism,

Financial (Exchange

rate, Daily ATM’s cash,

and artificially

generated) M4, M3, and

Solar Energy datasets

Univariate

Persistence Initialization: a novel

adaptation of the Transformer

architecture for time series forecasting

2022 M4 dataset
Univariate &

Multivariate

A Decoder-Only Foundation Model for

Time-Series Forecasting
2024

Google Trends, Wiki

Pageviews, M4

Univariate &

Multivariate

Despite outperforming recurrent-based and convolutional-based neural networks on time-series data, they have

problems including the requirement for high computational resources, time-consuming inference, and complex

architectures that are challenging to employ in real-world scenarios. Therefore, to overcome these issues more

effectively, some studies utilize the Encoder layer (Encoder-only Transformer), as well as the Decoder layer

(Decoder-only Transformer), to sought solutions to various time-series prediction problems.

Self-Attentive Hawkes Processes and Transformer Hawkes Process models are proposed as Encoder-only

Transformers for event forecasting problem (Zhang et al., 2019; and Zuo et al., 2020). Both methods utilize a

Transformer encoder architecture to capture the impact of past events and calculate the intensity function for

event prediction, representing a modification at the architecture level to an Encoder-only structure. They adjust

https://doi.org/10.54287/gujsa.1438011

308
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

the positional encoding by converting time intervals into sinusoidal functions, enabling the utilization of event

intervals. A hybrid approach has been proposed for the prediction of Remaining Useful Life (RUL), employing

a transformer encoder architecture combined with a gated convolutional unit. This approach utilizes the gated

convolution to extract local features and employs the encoder transformer to capture global features (Mo et al.,

2021). Furthermore, in the domain of RUL prediction, a recent comprehensive method has been introduced.

This method is based on an encoder-transformer architecture for multivariate time series prediction

(Ogunfowora & Najjaran, 2023). The study employs a basic transformer encoder block, which comprises four

main sub-modules: multi-head attention, positional encoding, layer normalization, skip connections, and feed-

forward neural network layers.

A Decoder-only Transformer structure-based method, geared towards univariate time-series forecasting, is

introduced (Lara-Benítez et al., 2021). In this investigation, the conventional Transformer Decoder blocks

were adhered to, wherein each decoder block comprises a masked self-attention module followed by multi-

head attention and a feed-forward block. Additionally, all sub-modules incorporate a residual connection,

followed by dropout and batch normalization layers, to enhance the network's generalization capacity.

Similarly, the Persistence Initialization framework is outlined, consisting of four components: normalization,

linear projections, a decoder-only Transformer incorporating Rotary positional encodings and ReZero

normalization, and Persistence Initialization (Haugsdal et al., 2023). Finally, in a recent work, a decoder-only

pretrained attention-based model for time-series forecasting is proposed (Das et al., 2024). It serves as a

foundation for decoder-only pretrained applications for time-series forecasting, consisting of an input layer,

stacked transformer decoder blocks, and an output layer.

3. BACKGROUND INFORMATION

3.1. Recurrent neural network (RNN)

RNN is particularly well-suited for sequential data and is commonly employed in time-series analysis (Javaid,

2019). RNN’s employ recurrent neural architectures to grasp the functional relationships between input

characteristics from the immediate past and a future target variable (Coulibaly & Baldwin, 2005). The

computational procedure defining each hidden state (hidden unit or hidden cell) can be mathematically define,

as demonstrated in Equation (1) within our framework.

 St = tanh(Wxs ∙ (xt⨁St−1) + bs) & yt = σ(Wy ∙ St + by) (1)

where xt ∈ Rm represents input vector comprising m input features at time t; Wxs ∈ Rn×(m+n) and Wy ∈ Rn×mare

parameter matrices; n denotes number of neurons in the RNN; bs ∈ Rn and by ∈ Rn are bias vectors for internal

state and output, respectively; σ denotes the sigmoid activation; St represents the internal (hidden) state; and

xt ⨁ St shows concatenation of vectors xt and St−1.
One of the significant drawbacks of RNNs is their susceptibility to the gradient vanishing problem, stemming

from repeated multiplication of the recurrent weight matrix. This issue leads to diminishing gradients over

time, causing the RNN to retain information effectively only for shorter durations (Sahoo et al., 2019).

3.2. Long short-term model (LSTM)

LSTM network is a variation of RNN, offer partial mitigation of the vanishing gradient problem (Sahoo et al.,

2019). and excel in capturing longer-term dependencies within time-series data. LSTMs utilize gates—forget

gate, input gate, addition gate, and output gate—to manage the removal, multiplication, addition, and filtering

of information. The computational procedures implementing these functions, in our context 𝑓𝑡, 𝑖𝑡 , Ĉ𝑡 and 𝑂𝑡 ,

respectively are described in Eq. (2).

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ (𝑥𝑡 ⨂𝑆𝑡−1) + 𝑏𝑓);

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ (𝑥𝑡 ⨂𝑆𝑡−1) + 𝑏𝑖)

Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ (𝑥𝑡 ⨂𝑆𝑡−1) + 𝑏𝑐); (2)

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 ⋅ 𝑖𝑡 ∙ Ĉ𝑡;
𝑂𝑡 = 𝜎(𝑊𝑜 ∙ (𝑥𝑡 ⨂𝑆𝑡−1) + 𝑏𝑜);

𝑆𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) ∙ 𝑂𝑡 & 𝑦𝑡 = 𝜎(𝑊𝑦 ∙ 𝑆𝑡 + 𝑏𝑦)

https://doi.org/10.54287/gujsa.1438011

309
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

where xt ∈ Rm represents input vector comprising 𝑚 input features at time 𝑡; 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 , 𝑊𝑜 ∈ 𝑅𝑛×(𝑚+𝑛) and

𝑊𝑦 ∈ 𝑅𝑛×𝑚 are parameter matrices; 𝑛 denotes number of neurons in LSTM layer; 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐 , 𝑏𝑜 ∈ 𝑅𝑛 are bias

vectors; 𝜎 denotes the sigmoid activation; and 𝑆𝑡 represents the internal (hidden) state. The functions 𝑓𝑡 , 𝑖𝑡 , Ĉ𝑡

and 𝑂𝑡 correspond to the forget gate, input gate, addition gate, and output gate, respectively.

3.3. Gated recurrent unit (GRU)

GRU represent a variation of LSTM network aimed at further mitigating the vanishing gradient problem

(Afanasieva & Platov, 2019). In the computational process described by Eq. (3), the distinctive aspect of this

approach lies in utilization of gets including: update, reset, and a third get, which implement the functions

𝑧𝑡 , 𝑟𝑡and Š𝑡, respectively. Each gate serves a distinct role in regulating how prior information is filtered,

utilized, and amalgamated. The initial element in the formula for the next state, expressed as (1 − 𝑧𝑡) ∙ 𝑆𝑡−1,

determines the information retained from the past, while 𝑧𝑡 ∙ Š𝑡 decides the content to be included from the

current memory.

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ (𝑥𝑡 ⨂𝑆𝑡−1) + 𝑏𝑟)

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ (𝑥𝑡 ⨂𝑆𝑡−1) + 𝑏𝑧) (3)

Š𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑠 ∙ (𝑥𝑡 ⨂𝑆𝑡−1 ∙ 𝑟𝑡) + 𝑏𝑠)

𝑆𝑡−1 = (1 − 𝑧𝑡) ∙ 𝑆𝑡−1 + 𝑧𝑡 ∙ Š𝑡 & 𝑦𝑡 = 𝜎(𝑊𝑦 ∙ 𝑆𝑡 + 𝑏𝑦)

where xt ∈ Rm represents the input vector with 𝑚 input features at time 𝑡; 𝑊𝑟 , 𝑊𝑧, 𝑊𝑠, ∈ 𝑅𝑛×(𝑚+𝑛)and 𝑊𝑦 ∈

𝑅𝑛×𝑚 are parameter matrices; 𝑛 denotes the number of neurons in the GRU layer; 𝑏𝑟, 𝑏𝑧, 𝑏𝑠 ∈ 𝑅𝑛 are bias

vectors; 𝜎 represents the sigmoid activation function; and 𝑆𝑡 signifies the internal (hidden) state. The functions

𝑧𝑡 , 𝑟𝑡 , and Š𝑡 correspond gets to the update, reset, and third gate, respectively.

3.4. One-dimensional convolution neural network (1D-CNN)

A CNN falls within the class of deep neural networks capable of automatically extracting features and

generating informative representations from time-series data, eliminating the need for manual feature

engineering (Markova, 2022). It serves as a modification of the 2D-CNN architecture. The 1D-CNN

architecture introduces two distinct layer types:

1. 'CNN-layers' where 1D convolutions, activation functions, and sub-sampling (pooling) operations

occur.

2. Fully-connected (dense) layers, akin to those found in a standard Multi-Layer Perceptron (MLP),

hence referred to as 'MLP-layers.'

In our case, the computational process of a 1D-CNN can be represented as demonstrated in Eq. (4).

𝑍 = 𝐶𝑜𝑛𝑣1𝐷(𝑋, 𝑌) + 𝑏

 𝑍𝑖 = ∑ (𝑥𝑖+𝑗 ∙ 𝑤𝑗) + 𝑏𝐹−1
𝑗=0 (4)

𝐴𝑖 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑍𝑖)

𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐴𝑖 , 𝑖) = 𝑚𝑎𝑥 𝑥0 ≤ 𝑤 𝐴𝑖 , 𝑖 + 𝑗 × 𝑠

The input sequence, denoted as 𝑋 is defined with dimensions 𝑁 × 𝐶 × 𝐿 where 𝑁 is the batch size, 𝐶 is

represent the number of channels (features) and 𝐿 is the number of sequence; In 1D convolution, a filter slides

over the input sequence, performing convolution at each position 𝑖 , yielding the output 𝑍𝑖 is the value of the

output at position 𝑖, 𝑥𝑖+𝑗 represents the input values at positions 𝑖 + 𝑗 (for 𝑗 from 0 to 𝐹 − 1), 𝑊𝑗 represents

the weights of the filter at position 𝑗, 𝑏𝑖 represents the bias term for the output at position 𝑖; Following it is

applied an activation function element-wise to the output of the convolution operation. 𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 operation

with a window size 𝑊 and stride 𝑆 in a 1D setting is represented in above 𝑥𝑖, 𝑖 represents the input value at

position 𝑖 in channel 𝑐.

4. DEVELOPED MODEL: ENC&DEC TRANSFORMER

The Env&Dec Transformer follows the recent competitive advancement in deep learning introduced by google

researchers (Vaswani et al., 2017), aligns with the majority of cutting-edge neural sequence models, featuring

https://doi.org/10.54287/gujsa.1438011

310
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

an encoder-decoder architecture. Illustrated in Figure 1, both the encoder and decoder comprise numerous

identical blocks. In detail, each encoder block includes a multi-head self-attention module and a position-wise

feed-forward network, whereas each decoder block integrates cross-attention mechanisms between the multi-

head self-attention module and the position-wise feed-forward network. Within the input, 𝑤 denotes the

dimension of the look-back window, while 𝑘 represents the count of future prediction steps. The decoder

segment employs a masked attention module, and within the decoder, a cross attention mechanism is employed

to choose output of encoder layer, which serve as the feature vector.

In Enc&Dec, attention is a mechanism that assigns weights to each word in a sentence based on its importance.

In this context, we have a feature vector that includes query, key, and value, which conceptually are used to

perform this operation. The query represents the sought-after information, while the key signifies the context

or reference, and the value denotes the content under scrutiny. Multiplying the query and key yields attention

scores, which are subsequently utilized to compute the weighted sum of the values (Haugsdal et al., 2023).

This weighted sum, in turn, is employed to compute the model's output.

The model's recursive definition can be established by denoting 𝑋𝑖 as the output of the 𝑖-th block, as depicted

in Eq. (5-7).
𝑋𝑖(𝑋𝑖 − 1) = 𝐹𝐹𝑖(𝑆𝐴𝑖(𝑋𝑖 − 1))

𝑆𝐴𝑖(𝑋) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 + 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖(𝑋)) (5)

𝐹𝐹𝑖(𝑋) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 + 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖(𝑋))

The matrix 𝑋𝑖 has dimensions 𝐿 × 𝑑𝑚𝑜𝑑𝑒𝑙, where 𝐿 represents the sequence or time dimension and 𝑑𝑚𝑜𝑑𝑒𝑙

represents the feature dimension. 𝑋0 acts as the base case of the recursion, representing the initial input to the

model. The hyperparameter 𝑁, determines the number of blocks, and subsequently the final output of the

model denoted as, 𝑋𝑛. Before delving into self-attention, it's crucial to establish multi-head attention.

Figure 1. Structure of Enc & Dec Transformer-based prediction model

Multi-head attention aggregates multiple attention heads, each equipped with its unique set of

learnable weights, enabling them to perform simultaneous computations.

Self-attention arises as a particular case of multi-head attention, wherein the keys, queries, and values are

identical.

𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋) = 𝑀𝐻𝐴(𝑋, 𝑋, 𝑋)

𝑀𝐻𝐴(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑜

ℎ𝑒𝑎𝑑𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
(𝑗)

, 𝐾𝑊𝐾
(𝑗)

, 𝑉𝑊𝑉
(𝑗)

) (6)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑚𝑜𝑑𝑒𝑙

+ 𝑀)𝑉

https://doi.org/10.54287/gujsa.1438011

311
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

where, ℎ represents the number of attention heads, and 𝑑ℎ𝑒𝑎𝑑𝑠 is calculated as 𝑑𝑚𝑜𝑑𝑒𝑙 divided by the number

of heads (𝑑ℎ𝑒𝑎𝑑 =
𝑑𝑚𝑜𝑑𝑒𝑙

ℎ
). The learnable weight matrices 𝑊𝑄

(𝑗)
, 𝑊𝐾

(𝑗)
and 𝑊𝑉

(𝑗)
 have a shape of 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑ℎ𝑒𝑎𝑑 ,

while 𝑊𝑜 is a learnable weight matrix with a shape of 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑚𝑜𝑑𝑒𝑙. 𝑊𝑜 is responsible for combining the

outputs from each attention head. 𝑀 denotes an upper triangular masking matrix that prevents the model from

attending to future time steps.

The feed-forward layer functions in a point-wise manner, concentrating exclusively on information from the

present time step, akin to a 1-D convolution. It consists of two linear transformations interspersed with a ReLU

activation function, representing non-linearity.

𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑋) = 𝑅𝑒𝐿𝑈(𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2 (7)

where 𝑊1 and 𝑊2 denote learnable weight matrices with dimensions 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑓𝑓 and 𝑑𝑓𝑓 × 𝑑𝑚𝑜𝑑𝑒𝑙

respectively. Similarly, 𝑏1 and 𝑏2 represent learnable bias vectors with dimensions 𝑑𝑓𝑓 and 𝑑𝑚𝑜𝑑𝑒𝑙.

In Figure 1, we can observe the composition of an encoder and decoder block. During training, the decoder

receives a feature vector (𝑘𝑒𝑦 and 𝑣𝑎𝑙𝑢𝑒) from the encoder output and utilizes it to predict the future point.

The 𝑞𝑢𝑒𝑟𝑦 is involved in the calculation of the masked attention.

Unlike other recurrent neural network that process sequence tokens sequentially, self-attention favors parallel

computation over sequential operations. It is important to note that self-attention itself doesn't maintain

sequence order. To retain token order information, the prevalent approach involves providing the model with

additional inputs known as positional encodings. These encodings, associated with each token, can be either

learned or pre-defined. In this study, we utilized a straightforward approach: fixed positional encodings

utilizing sine and cosine functions (Vaswani et al., 2017), as per Eq. (8).

𝑃𝐸(𝑝𝑜𝑠 ,2𝑖) = sin(
𝑝𝑜𝑠

1000

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(
𝑝𝑜𝑠

1000

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

) (8)

4.1. Encoder-only transformer

The encoder-only is the encoder block of the Enc&Dec Transformer. According to Figure 1, it has a multi-

head module without masking operation, a residual connection with normalization, and a feed-forward layer.

To serve the prediction purpose by the encoder layer, we feed the output of the encoder layer to an output

layer. The mathematical computations and positional encoding are the same as Eq. (5-8), respectively.

4.2. Decoder-only transformer

The decoder-only block is a component of the Enc&Dec Transformer, distinct from the decoder in the standard

transformer. In contrast to the transformer decoder, which obtains the key and value from the encoder block,

the decoder-only block generates a feature vector through its masked multi-head attention layer. Illustrated in

Figure 1, the decoder comprises two primary elements: initially, windowed data is fed into the model's input

layer, followed by the application of fixed positional embedding. Next, the raw positional encoded matrix is

fed into masked multi-head attention mechanisms. After applying self-attention (according to Eq. (6)) on each

split matrix, the data is further separated into three matrices: Query, Key, and Value. Layer normalization is

then implemented, followed by feeding the output of the initial masked multi-head attention, which comprises

the three matrices, into the subsequent non-masked multi-head attention. The mathematical calculations and

positional encoding remain consistent with Eq. (5-8), respectively.

5. EXPERIMENTAL EVALUATION

5.1. Dataset

PJM Interconnection LLC (PJM) functions as a regional transmission organization within the United States,

operating as a component of the Eastern Interconnection grid and managing an electric transmission system

https://doi.org/10.54287/gujsa.1438011

312
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

that serves multiple cities across the country. It produces their power sensor devices generated hourly energy

consumption data as benchmark datasets (Mulla, 2019). We downloaded three univariate publicly available

datasets from PJM's website, including PJM, DUQ, and EKPC, with large, medium and small size. Their sizes

are 145,392; 119,088; and 45,336 observations respectively, and they are collected hourly in megawatts

(MW).

5.2. Hyperparameter optimization

Hyperparameter tuning stands as one of the most arduous tasks within machine learning projects. As the

complexity of deep learning methods continues to surge in popularity, the demand for an efficient automatic

hyperparameter tuning framework has escalated significantly (Akiba et al., 2019). Numerous techniques exist

to optimize hyperparameters in deep learning. While previous literature emphasizes grid search and random

search as primary methods for machine learning models, recently Optuna has become very popular

hyperparameter tuning technique in machine learning problems. Grid search, though widely used, can become

time-consuming and computationally expensive, particularly with a large number of hyperparameters or

potential values. Optuna distinguishes itself as a more advanced approach, leveraging Bayesian optimization

to efficiently explore and pinpoint the best set of hyperparameters (Shekhar et al., 2021).

In this study, we employed the Optuna to identify optimal parameters suitable for our dataset and model

complexity. Specifically, we configured Optuna to conduct 100 trials with 20 internal epochs. Parameters

were set within defined ranges: the number of layers varied from 1 to 10, hidden layers spanned from 16 to

2048, drop probabilities ranged between 0 and 1, and learning rates fell within the range of 0 to 1, consistent

across all five models. However, certain models necessitated additional hyperparameters; for instance, in the

case of the 1D-CNN, we specified the 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 between 3 − 7 and 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 as (𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 − 1) // 2.

Similarly, for the transformers, the required number of ℎ𝑒𝑎𝑑𝑠 set from 1 to 8, and the number of dimensions

from 32 to 1024. Additionally, we manually set the activation function as linear, the number of 𝑒𝑝𝑜𝑐ℎ𝑠,

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 and 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 in Table 3.

As seen in Table 3, we summarized the optimal result for transformer-based networks, including Enc&Dec,

Encoder-only, as well as Decoder-only architectures, due to their similarity in data flow within modules and

the mechanism of assigning weight and bias values, we utilize the same parameters for training for our

proposed models. The algorithm recommended the best range of values for each parameter based on the

outcomes from Optuna trials.

Table 3. Hyperparameter settings through Optuna

Model Hyperparameters

of

lay

ers

of

hidden

layers

Drop rate Learning rate

A
ctiv

atio
n

fu
n
ctio

n

K
ern

el size

P
ad

d
in

g

#
 o

f h
ead

s

of

dimension

RNN 6 1710 0.0055353 0.0001863781 tanh

LSTM 3 2048 0.2075485 0.0002399395 tanh

GRU 8 74 0.0206139 8.00205811e-05 tanh

1D-CNN 1995 0.1614444 1.64786113e-05 ReLU 5 2

Transformers 1 1998 0.0009843 1.04834920e-05 6 501

Optimizer Adam Batch size 32

5.3. Experimental setup

Deep learning models utilize past data to identify a functional connection between input characteristics and

the forthcoming values of the target variable. These trained models offer forecasts for the target variable in

subsequent time periods. In a time-series {x1, x2, x3 … xT}, where 𝑥𝑡 denotes a set of 𝑚 input features recorded

at time 𝑡, the aim is to construct a model that predicts a target variable yt+k at a future time point t + k, utilizing

insights derived from historical data up to time 𝑡 − 1 ({… , xt−2, xt−1}). To ensure consistency in the model's

input, we adopted a fixed-length sliding time window of magnitude 𝑤, as depicted in Figure 2. In our case, the

https://doi.org/10.54287/gujsa.1438011

313
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

look-back size w is set to 168 hours, equivalent to one week in hourly collected data, while the look-ahead

size k is set to 48 hours to forecast two days ahead based on the given w size.

The mathematical representation of the functional relationship learned by machine learning models can be

illustrated through Eq. (9), as shown.

 ŷt+k = fk(xt−w, … , xt−1, y
t−w

, … , y
t−1

) (9)

Figure 2. Sliding window forecasting next 48 observation based on 168 data points

where ŷt+k represents the forecasted target variable for time t + k; k represents the future time duration for

which the target variable is predicted; yt−w, … , yt−1 represent the observed target values spanning from time

t − w to t − 1; xt−w, … , xt−1represent the vector of 𝑚 observed input features observed from time t − w to t − 1.

The function 𝑓𝑘 denotes the learned function by deep learning models with a step size of 1. In our context, m

denotes the number of input features, defaulted to 1 as it is univariate, and w indicates the size of the window

utilized as input. As well as we utilized the StandardScaler to transform our data, normalize it within the range

of 0 to 1, as illustrated in Eq. (10).

 z =
x−μ

σ
 (10)

Leveraging the GPU for accelerated computing with high-dimensional matrices, we implemented our data and

models using PyTorch. For coding, we utilized Python 3.12, ensuring compatibility with various essential

libraries such as NumPy, PyTorch, Matplotlib, among others. To maintain a robust evaluation process, we

partitioned our dataset into three segments. We trained all our models on the initial 80% of the dataset,

validated their performance on the subsequent 10%, and finally tested each model on the last 10%—ensuring

that the test data remained unseen during training and validation. To optimize computational efficiency, we

organized data input to the models in batches according to specifications outlined in Table 3 hyperparameter

setting. Moreover, in order to prevent overfitting and underfitting, we implemented regularization techniques.

Specifically, we set the patience parameter to 3 and applied early stopping if the validation metric did not

improve for 20 or more epochs.

5.4. Evaluation metrics

To evaluate the performance of proposed models, we utilized the MAE (Mean Absolute Error), MSE (Mean

Squared Error), and RMSE (Root Mean Squared Error) metrics according to Eq. (11-13), respectively.

https://doi.org/10.54287/gujsa.1438011

314
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − ỹ𝑖

 |𝑛
𝑖=1 (11)

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − ỹ𝑖

)2𝑛
𝑖=1 (12)

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖− ỹ𝑖

)2𝑛
𝑖=1

𝑁−𝑃
 (13)

where, 𝑦𝑖 indicate individual observed values in the dataset, ỹ𝑖 predicted values corresponding to 𝑦𝑖 and 𝜇 the

mean of the observed values.

6. EXPERIMENTAL RESULTS AND DISCUSSION

The training and testing losses were calculated based on the epochs to identify potential overfitting, we utilize

the MSE as our chosen loss function computation for both training and testing. In Table 4, a summary of our

model results is presented and organized based on high, medium and low volume datasets. Notably, the MSE

values are observed to be lower than both MAE and RMSE, influencing our decision-making process.

This table highlights that RNN consistently demonstrates a high MSE score across all evaluated univariate

datasets. LSTM, a variant of RNN tailored to tackle the vanishing gradient problem, exhibits a lower MSE

score compared to RNN. Moreover, the GRU, addressing issues inherent in both RNN and LSTM, achieves

the best results with a minimum MSE of 0.24 when compared with the MSE of 0.36 for RNN and 0.30 for

LSTM. While 1D-CNN, leveraging automatic feature extraction, has a minimum MSE of 0.15 in univariate

time-series prediction, it outperforms recurrent-based models, including RNN, LSTM, and GRU, as well as

Transformer-based models, including Encoder-only and Decoder-only models.

Table 4. The performance metrics for experimented models across three different sizes of datasets

Dataset Data size Model
Evaluation Metrics

MAE MSE RMSE

PJME_hourly Large

RNN 0.49 0.40 0.63

LSTM 0.43 0.31 0.56

GRU 0.36 0.24 0.47

1D-CNN 0.27 0.14 0.38

Encoder-only Transformer 0.40 0.27 0.52

Decoder-only Transformer 0.33 0.19 0.44

Enc&Dec Transformer 0.06 0.006 0.08

DUQ_hourly Medium

RNN 0.46 0.36 0.60

LSTM 0.41 0.30 0.55

GRU 0.38 0.24 0.49

1D-CNN 0.28 0.15 0.39

Encoder-only Transformer 0.38 0.26 0.51

Decoder-only Transformer 0.31 0.19 0.43

Enc&Dec Transformer 0.07 0.008 0.09

EKPC_hourly Small

RNN 0.55 0.61 0.78

LSTM 0.52 0.54 0.73

GRU 0.53 0.56 0.75

1D-CNN 0.40 0.34 0.58

Encoder-only Transformer 0.54 0.58 0.76

Decoder-only Transformer 0.47 0.45 0.67

Enc&Dec Transformer 0.11 0.020 0.14

Utilizing the Encoder-only and Decoder-only models with minimum MSE of 0.26 and 0.19 respectively in

energy prediction outperforms RNN, LSTM, and GRU. However, when comparing these results with those in

Table 4, the performance falls short compared to 1D-CNN and Enc & Dec Transformer models, which is not

satisfactory. Decoder-only outperforms Encoder-only due to its ability to perform masking operations for

handling data and employing more attention layers. In another aspect, the Enc & Dec Transformer model,

composed of both encoder and decoder, outperforms all models evaluated in this study for univariate time-

https://doi.org/10.54287/gujsa.1438011

315
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

series by achieving a minimum MSE of 0.006 for small, 0.008 for medium, and 0.020 for large datasets in

predicting energy consumption.

Figure 3 illustrates the performance of RNN, LSTM, GRU, 1D-CNN, Encoder-only, Decoder-only, and Enc

& Dec Transformer across three large, medium and small size datasets. The results indicate a clear trend: as

our dataset size increases, the corresponding loss decreases. The size difference between the DUQ and PJME

datasets is not substantial. However, the variance between the EKPC (small) and PJME (large) dataset is

extremely high. This leads to more noticeable fluctuations in results across all models. This observation

underscores the conventional wisdom that larger datasets often lead to enhanced model generalization. Across

all dataset sizes, the Enc & Dec Transformer consistently demonstrates superior performance, yielding

minimal loss values. This trend suggests its remarkable capability to capture long-range dependencies and

complex patterns within the data. Consequently, Enc & Dec Transformers exhibit superior performance

compared to recurrent and convolutional architectures, especially when dealing with increased data size.

Among the recurrent models (RNNs, LSTMs, and GRUs), there's comparable performance observed, even

though with slight variations depending on the dataset. This consistency indicates their stable capacity to model

sequential relationships. However, 1D-CNNs exhibit a noticeable performance increase with low MAE, MSE

and RMSE scores, particularly on the smallest dataset (EKPC hourly). This suggests that these models might

require a larger dataset to effectively learn and harness meaningful convolutional filters. In essence, 1D-CNNs

might face challenges and show diminished performance with smaller datasets, similar to other deep learning

algorithms. The performance of Encoder-only remains the same in both large and medium-size datasets, but

the loss is going high in the small dataset. However, the Decoder-only outperforms in the medium-size dataset.

Overall, our results suggest that for training such deep learning algorithms, we must have enough data to reach

the best result.

Figure 3. Model performance in terms of MSE scores with varying sizes of datasets

The existing literature studies we summarized in Table 2 categorized the employed Enc&Dec Transformer

models in energy consumption and other domains (Mat et al. 2019, Wu et al. 2020, Li et al. 2019, Lim et al.

2020). In the studies, researchers also compared their findings with those of state-of-the-art machine learning

and deep learning models. For instance, the findings of Li et al. (2019) showed that the proposed Enc&Dec

Transformer models outperformed ARIMA, ETS, TRMF, DeepAR, DeepState, and even LSTM. The

efficiency of the proposed Enc&Dec Transformer models by Lim et al. (2020) was demonstrated by comparing

their proposed methods with state-of-the-art DL methods as well as hybrid techniques, including ConvTrans

and Seq2Seq, and finding them to be superior. Since the dataset in this study differs from the studies, we could

not directly compare our results with those in the literature. Nevertheless, our study, consistent with these

studies, demonstrates that our Enc&Dec Transformer outperforms DL methods in predicting energy

consumption. Furthermore, we distinguish our study by comparing the results of the Enc&Dec Transformer

with those of Encoder-only and Decoder-only Transformer models.

https://doi.org/10.54287/gujsa.1438011

316
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

Figure 4. Training and validation losses for (a) RNN, (b) LSTM, (c) GRU, (d) 1D-CNN, (e) Encoder-only

Transformer, and (f) Decoder-only Transformer models using the medium (DUQ) dataset in terms of MSE

score

In Figure 4, the graphs depict the train losses vs. validation losses of RNN, LSTM, GRU, 1D-CNN, Encoder-

only, and Decoder-only, respectively evaluated only for medium (DUQ_hourly) dataset. The figures show the

models' generalizing performance, indicating overfitting, underfitting, and the fitting capability of each model.

Figures 4 (a), (b) and (c) depict the train vs. validation losses of RNN, LSTM and GRU networks. The training

loss remains high throughout the training process, never dipping below the validation loss. This suggests that

the model is not effectively learning from the training data. Additionally, the gap between the training and

validation loss remains significant throughout the training process, indicating that the model is not generalizing

well to unseen data. Neither the training nor the validation loss shows a significant decrease over time,

https://doi.org/10.54287/gujsa.1438011

317
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

suggesting that the model is not making progress during training. These are all indicators of underfitting,

implying that the models are not complex enough to capture the underlying patterns in the data. As a result,

the model is unable to make accurate predictions on new data. In Figure 4(d) graph displays the 1D-CNN

training vs. validation loss. This graph shows that the training loss starts off much higher than the validation

loss, but then steadily decreases and crosses over the validation loss around epoch 60. This is a positive sign,

suggesting that the model is learning from the training data and generalizing well to unseen data. However,

after the crossover, the training loss continues to decrease while the validation loss starts to increase slightly.

In Figures 4(e) and Figure 4(f) illustrate the training losses and validation losses of Decoder-only and Encoder-

only, attention-based neural networks. The graphs show that the training loss is initially higher than the

validation loss, but it quickly decreases and crosses over the validation loss around epoch 50. This is a positive

sign, suggesting that the model is learning from the training data and generalizing well to unseen data. The

validation loss also starts to decrease after epoch 50, but it remains slightly higher than the training loss

throughout the rest of the training process. This could be an indication of underfitting. The Encoder-only graph

displays the training loss and validation loss over the course of training epochs. The validation loss decreases

initially, indicating that the model is generalizing well to unseen data. There is no indication of overfitting in

this graph, as the validation loss never increases after decreasing, and the gap between the training and

validation loss remains relatively constant throughout the training process. This could be an indication of

overfitting.

Figure 5. Training and validation losses of Enc&Dec Transformer model in terms on MSE score using (a)

small (EKPC), (b) medium (DUQ) and (c) large (PJME) datasets

Figure 5 shows the training and validation loss curves for a time series prediction model trained with an

Enc&Dec Transformer on small, medium, and large datasets. In Figure 5(a), for the small dataset, the training

loss is considerably higher before epoch 50. However, after epoch 60, the validation loss decreases while the

training loss increases; overall, the difference is not very significant. In Figure 5(b), for the medium dataset,

https://doi.org/10.54287/gujsa.1438011

318
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

the training loss curve consistently remains lower than the validation loss curve, indicating a positive sign.

This suggests that the model effectively learns the training data without overfitting. The validation loss curve

initially decreases rapidly but then plateaus around epoch 25. Figure 5(c) demonstrates the performance of the

Enc&Dec Transformer model on a large dataset. Initially, the validation loss is lower than the training loss,

but this trend is not consistent throughout. Again, after epoch 100, the validation loss starts to decrease,

indicating that the model is beginning to generalize well to unseen data.

Figure 6. Predicted and actual values of for (a) RNN, (b) LSTM, (c) GRU, (d) 1D-CNN, (e) Encoder-only

Transformer, and (f) Decoder-only Transformer models using medium (DUQ) dataset in terms of MSE score

https://doi.org/10.54287/gujsa.1438011

319
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

Figure 6 illustrates the ground truth data for RNN, LSTM, GRU, 1D-CNN, Encoder-only, and Decoder-only

models, plotting the deviation between predicted and actual values, specifically for the medium dataset

(DUQ_hourly), with the aim of comprehensively assessing model performance. Across all graphs, the blue

line corresponds to predicted values, whereas the orange line represents actual values. For prediction, a fixed-

length window size is employed. As demonstrated in Figure 2, a fixed look-back window size of 168 hours is

utilized to forecast a look-ahead size of 48 hours during training. To validate our models, we conducted testing

on the last 10% of unseen data, predicting the subsequent four days ahead. This testing involved targeting and

comparing 96 hours of data for predictions and the evaluation of the model. Each graph is plotted based on the

MSE loss scores, and the comparison is specifically conducted on the medium dataset. The result of Figure

6(a) confirms that the RNN model exhibits a significant difference between predicted and actual values,

primarily due to the vanishing gradient problem, impacting its ability to memorize previous data effectively.

Comparatively, LSTM and GRU in Figures 6(b) and Figure 6(c), respectively, demonstrate better predictive

capabilities than RNN. Particularly in our proposed domain data, GRU outperforms both LSTM and RNN.

Additionally, both the 1D-CNN and Decoder-only in Figures 6(d) and Figure 6(f) surpass the performance of

recurrent-based models. They predict values very close to the actual ones, but there are instances, particularly

between 58 and 60, where the maximum wavelength incurs higher losses. Beyond point 60, the predicted

values align more closely with the actual ones. However, in the case of 1D-CNN, the minimum point of the

wavelength exhibits better performance. In Figure 6(e), where the Encoder-only is plotted, the model seems to

be learning well and generalizing decently, but there might be room for improvement.

Figure 7. Predicted and actual values of Enc&Dec Transformer model in terms on MSE score using (a)

small (EKPC), (b) medium (DUQ,), and (c) large (PJME) datasets

https://doi.org/10.54287/gujsa.1438011

320
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

Figure 7 depicts the predicted and actual values of the first 96 hours ahead for small, medium, and large

datasets, utilizing our proposed approach, Enc&Dec Transformer. In Figure 7(a), the difference between

predicted values and actual values for the small size of data indicates in the initial stage a lesser height. In

Figure 7(b), the points for the medium size of data in the scatter plot are generally close to the blue line,

indicating that the model is performing well in predicting the actual values. Many points cluster around the

ideal line, suggesting that the model is generally accurate. There are very few outliers, as the model points out.

This implies that the model's predictions were very close to the actual values for the majority of the Enc&Dec

Transformer. In Figure 7(c), it shows the growth trend for the large size of data, in which the difference between

actual and predicted values is very close; at sometimes, they are the same. There is no trend of underestimation

at high values; in fact, there is a slight trend of overestimation at high values, with the red circles positioned

slightly above the blue line on the higher values of the x-axis. The graph exhibits that in the case of high

volume of data Enc&Dec Transformer is good at predicting the actual value.

7. CONCLUSION

In this study, we propose utilizing the Enc & Dec Transformer having encoder-decoder architecture to forecast

univariate time-series in IoT device-generated energy consumption data. The performance of our proposed

models is compared with recurrent-based models, including RNN, LSTM, GRU, convolutional-based 1D-

CNN, as well as self-attention-based Encoder-only and Decoder-only. To determine optimal hyperparameters,

we utilized Optuna, optimizing network complexity efficiently with minimal resource and memory usage. We

evaluated the performance of our proposed model alongside other deep learning models on datasets of varying

sizes: small, medium, and large. Our experimental results indicate that all models perform admirably well on

large time-series datasets. Among the recurrent-based models, GRU demonstrated superior performance

compared to RNN and LSTM, particularly in understanding the relationships between features within the

univariate energy domain data. The 1D-CNN model, leveraging automatic feature engineering properties,

outperformed all models in the case of medium-sized data. For the comparison of self-attention-based models,

Decoder-only outperforms Encoder-only as well as recurrent-based algorithms. Our proposed Enc & Dec

Transformer model showcased superior performance on small, medium, and very large datasets. As dataset

sizes increased, the performance gaps widened, highlighting the transformer's advantage in handling large-

scale data. However, it is essential to note that while transformers achieve higher scores, they also incur higher

computational expenses during training. Depending on specific applications and available computational

resources, separated Transformer models like Encoder-only and Decoder-only transformers or simpler model

like RNNs or 1D-CNNs might be more viable, especially for smaller datasets. Our results show that attention

mechanisms, especially those composed of Enc & Dec Transformer which composed of encoder and decoder

layers, represent the state-of-the-art in time-series prediction. This interpretation method is inspired by human

recognition and allows neural networks to focus on how various inputs influence outputs at each step of

inference in the model development process, providing a quantitative explanation of these influences. One of

the important components that can improve the efficiency of Encoder-only Transformer, Decoder-only

Transformer, and Enc & Dec Transformer models is positional encoding. Attention modules may not

understand the exact location of each data point, which is why positional encodings are utilized to represent

the location of each time-dependent data point in a precise manner. In this study, we trained models using one

of the traditional positional encodings (absolute). Therefore, it is suggested to evaluate the performance of

transformers by employing different types of positional encoding to demonstrate efficiency in energy

consumption prediction.

AUTHOR CONTRIBUTIONS

Methodology and writing-reviewing, A.A. and F.Y.O; editing, F.Y.O.; conceptualization and software, A.A.

All authors have read and legally accepted the final version of the article published in the journal.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

https://doi.org/10.54287/gujsa.1438011

321
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

REFERENCES

Adhikari, R., & Agrawal, R.K. (2013). An Introductory Study on Time Series Modeling and Forecasting.

ArXiv, abs/1302.6613. https://doi.org/10.48550/arXiv.1302.6613

Afanasieva, T., & Platov, P. (2019). The Study of Recurrent Neuron Networks based on GRU and LSTM in

Time Series Forecasting. In ITISE 2019. Proceedings of papers. Vol 1 (pp. 12). Granada, Spain: International

Conference on Time Series and Forecasting. https://itise.ugr.es/ITISE2019_Vol1.pdf

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter

Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (pp. 2623–2631). Association for Computing Machinery.

https://doi.org/10.1145/3292500.3330701

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and

Control (5th ed.). Hoboken, NJ: John Wiley & Sons Inc. https://doi.org/10.1111/jtsa.12194

Cao, L. (2003). Support vector machines experts for time series forecasting. Neurocomputing, 51, 321-339.

https://doi.org/10.1016/S0925-2312(02)00577-5

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object

Detection with Transformers. CoRR, abs/2005.12872. https://doi.org/10.48550/arXiv.2005.12872

Cochrane, J. H. (1997). Time Series for Macroeconomics and Finance. Graduate School of Business,

University of Chicago. Retrieved from http://www.fsb.miamioh.edu/lij14/672_notes_Cochrane

Coulibaly, P., & Baldwin, C. K. (2005). Nonstationary hydrological time series forecasting using nonlinear

dynamic methods. Journal of Hydrology, 307(1–4), 164-174. https://doi.org/10.1016/j.jhydrol.2004.10.008

Das, A., Kong, W., Sen, R., & Zhou, Y. (2024). A decoder-only foundation model for time-series forecasting.

ICML. https://doi.org/10.48550/arXiv.2310.10688

Haugsdal, E., Aune, E., & Ruocco, M. (2023). Persistence Initialization: a novel adaptation of the Transformer

architecture for time-series prediction. Applied Intelligence, 53, 26781–26796.

https://doi.org/10.1007/s10489-023-04927-4

Hipel, K. W., & McLeod, I. (1994). Time series modelling of water resources and environmental systems. In

Proceedings of the International Conference on Systems, Man and Cybernetics (pp. 1-6).

https://doi.org/10.1016/s0167-5648(08)x7026-1

Hu, C., Sun, Z., Li, C., Zhang, Y., & Xing, C. (2023). Survey of time-series data generation in IoT. Sensors,

23(15), 6976. https://doi.org/10.3390/s23156976

IoT Analytics (2023). state of IoT 2023: number of connected IoT devices growing 16% to 16.7 billion

globally. https://iot-analytics.com/number-connected-iot

Javaid N., Jul 12, 2019. Implementing an RNN from scratch in Python: towards data science.

https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85

Lara-Benítez, P., Gallego-Ledesma, L., Carranza-García, M., & Luna-Romera, J. M. (2021). Evaluation of the

Transformer Architecture for Univariate Time Series Forecasting. In E. Alba et al. (Eds.), Advances in

Artificial Intelligence. CAEPIA 2021. Lecture Notes in Computer Science (Vol. 12882). Springer, Cham.

https://doi.org/10.1007/978-3-030-85713-4_11

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X., & Yan, X. (2019). Enhancing the Locality and

Breaking the Memory Bottleneck of Transformer on Time Series Forecasting. CoRR, abs/1907.00235.

https://doi.org/10.48550/arXiv.1907.00235

Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. (2021). Temporal Fusion Transformers for interpretable multi-

horizon time series forecasting. International Journal of Forecasting, 37(4), 1748–1764.

https://doi.org/10.1016/j.ijforecast.2021.03.012

https://doi.org/10.54287/gujsa.1438011
https://doi.org/10.48550/arXiv.1302.6613
https://itise.ugr.es/ITISE2019_Vol1.pdf
https://doi.org/10.1111/jtsa.12194
https://doi.org/10.1016/S0925-2312(02)00577-5
https://doi.org/10.48550/arXiv.2005.12872
http://www.fsb.miamioh.edu/lij14/672_notes_Cochrane
https://doi.org/10.1016/j.jhydrol.2004.10.008
https://doi.org/10.48550/arXiv.2310.10688
https://doi.org/10.1007/s10489-023-04927-4
https://doi.org/10.1007/s10489-023-04927-4
https://doi.org/10.3390/s23156976
https://iot-analytics.com/number-connected-iot
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85
https://doi.org/10.1007/978-3-030-85713-4_11
https://doi.org/10.48550/arXiv.1907.00235
https://doi.org/10.1016/j.ijforecast.2021.03.012

322
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

Ma, J., Shou, Z., Zareian, A., Mansour, H., Vetro, A., & Chang, S. (2019). CDSA: Cross-Dimensional Self-

Attention for Multivariate, Geo-tagged Time Series Imputation. ArXiv, abs/1905.09904.

https://doi.org/10.48550/arXiv.1905.09904

Markova, M. (2022). Convolutional neural networks for forex time series forecasting. AIP Conference

Proceedings, 2459(1), 030024. https://doi.org/10.1063/5.0083533

Masum, S., Liu, Y., & Chiverton, J. (2018). Multi-step Time Series Forecasting of Electric Load Using

Machine Learning Models. In L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, & J.

M. Zurada (Eds.), Artificial Intelligence and Soft Computing (pp. 148-159). Springer International Publishing.

https://doi.org/10.1007/978-3-319-91253-0_15

Mo, Y., Wu, Q., Li, X., et al. (2021). Remaining useful life estimation via transformer encoder enhanced by a

gated convolutional unit. Journal of Intelligent Manufacturing, 32, 1997–2006.

https://doi.org/10.1007/s10845-021-01750-x

Mulla, R. (2019). Hourly Energy Consumption. PJM Interconnection LLC in Kaggle.

Nie, H., Liu, G., Liu, X., & Wang, Y. (2012). Hybrid of ARIMA and SVMs for Short-Term Load Forecasting.

Energy Procedia, 16, 1455-1460. https://doi.org/10.1016/j.egypro.2012.01.229

Nor, M. E., Mohd Safuan, H., Md Shab, N. F., Asrul, M., Abdullah, A., Mohamad, N. A. I., & Lee, M. H.

(2017). Neural network versus classical time series forecasting models. AIP Conference Proceedings, 1842(1),

030027. https://doi.org/10.1063/1.4982865

Ogunfowora, O., & Najjaran, H. (2023). A Transformer-based Framework for Multi-variate Time Series: A

Remaining Useful Life Prediction Use Case. https://doi.org/10.48550/arXiv.2308.09884

Pashamokhtari, A. (2020). Dynamic inference on IoT network traffic using programmable telemetry and

machine learning. In Proceedings of the 2020 19th ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN) (pp. 371–372). https://doi.org/10.1109/IPSN48710.2020.00006

Raheem, I., Mubarak, N. M., Karri, R. R., et al. (2022). Forecasting of energy consumption by G20 countries

using an adjacent accumulation grey model. Scientific Reports, 12, 13417. https://doi.org/10.1038/s41598-

022-17505-4

Russell, S. J., & Norvig, P. (2020). (4th ed.). Artificial Intelligence: A Modern Approach. Prentice Hall

Publishing.

Sahoo, B. B., Jha, R., Singh, A., et al. (2019). Long short-term memory (LSTM) recurrent neural network for

low-flow hydrological time series forecasting. Acta Geophysica, 67, 1471–1481.

https://doi.org/10.1007/s11600-019-00330-1

Shapi, M. K. M., Ramli, N. A., & Awalin, L. J. (2021). Energy consumption prediction by using machine

learning for smart building: Case study in Malaysia. Developments in the Built Environment, 5, 100037.

https://doi.org/10.1016/j.dibe.2020.100037

Shekhar, S., Bansode, A., & Salim, A. (2021). A Comparative study of Hyper-Parameter Optimization Tools.

In 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) (pp. 1-6).

Brisbane, Australia. https://doi.org/10.1109/CSDE53843.2021.9718485

Shi, J., Jain, M., & Narasimhan, G. (2022). Time Series Forecasting (TSF) Using Various Deep Learning

Models. arXiv, 2204.11115. https://doi.org/10.48550/arXiv.2204.11115

Tealab, A. (2018). Time series forecasting using artificial neural networks methodologies: A systematic

review. Future Computing and Informatics Journal, 3(2), 334-340. https://doi.org/10.1016/j.fcij.2018.10.003

Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., & Troncoso, A. (2021). Deep Learning for Time

Series Forecasting: A Survey. Big Data, 9(1), 3-21. https://doi.org/10.1089/big.2020.0159

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I.

(2017). Attention Is All You Need. CoRR, abs/1706.03762. https://doi.org/10.48550/arXiv.1706.03762

https://doi.org/10.54287/gujsa.1438011
https://doi.org/10.48550/arXiv.1905.09904
https://doi.org/10.1063/5.0083533
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1007/s10845-021-01750-x
https://doi.org/10.1016/j.egypro.2012.01.229
https://doi.org/10.1063/1.4982865
https://doi.org/10.48550/arXiv.2308.09884
https://doi.org/10.1038/s41598-022-17505-4
https://doi.org/10.1038/s41598-022-17505-4
https://doi.org/10.1007/s11600-019-00330-1
https://doi.org/10.1016/j.dibe.2020.100037
https://doi.org/10.48550/arXiv.2204.11115
https://doi.org/10.1016/j.fcij.2018.10.003
https://doi.org/10.1089/big.2020.0159
https://doi.org/10.48550/arXiv.1706.03762

323
Abdul Amir ALIOGHLI, Feyza YILDIRIM OKAY

GU J Sci, Part A 11(2) 304-323 (2024) 10.54287/gujsa.1438011

Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2023). Transformers in time series: A

survey. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (pp. 759).

Macao, P.R. China: International Joint Conferences on Artificial Intelligence.

https://doi.org/10.24963/ijcai.2023/759

Wu, N., Green, B., Ben, X., & O'Banion, S. (2020). Deep Transformer Models for Time Series Forecasting:

The Influenza Prevalence Case. CoRR, abs/2001.08317. https://doi.org/10.48550/arXiv.2001.08317

Zeyer, A., Bahar, P., Irie, K., Schlüter, R., & Ney, H. (2019). A Comparison of Transformer and LSTM

Encoder Decoder Models for ASR. In 2019 IEEE Automatic Speech Recognition and Understanding

Workshop (ASRU) (pp. 8-15). Singapore. https://doi.org/10.1109/ASRU46091.2019.9004025

Zhang, Q., Lipani, A., Kirnap, Ö., & Yilmaz, E. (2019). Self-Attentive Hawkes Processes. CoRR,

abs/1907.07561. https://doi.org/10.48550/arXiv.1907.07561

Zuo, S., Jiang, H., Li, Z., Zhao, T., & Zha, H. (2020). Transformer Hawkes Process. CoRR, abs/2002.09291.

https://doi.org/10.48550/arXiv.2002.09291

https://doi.org/10.54287/gujsa.1438011
https://doi.org/10.48550/arXiv.2001.08317
https://doi.org/10.1109/ASRU46091.2019.9004025
https://doi.org/10.48550/arXiv.1907.07561
https://doi.org/10.48550/arXiv.2002.09291

