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Abstract 
 

In this study, the Frenet elements of the curves that are drawn on the unit sphere by the unit vectors obtained 
from linear combinations of Frenet vectors of the helix curve are calculated. Moreover, Sabban frames of these 
curves are created and Smarandache curves are defined. Finally, the geodesic curvatures of each Smarandache 
curve are calculated. 
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Helis Eğrisinin Küresel Göstergeleri Üzerine Bazı Uygulamalar 
 

Öz 
 

Bu çalışmada, helis eğrisinin Frenet vektörlerinin lineer birleşimden elde edilen birim vektörlerin birim küre 
üzerinde çizdikleri eğrilerin Frenet elemanları hesaplanmıştır. Dahası bu eğrilere ait Sabban çatıları oluşturularak 
Smarandache eğrileri tanımlanmıştır. Son olarak bu Smarandache eğrilerinin geodezik eğrilikleri hesaplanmıştır. 

 

Anahtar Kelimeler: Geodezik eğrilik, helis eğrisi, Sabban çatısı, Smarandache eğrisi. 
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Introduction 

When the Frenet vectors of a differentiable curve are taken as position vectors, the regular curves 
that are drawn by these vectors are called Smarandache curves (Taşköprü & Tosun, 2014). Some 
properties of Smarandache curves obtained by using different frames and different curves were 
examined (Alıç & Yılmaz, 2021; Ali, 2010; Bektaş &Yüce, 2013; Çetin et al., 2014; Çetin &Kocayiğit, 
2013; Şenyurt, 2018; Şenyurt & Canlı, 2023; Şenyurt & Çalışkan, 2015; Şenyurt & Öztürk, 2018; 
Şenyurt & Sivas, 2013; Şenyurt et al., 2019; Şenyurt et. al, 2020; Şenyurt et. al, 2022; Şenyurt et al. 
2023a; Şenyurt et al. 2023b; Turgut & Yılmaz, 2008). Sabban frame and geodesic curvature of 
spherical indicatrix curves were defined by Koenderink (1990). Later, Smarandache curves obtained 
from Sabban frames were defined and the geodesic curvatures of these curves were calculated. 
Frenet vectors and curvatures of a differentiable curve are respectively (Abbena et al., 2017; Carmo, 
1976) 

= ,    = ,   = ,T N B T Bα α α
α α α
′ ′ ′′∧

∧
′ ′ ′′∧

                          (1) 

( )
3 2

det , ,
= ,   = .

α α α α α
κ τ

α α α

′ ′′ ′ ′′ ′′′∧

′ ′ ′′∧
                        (2) 

Let γ ′Γ =  be the tangent vector of the unit speed spherical curve ( )sγ γ= . The orthonormal system 

{ }, , Dγ Γ  is called Sabban frame, where D γ= ∧ Γ  (Koenderink, 1990). According to this frame, the 
Sabban formulas and geodesic curvature of the curve are as follows (Koenderink, 1990; Taşköprü & 
Tosun, 2014): 

,    ,     ,   

,
g g

g

K D D K

K D

γ γ′ ′ ′= Γ Γ = − + = − Γ

′= Γ
.                          (3) 

If the velocity vector of a curve makes a constant angle with a fixed direction, the curve is called a 
helix curve, and the constant direction is called the axis of the helix. For any curve to be a helix, a 
necessary and sufficient condition is that the ratio of its curvatures is constant. For example, Frenet 

vectors, curvatures and Frenet formulas of the helix curve ( )( ) cos ,sin ,t t t tα =  are as follows (Gür 
Mazlum, 2023; Şenyurt & Gür Mazlum, 2023): 

( ) ( ) ( )sin ,cos ,1 sin , cos ,1
( ) ,   ( ) cos ,sin ,0 ,   ( ) ,

,

2 2
1
2

t t t t
T t N t t t B t

κ τ

− −
= = − =

= =

                                  (4) 

( ) ( ) ( )( ) cos , sin ,0 ,   ( ) sin , cos ,0 ,   ( ) cos
2

,sin 01 ,1
2

T t t t N t t t B t t t′ ′ ′= − − = − = ⋅    

Some Applications on Spherical Indicatrices of the Helix Curve 

The unit vector written as the linear combination of the Frenet vectors of the helix curve is 

2 2 2
,           , , .xT yN zB x y z

x y z
+ +

Γ = ∈
+ +

R.               (5) 

When the vector Γ  in (5) is taken as the position vector, let the resulting curve be denoted by β . 
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i. If  0,  1y z x= = =  is taken, TΓ =  is gotten. In this case, the curve β is the T − tangent 
indicatrix curve. This situation has been examined before (Şenyurt and Gür Mazlum, 2023).  

ii. If 0,  1x z y= = =  is taken, NΓ =  is gotten. In this case, the curve β is the N − principal 
normal indicatrix curve.   

iii. If 0,  1x y z= = =  is taken, BΓ =  is gotten. In this case, the curve β  is the B −binormal 
indicatrix curve.   

iv. If 1,  0x y z= = =  is taken, 
2

T N+
Γ =  is gotten. In this case, the curve β  is the TN −  

indicatrix curve.   

v. If 1,  0x z y= = =  is taken, 
2

T B+
Γ =  is gotten. In this case, the curve β is a fixed point.   

vi. If 1,  0y z x= = =  is taken, 
2

N B+
Γ =  is gotten. In this case, the curve β is the NB −  

indicatrix curve.   

vii. If 1x y z= = =  is taken, 
3

T N B+ +
Γ =  is gotten. In this case, the curve β  is the TNB −  

indicatrix curve. 

−N Principal Normal Indicatrix Curve 

Theorem 1. The Frenet vectors , ,N N NT N B  and curvatures ,N Nκ τ  of the principal normal indicatrix 
curve β are as follows:   

,   ,   ,   1,   0.
2 2N N N N NT BT B T BN N κ τ− + +

= = = = =−                         (6) 

Proof: If the first, second and third derivatives of the curve β  are taken and the necessary 
operations are performed, 

( )

,   ,    ,     ,  
2 2 2 2 2

11,      0,   det , ,
2

T
T B T B T BNβ β β β β

β β β β β β

′ ′′ ′′′ ′ ′′= = =
− + − +

=

=

− ∧

′ ′ ′′ ′ ′′ ′′′= ∧ =
 

are obtained. From (1) and (2), the vectors in (6) are obtained.  

Let { }, ,N N NT D Tβ β= ∧  be the Sabban frame of the principal normal indicatrix curve β . So, these 
vectors and their derivatives are obtained as follows: 

,   ,,   
2 2N N

T BN T BT Dβ − + +
= = =                         (7) 

 ,   0,  
2 N NTT B N Dβ ′ −

− ′=
+

= =′ .   

Definition 2. Let { }, ,N NT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
principal normal indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  
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( )1
1
2 NTβ∆ = +               

is called the 1∆ − Smarandache curve, (Figure 1). From (7), 

1
2
2

T N B+− +
∆ =                 (8) 

is gotten. 

Theorem 3. The geodesic curvature  1
gK ∆ of the  1∆ − Smarandache curve is as follows: 

1 0.gK ∆ =   

Proof: From (1) and (8), the tangent vector 
1

T∆  of 1∆ − Smarandache curve is as follows: 

1

2
2

T N BT∆

− − +
= .                 (9) 

So, by the cross product of the vectors 1∆  and 
1

T∆  in (8) and (9), 

 
11 2

T T B
∆∧ =

+
∆  

is gotten. If the derivative of the vector 
1

T∆ is taken, 

1

2
2

T N BT∆

− −′ =  

is obtained. From (3) and (4), the proof is completed. 

Definition 4. Let { }, ,N NT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
principal normal indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )2
1
2 NDβ∆ = +  

is called the 2∆ − Smarandache curve, (Figure 1). From (7),    

2
2
2

T N B+
=

+
∆                                       (10) 

is gotten. 

Theorem 5. The geodesic curvature  2
gK ∆ of the  2∆ − Smarandache curve is as follows: 

2
1
2gK ∆ = ⋅  

Proof: From (1) and (10), the tangent vector 
2

T∆  of 2∆ − Smarandache curve is as follows: 

2 2
T T B
∆ =

− +
.               (11) 

So, by the cross product of the vectors 2∆  and 
2

T∆  in (10) and (11), 
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22 2
2T N BT∆∆

− −
∧ =  

is gotten. If the derivative of the vector 
2

T∆ is taken, 

2
NT∆′ = −  

is obtained. From (3) and (4), the proof is completed. 

Definition 6. Let { }, ,N NT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
principal normal indicatrix curve β  on unit sphere. The regular curve that are  drawn by the vector  

( )3
1
2 N NT D∆ = +      

is called the 3∆ − Smarandache curve, (Figure 1). From (7),    

3 B∆ =                                       (12) 

is gotten. 

Theorem 7. The geodesic curvature  3
gK ∆ of the  3∆ − Smarandache curve is as follows: 

3
1
2gK ∆ = ⋅  

Proof: From (1) and (12), the tangent vector 
3

T∆  of 3∆ − Smarandache curve is as follows: 

3
T N∆ = − .               (13) 

So, by the cross product of the vectors 3∆  and 
3

T∆  in (12) and (13), 

33 T T∆∆ ∧ =  

is gotten. If the derivative of the vector 
3

T∆ is taken, 

3 2
T T B
∆′

−
=  

is obtained. From (3) and (4), the proof is completed. 

Definition 8. Let { }, ,N NT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
principal normal indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )4
1
3 N NT Dβ∆ = + +   

is called the 4∆ − Smarandache curve, (Figure 1). From (7),    

4
2

3
BN +

∆ =                                      (14) 

is gotten. 

Theorem 9. The geodesic curvature  4
gK ∆ of the  4∆ − Smarandache curve is as follows: 
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4
2 1

3gK ∆ +
= ⋅  

Proof: From (1) and (14), the tangent vector 
4

T∆  of 4∆ − Smarandache curve is as follows: 

4 2
2T T N B

∆

−
=

− +
.              (15) 

So, by the cross product of the vectors 4∆  and 
4

T∆  in (14) and (15), 

44
3 2 2 2

2 3
T BT N

∆∆
− +

∧ =  

is gotten. If the derivative of the vector 
4

T∆ is taken, 

4 2
2T NT B

∆

− −′ =  

is obtained. From (3) and (4), the proof is completed. 

 

Figure 1. 1   (red)∆ , 2  (blue)∆ , 3  (green)∆  and 4  (magenta) ∆ − Smarandache Curves on the Unit 
Sphere 

-B  Binormal Indicatrix Curve 

Theorem 10. The Frenet vectors , ,B B BT N B  and curvatures ,B Bκ τ  of the binormal indicatrix curve β  
are as follows:   

,     ,     ,     2
2

,     0.
2B B B B BT T BN BB TN κ τ= = =− =

+
=

− +
 

Proof: If the first, second and third derivatives of the curve β  are taken and the necessary 
operations are performed, 

( )

,

,   det , , ,

,  ,  ,
22 2 2 2

1 1,    0
22

T
N T B N T Bβ β β β β

β β β β β β

′ ′− − +′ ′′′ ′ ′′= = ∧ =

′ ′ ′′ ′ ′′ ′′′= ∧ = =

=
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are obtained. From (1) and (2), the proof is completed.  

Let { }, ,B B BT D Tβ β= ∧  be the Sabban frame of the binormal indicatrix curve β . So, these vectors 
and their derivatives are obtained as follows: 

  ,,   ,B BB T N D Tβ = == −                                     (16) 

, ,   
2 2 2

  B B
N T DB NTβ ′ ′ ′=

− −
= = .   

Definition 11. Let { }, ,B BT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
binormal indicatrix curve β  on the unit sphere. The regular curve that are drawn by the vector  

( )1
1
2 BTζ β= +  

is called the 1ζ − Smarandache curve, (Figure 2). From (16),    

1 2
N Bζ =

− +
                                                  (17) 

is gotten. 

Theorem 12. The geodesic curvature  1
gK ζ  of the  1ζ − Smarandache curve is as follows: 

1
3
10gK ζ = ⋅   

Proof: From (1) and (17), the tangent vector 
1

Tζ  of 1ζ − Smarandache curve is as follows: 

1

2
5

T BTζ
− +

= .               (18) 

So, by the cross product of the vectors 1ζ  and 
1

Tζ  in (17) and (18), 

11
2

10
T N BTζζ − −

∧ =
−

 

is gotten. If the derivative of the vector 
1

Tζ is taken, 

1

3
10
NTζ

−′ =  

is obtained. From (3) and (4), the proof is completed. 

Definition 13. Let { }, ,B BT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
binormal indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )2
1
2 BDζ β= +                                      

is called the 2ζ − Smarandache curve, (Figure 2). From (16),    

2 2
T Bζ =
+

                                                  (19) 

is gotten. 
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Theorem 14. The geodesic curvature  2
gK ζ  of the  2ζ − Smarandache curve is as follows: 

2 0.gK ζ =   

Proof: From (1) and (19), the tangent vector 
2

Tζ  of 2ζ − Smarandache curve is as follows: 

2
0Tζ = .               (20) 

So, by the cross product of the vectors 2ζ  and 
2

Tζ  in (19) and (20), 

22 0Tζζ ∧ =  

is gotten. From (3) and (4), the proof is completed. 

Definition 15. Let { }, ,B BT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
binormal indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )3
1
2 B BT Dζ = +                                    

is called the 3ζ − Smarandache curve, (Figure 2). From (16),    

3 2
T Nζ =
−

                                                  (21) 

is gotten. 

Theorem 16. The geodesic curvature  3
gK ζ  of the  3ζ − Smarandache curve is as follows: 

3
1
3gK ζ = ⋅   

Proof: From (1) and (21), the tangent vector 
3

Tζ  of 3ζ − Smarandache curve is as follows: 

3 3
T T N B
ζ =

+ −
.              (22) 

So, by the cross product of the vectors 3ζ  and 
3

Tζ  in (21) and (22), 

33
2

6
T N BTζζ + +

∧ =  

is gotten. If the derivative of the vector 
3

Tζ is taken, 

3 6
TT N B

ζ′
− +

=
+

 

is obtained. From (3) and (4), the proof is completed. 

Definition 17. Let { }, ,B BT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
binormal indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )4
1
3 B BT Dζ β= + +       

is called the 4ζ − Smarandache curve, (Figure 2). From (16),    
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4 3
BT Nζ − +

=                                       (23) 

is gotten. 

Theorem 18. The geodesic curvature  4
gK ζ  of the  4ζ − Smarandache curve is as follows: 

4
1
3gK ζ = ⋅   

Proof: From (1) and (23), the tangent vector 
4

Tζ  of 4ζ − Smarandache curve is as follows: 

4 6
T T B
ζ =

−
.               (24) 

So, by the cross product of the vectors 4ζ  and 
4

Tζ  in (23) and (24), 

44 3 2
2T NT B

ζζ − +
∧ =  

is gotten. If the derivative of the vector 
4

Tζ is taken, 

4 3
NTζ′ =  

is obtained. From (3) and (4), the proof is completed. 

 

 

Figure 2. 1   (red)ζ , 3  (green)ζ  and 4  (magenta) ζ − Smarandache Curves on the Unit Sphere. 

TN − Indicatrix Curve 

Theorem 19. The Frenet vectors , ,TN TN TNT N B  and curvatures ,TN TNκ τ  of the TN − indicatrix curve 
β  are as follows:   

4,    ,    ,    ,    0.2
3 6 2 3TN TN TN TN TNT T N B T N B BB TN κ τ− + −

= = =
+ − +

=
+

=                   
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Proof: If the first, second and third derivatives of the curve β  are taken and the necessary 
operations are performed, 

( )

( )

2,   ,  ,  
2 22 2 4

3 ,

,   det , , ,

2
3 3,    0

2 4

T N B T N B T N B T Bβ β β β β

β β β β β β

′ ′′ ′′′ ′ ′′= = ∧ =

′

− + + − − + −

′ ′′ ′ ′′ ′′′= ∧

−
+

=

=

=

 

are obtained. From (1) and (2), the proof is completed.  

Let { }, ,TN TN TNT D Tβ β= ∧  be the Sabban frame of the TN −  indicatrix curve β . So, these vectors 
and their derivatives are obtained as follows: 

3
2,   

2 6
,    TN TN

T N T N BT T N B Dβ ++ − +
= =

− +
=                                (25) 

 2, ,   
2 6 2 3

 TN TN
T N B T NT B T N BDβ − + + − −′ + − −

= =′ ′= .          

Definition 20. Let { }, ,TN TNT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
TN − indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )1
1
2 TNTβ∂ = +                       

is called the 1∂ − Smarandache curve, (Figure 3). From (25),    

( ) ( )
1

3 3

2 3

2 2 2T N B− + ++
∂ =                                  (26) 

is gotten. 

Theorem 21. The geodesic curvature  1
gK ∂  of the  1∂ − Smarandache curve is as follows: 

1
3 14 2 .

42gK ∂ +
=   

Proof: From (1) and (26), the tangent vector 
1

T∂  of 1∂ − Smarandache curve is as follows: 

( ) ( ) ( )
1

6 4

42

6 2 6 2T N B
T∂

− + ++ − +
= .           (27) 

So, by the cross product of the vectors 1∂  and 
1

T∂  in (26) and (27), 

( ) ( ) ( )
11

4 3 6 2 3 2 2 3 12 2 2 3

6 14

T N B
T∂

+ − + + −
∂ ∧ =  

is gotten. If the derivative of the vector 
1

T∂ is taken, 

( ) ( ) ( )
1

2 6 2

2 21

6 4 6 4T N B
T∂

− − −− + +
′ =  

is obtained. From (3) and (4), the proof is completed. 
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Definition 22. Let { }, ,TN TNT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
TN − indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )2
1
2 TNDβ∂ = +                                      

is called the 2∂ − Smarandache curve, (Figure 3). From (25),    

( ) ( )
2

3 1 3 1

2 3

2T N B
∂

+ − ++
=                                            (28) 

is gotten. 

Theorem 23. The geodesic curvature  2
gK ∂  of the  2∂ − Smarandache curve is as follows: 

2
2 6

4gK ∂ +
=   

Proof: From (1) and (28), the tangent vector 
2

T∂  of 2∂ − Smarandache curve is as follows: 

2 3
T N BT∂ =
− + +

.              (29) 

So, by the cross product of the vectors 2∂  and 
2

T∂  in (28) and (29), 

( ) ( )
22

3 3 3 23 3

6

T N
T

B
∂

− +
∂

+
∧ =

−
 

is gotten. If the derivative of the vector 
2

T∂ is taken, 

2 6
2T N BT∂

− +′ −
=  

is obtained. From (3) and (4), the proof is completed. 

Definition 24. Let { }, ,TN TNT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
TN − indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )3
1
2 TN TNT D∂ = +                                 

is called the 3∂ − Smarandache curve, (Figure 3). From (25),    

( ) ( ) ( )
3

1 2 2 1 2 2

2 3

T N B− + − + +
∂ =                                (30) 

is gotten. 

Theorem 25. The geodesic curvature  3
gK ∂  of the  3∂ − Smarandache curve is as follows: 

3
4 3 6

10gK ∂ +
= .  

Proof: From (1) and (30), the tangent vector 
3

T∂  of 3∂ − Smarandache curve is as follows: 
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( ) ( ) ( )
3

1 2 2 2 1 2 1

15
T

T N B
∂

− −
=

− + +
.           (31) 

So, by the cross product of the vectors 3∂  and 
3

T∂  in (30) and (31), 

( ) ( ) ( )
33

3 2 1 2 2 2

2 5

T N B
T∂

− + − + −
∂ ∧ =  

is gotten. If the derivative of the vector 
3

T∂ is taken, 

( ) ( ) ( )
3

4 2 2 2 4 4 2

2 15

B
T

T N
∂′

+ + − − +
=  

is obtained. From (3) and (4), the proof is completed. 

Definition 26. Let { }, ,TN TNT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
TN − indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )4
1
3 TN TNT Dβ∂ = + +                           

is called the 4∂ − Smarandache curve, (Figure 3). From (25),    

( ) ( ) ( )
4

2 1 2 1 23 2

3 2

3 NT B− + ++ + − +
∂ =                                (32) 

is gotten. 

Theorem 27. The geodesic curvature  4
gK ∂  of the  4∂ − Smarandache curve is as follows: 

4
4 3 6

10gK ∂ +
= .  

Proof: From (1) and (32), the tangent vector 
4

T∂  of 4∂ − Smarandache curve is as follows: 

( ) ( ) ( )
4

3 2 1 3 2 2 1 3 2 1

24 6 3

T
T

N B
∂

− − + + − + +
=

− −

−
.         (33) 

So, by the cross product of the vectors 4∂  and 
4

T∂  in (32) and (33), 

( ) ( )( ) ( )( )
44

12 6 4 3 2 2 2 1

6 12 3 3

3 3 3 2 1 3 2 2 1T
T

N B
∂

+ + − −+ − + +
∂

+ + − −
∧ =

−

−
 

is gotten. If the derivative of the vector 
4

T∂ is taken, 

( ) ( ) ( )
4

3 2 2 1 2 3 2 2 2 3 2 2 1

2 3 4 3

T
T

N B
∂′

− − −
=

− + − + + − −

−
 

is obtained. From (3) and (4), the proof is completed. 
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Figure 3. 1   (red)∂ , 2  (blue)∂ , 3  (green)∂  and 4  (magenta) ∂ − Smarandache Curves on the Unit 
Sphere 

-NB Indicatrix Curve 

Theorem 28. The Frenet vectors , ,NB NB NBT N B  and curvatures ,NB NBκ τ  of the NB − indicatrix curve 
β  are as follows:   

2 21,    ,   ,   ,   0.25 4 3
3 42 914NB NB NB NB NBT TNT N B T N B N BB κ τ− − + − + + +

= = = = =                    

Proof: If the first, second and third derivatives of the curve β  are taken and the necessary 
operations are performed, 

( )

( )

1 ,

,   det , , ,

2,    ,   ,   2 3
2 22 2 4 2

3 7,    0
2 4

T N B T N B T N B T N Bβ β β β β

β β β β β β

′ ′′ ′′′ ′ ′′= = ∧ =

′ ′ ′′ ′ ′′ ′′′=

−

∧

− − + − + +

=

+

=

= +
 

are obtained. From (1) and (2), the proof is completed.  

Let { }, ,NB NB NBT D Tβ β= ∧  be the Sabban frame of the NB −  indicatrix curve β . So, these vectors 
and their derivatives are obtained as follows: 

2,   
2 6

,    
3NB NB

T NN B T N BT B Dβ ++ −
=
−

=
+

=
−

                               (34) 

2, ,   
2 6 2 3

  NB NB
T N DB T N BT T N Bβ ′ − − + − − + −

= =′ ′= .                         

Definition 29. Let { }, ,NB NBT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
NB − indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )1
1
2 NBTπ β= +                                

is called the 1π − Smarandache curve, (Figure 4). From (34),    
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( ) ( )
1 3

2 23 2

2

3T BN
π

+
=

+ − +
                                       

     (35) 

is gotten. 

Theorem 30. The geodesic curvature  1
gK π  of the  1π − Smarandache curve is as follows: 

1
3 2 6

6gK π +
= ⋅   

Proof: From (1) and (35), the tangent vector 
1

Tπ  of 1π − Smarandache curve is as follows: 

( ) ( ) ( )
1

2 6 6 4 2 6

42
T

T N B
π

− − +
=

− −
.           (36) 

So, by the cross product of the vectors 1π  and 
1

Tπ  in (35) and (36), 

( ) ( ) ( )
11

22 3 6 312 2 3 2 2

6 7

T
T

N B
ππ

+ −+ −
∧ =

+
 

is gotten. If the derivative of the vector 
1

Tπ is taken, 

( ) ( ) ( )
1

4 6 4 2 6 4 6

2 21
T

T N B
π

+ + −
′ =

− +
 

is obtained. From (3) and (4), the proof is completed. 

Definition 31. Let { }, ,NB NBT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
NB − indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )2
1
2 NBDπ β= +                                      

is called the 2π − Smarandache curve, (Figure 4). From (34),    

( ) ( )
2

2 3 1 3 1

2 3

T N B
π

+ − + +
=                                                        (37) 

is gotten. 

Theorem 32. The geodesic curvature  2
gK π  of the  2π − Smarandache curve is as follows: 

2
1 3 .

12gK π +
=   

Proof: From (1) and (37), the tangent vector 
2

Tπ  of 2π − Smarandache curve is as follows: 

2 3
T T N B
π =

− +
.              (38) 

So, by the cross product of the vectors 2π  and 
2

Tπ  in (37) and (38), 
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( ) ( )
22

2 3 3 3 1

6

T N B
Tππ

+ + − +
∧ =  

is gotten. If the derivative of the vector 
2

Tπ is taken, 

2 2 3
T BTπ
−′ =  

is obtained. From (3) and (4), the proof is completed. 

Definition 33. Let { }, ,NB NBT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
NB − indicatrix curve β  on the unit sphere. The regular curve drawn that are by the vector  

( )3
1
2 NB NBT Dπ = +                                     

is called the 3π − Smarandache curve, (Figure 4). From (34),    

( ) ( ) ( )
3

2 1 2 1 2

2 3

2 BT N
π

+ +−−
=

+
                                           (39) 

is gotten. 

Theorem 34. The geodesic curvature  3
gK π  of the  3π − Smarandache curve is as follows: 

3
19 13 2 .

60 3gK π −
=   

Proof: From (1) and (39), the tangent vector 
3

Tπ  of 3π − Smarandache curve is as follows: 

( ) ( ) ( )
3

1 2 1 2 2 1 2

15

B
T

T N
π

+ − ++ −
= .           (40) 

So, by the cross product of the vectors 3π  and 
3

Tπ  in (39) and (40), 

( ) ( )
33

2 3 2 332 2

6 5

T N B
Tππ =

−++
∧

−
 

is gotten. If the derivative of the vector 
3

Tπ is taken, 

( ) ( ) ( )
3

2 2 1 1 2 1 2 2

2 15

2 N
T

T B
π

−+− +
′

+
=  

is obtained. From (3) and (4), the proof is completed. 

Definition 35. Let { }, ,NB NBT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
NB − indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )4
1
3 NB NBT Dπ β= + +                   

is called the 4π − Smarandache curve, (Figure 4). From (34),    
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( ) ( ) ( )
4

32 2 2 1 2 13

3 2

T BN
π

+− + +− + −
=                                (41) 

is gotten. 

Theorem 36. The geodesic curvature  4
gK π  of the  4π − Smarandache curve is as follows: 

( )
4

19 3 3 2 2 .
18 4 3

gK π + +
=

−
  

Proof: From (1) and (41), the tangent vector 
4

Tπ  of 4π − Smarandache curve is as follows: 

( ) ( ) ( )
4

2 2 2 1

3

1 3 1 2 3 3

24 6
T

T N B
π

− + + − −−
=

−

− +
.         (42) 

So, by the cross product of the vectors 4π  and 
4

Tπ  in (41) and (42), 

( ) ( ) ( )
44

62 6 3 2 2

6 12 3 3

12 6 2 3 2 3 12 4 3 3
T

N BT
ππ

++ − − + − + − −
∧ =

−

−
 

is gotten. If the derivative of the vector 
4

Tπ is taken, 

( ) ( ) ( )
4

2 3 1 2 1 3 12 2 2

2 12

2 3

3 3

T B
T

N
π

− + − + −+
′ =

−

+ −
 

is obtained. From (3) and (4), the proof is completed. 

 

Figure 4. 1   (red)π , 2  (blue)π , 3  (green)π  and 4  (magenta) π − Smarandache Curves on the Unit 
Sphere 

-TNB Indicatrix Curve 

Theorem 37. The Frenet vectors , ,TNB TNB TNBT N B  and curvatures ,TNB TNBκ τ  of the TNB − indicatrix 
curve β  are as follows:   
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,    ,    ,    
2

.2
3

3,   0
6TNB TNB TNB TNB TNBT BT B N T BN κ τ= = − = =

−
=

+ +
                     

Proof: If the first, second and third derivatives of the curve β  are taken and the necessary 
operations are performed, 

( )

( )

,    ,    ,    
6 3 6 3 2

1 1,     0

1 ,

,    d ,
3

et ,
3

T B N T B T Bβ β β β β

β β β β β β

′ ′′ ′′′ ′ ′′= = ∧
+

=

′ ′

+

′′ ′ ′′ ′′′=

−
=

∧

− −

= =
 

are obtained. From (1) and (2), the proof is completed.  

Let { }, ,TNB TNB TNBT D Tβ β= ∧  be the Sabban frame of the TNB −  indicatrix curve β . So, these 
vectors and their derivatives are obtained as follows: 

2
2,   

3 6
,    TNB NB

T N B BT T T N BDβ ++ + −
= =

+
=

−
                               (43) 

 , ,    
6 3

  TNB NBT NT B T BDβ − + − +
= =′ ′ ′= − .                                          

Definition 38. Let { }, ,TNB TNBT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
TNB − indicatrix curve β  on the unit sphere. The regular curve that are drawn by the vector  

( )1
1
2 TNBTχ β= +                                       

is called the 1χ − Smarandache curve, (Figure 5). From (43),    

( ) ( )
1 3

2 23 32

2

NT B
χ

+ + +
=

−
                                       

     (44) 

is gotten. 

Theorem 39. The geodesic curvature  1
gK χ  of the  1χ − Smarandache curve is as follows: 

1
3 .

3gK χ =   

Proof: From (1) and (44), the tangent vector 
1

Tχ  of 1χ − Smarandache curve is as follows: 

1

2
4

232 BT T N
χ

− − +
= .             (45) 

So, by the cross product of the vectors 1χ  and 
1

Tχ  in (44) and (45), 

( ) ( )
11

6 4 6 42

4 3

T N B
Tχχ

− −
=

−
∧

+
 

is gotten. If the derivative of the vector 
1

Tχ is taken, 
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1

6 6
4

2T BT N
χ

−′ =
−

 

is obtained. From (3) and (4), the proof is completed. 

Definition 40. Let { }, ,TNB TNBT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
TNB − indicatrix curve β  on the unit sphere. The regular curve that are drawn by the vector  

( )2
1
2 TNBDχ β= +                                   

is called the 2χ − Smarandache curve, (Figure 5). From (43),    

( ) ( ) ( )
2

2 1 2 2 2 1

2 3

T N B
χ

+ + − + +
=                                            (46) 

is gotten. 

Theorem 41. The geodesic curvature  2
gK χ  of the  2χ − Smarandache curve is as follows: 

2
2 2 .

3gK χ +
=   

Proof: From (1) and (46), the tangent vector 
2

Tχ  of 2χ − Smarandache curve is as follows: 

2 2
T BTχ
− +

= .               (47) 

So, by the cross product of the vectors 2χ  and 
2

Tχ  in (46) and (47), 

( ) ( ) ( )
22

2 2 2 2 1 2 2

2 6

T N B
Tχχ

− − + + −
∧ =  

is gotten. If the derivative of the vector 
2

Tχ is taken, 

2
T Nχ

′ = −  

is obtained. From (3) and (4), the proof is completed. 

Definition 42. Let { }, ,TNB TNBT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
TNB − indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )3
1
2 TNB TNBT Dχ = +                          

is called the 3χ − Smarandache curve, (Figure 5). From (43),    

( ) ( )
3 3

21 3 1 3

2

T N B
χ

+−
=

− +
                                                       (48) 

is gotten. 

Theorem 43. The geodesic curvature  3
gK χ  of the  3χ − Smarandache curve is as follows: 
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3
5 6 .
24gK χ =   

Proof: From (1) and (48), the tangent vector 
3

Tχ  of 3χ − Smarandache curve is as follows: 

3

3
2

T N BTχ
− −

= .              (49) 

So, by the cross product of the vectors 3χ  and 
3

Tχ  in (48) and (49), 

( ) ( )
33

5 3 5 32

4 3

T N B
Tχχ

+ −+ +
∧ =  

is gotten. If the derivative of the vector 
3

Tχ is taken, 

3

3 2 3
2 2

T N BTχ
+ −′ =  

is obtained. From (3) and (4), the proof is completed. 

Definition 44. Let { }, ,TNB TNBT Dβ  be the Sabban frame of the spherical curve that are drawn by the 
TNB − indicatrix curve β  on unit sphere. The regular curve that are drawn by the vector  

( )4
1
2 TNB TNBT Dχ β= + +                    

is called the 4χ − Smarandache curve, (Figure 5). From (43),    

( ) ( ) ( )
4

13

2

1 2 2

3

22 3T BN
χ

+ +++ − +−
=                                (50) 

is gotten. 

Theorem 45. The geodesic curvature  4
gK χ  of the  4χ − Smarandache curve is as follows: 

( )
4 .

1 2

3gK χ =
+

  

Proof: From (1) and (50), the tangent vector 
4

Tχ  of 4χ − Smarandache curve is as follows: 

( ) ( )
4

6 2

1

2

2

1

4

1

2

NT B
Tχ

− − + −
=

−
. 

So, by the cross product of the vectors 4χ  and 
4

Tχ  in (49) and (50), 

( ) ( )
44

2

2 3 6 2 24 6 4 26

3 24

6 2

8

3T N B
Tχχ

+− + − −
∧

+ + +
=

−

− +
 

is gotten. If the derivative of the vector 
4

Tχ is taken, 

( )
4

26 6

24 8 2

2 1T BN
Tχ

−+ −
′ =

−
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is obtained. From (3) and (4), the proof is completed. 

 

Figure 5. 1   (red)χ , 2  (blue)χ , 3  (green)χ  and 4  (magenta) χ − Smarandache Curves on the Unit 
Sphere 

Conclusion and Suggestions 

In this study, the Frenet elements of the curves that are drawn on the unit sphere by the unit vectors 
obtained from the linear combination of the Frenet vectors of the helix curve were calculated and 
Smarandache curves were defined by creating Sabban frames of these curves. Similar studies can be 
done on different curves in various spaces by considering other well-known frames. 
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