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ABSTRACT

A quandle is an algebraic system originated in knot theory, and can be regarded as a generalization
of symmetric spaces. The inner automorphism group of a quandle is defined as the group generated
by the point symmetries (right multiplications). In this paper, starting from any simple graphs,
we construct quandles whose inner automorphism groups are abelian. We also prove that the
constructed quandle is homogeneous if and only if the graph is vertex-transitive. This shows that
there is a wide family of quandles with abelian inner automorphism groups, even if we impose
the homogeneity. The key examples of such quandles are realized as subquandles of oriented real
Grassmannian manifolds.
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1. Introduction

In the theory of symmetric spaces, the contributions by Chen and Nagano are immeasurable. They
introduced several important notions, such as antipodal subsets and two-numbers ([6]), among many others.
These notions are known to be related closely with several important areas in mathematics (see [5]). We have
studied quandles from the viewpoint of symmetric spaces. In [14], the notion of antipodal subsets is transferred
to quandles, and a generalization called s-commutative subsets is given. This paper is a natural continuation.
In particular, we construct many examples of finite quandles with nice properties, owing to the theory of
symmetric spaces developed by Chen and Nagano.

The notion of quandles is originated in knot theory ([11, 16]). Thereafter quandles have been studied very
actively, and recently the notion of quandles is recognized as an important concept in many branches of
mathematics. Among others, quandles can be regarded as a generalization of symmetric spaces. In fact, the
definition of quandles can be formulated analogously to symmetric spaces as follows. Let X be a set, and
denote by Map(X,X) the set of all maps from X to itself. Then a pair (X, s) with s : X → Map(X,X) is called a
quandle if

(Q1) for any x ∈ X , sx(x) = x;
(Q2) for any x ∈ X , sx is bijective;
(Q3) for any x, y ∈ X , sx ◦ sy = ssx(y) ◦ sx.

Each sx is called the point symmetry at x. Note that these three conditions correspond to the Reidemeister moves
in knot theory. For more details and related results, we refer to [2, 18] (see also [12]) and references therein.

For symmetric spaces, flat ones are the most basic examples, and play fundamental roles in the structure
theory (as is seen in the theory of maximal tori). Here, the flatness means that the curvature tensor vanishes
identically. Recall that a Riemannian symmetric space is flat if and only if the group G0(X, s) generated by
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the compositions of two symmetries sx ◦ sy is abelian ([15]). Therefore, quandles with abelian or “small”
transformation groups would play similar important roles in a possible structure theory of quandles. For a
quandle (X, s), several transformation groups have been studied, such as the automorphism group Aut(X, s)
and the following subgroups:

Dis(X, s) ⊂ G0(X, s) ⊂ Inn(X, s) ⊂ Aut(X, s). (1.1)

Recall that Inn(X, s) denotes the group generated by all point symmetries sx, called the inner automorphism
group. The group of displacements Dis(X, s) is generated by the elements of the form sx ◦ s−1

y . A quandle (X, s)
is said to be flat if G0(X, s) is abelian ([10, 17]), and medial if Dis(X, s) is abelian ([7, 8]).

To the contrary, quandles with “large” transformation groups have also been studied. A quandle (X, s) is
said to be homogeneous (resp. connected) if Aut(X, s) (resp. Inn(X, s)) acts transitively on X . A quandle (X, s)
is said to be two-point homogeneous if Inn(X, s) acts doubly-transitively on X ([13, 19, 20, 21]). A similar notion
with respect to Aut(X, s) has also been studied ([1]).

In this paper, we study quandles (X, s) whose inner automorphism groups Inn(X, s) are abelian. These
quandles are flat and medial by (1.1), but still form a large class. The results of this paper yield that there
is a wide family of quandles with abelian inner automorphism groups, even if we impose the homogeneity. In
other words, there are many quandles such that Inn(X, s) are small but Aut(X, s) are large. This would be in
contrast to the following result.

Proposition 1.1 ([10]). Every finite flat connected quandle must be a discrete torus, that is a direct product of dihedral
quandles, with odd cardinality.

The condition in this proposition means that G0(X, s) is small but Inn(X, s) is large. It seems to be natural
that this kind of “unbalanced” condition is restrictive, but this is not true for our case.

The first result of this paper constructs examples of homogeneous quandles with abelian inner
automorphism groups. The key idea of this construction comes from symmetric spaces. We consider the
oriented real Grassmannian manifold Gk(Rn)∼, consisting of all oriented k-dimensional linear subspaces in
Rn. This is naturally a symmetric space, and hence a quandle (see Section 3 for details). As subquandles in
Gk(Rn)∼, we can construct interesting examples of quandles as follows.

Theorem 1.1. Let {e1, . . . , en} be the standard basis of Rn, and A(k, n) be the set of all oriented k-dimensional linear
subspaces spanned by {ei1 , . . . , eik}. Then A(k, n) is a subquandle of Gk(Rn)∼. Furthermore, A(k, n) is a homogeneous
disconnected quandle, and its inner automorphism group is abelian.

This example would be interesting also from the viewpoint of symmetric spaces (for recent studies on
particular subsets in symmetric spaces, see [14] and references therein). On the other hand, one can observe
that the structures of the above quandles A(k, n) can be described in terms of graphs. The second result of this
paper generalizes this construction, namely, we construct quandles from graphs. Let G = (V (G), E(G)) be a
simple graph, where V (G) denotes the set of vertices and E(G) the set of edges. Let Z2 := Z/2Z, and we use
the adjacent function e : V (G)× V (G) → Z2 defined by

e(v, w) :=

{
1 (if v and w are joined by an edge),
0 (otherwise). (1.2)

Theorem 1.2. Let G = (V (G), E(G)) be a simple graph, and put X := V (G)× Z2. We define a map s : X →
Map(X,X) by

s(v,a)(w, b) := (w, b+ e(v, w)).

Then QG := (X, s) is a disconnected quandle, and its inner automorphism group is abelian. Furthermore, QG is
homogeneous if and only if the graph G is vertex-transitive.

This shows that there is a wide family of homogeneous quandles with abelian inner automorphism groups.
Note that the above construction can be regarded as a special case of abelian extensions using quandle 2-
cocycles (see Section 4). Finally, we note that the quandles QG constructed from graphs G are always involutive,
that is, all point symmetries sx are involutive. There must exist non-involutive homogeneous quandles with
abelian inner automorphism groups, which will be studied in the forthcoming paper.
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2. Preliminaries

In this section, we recall some necessary notions of quandles, and also describe fundamental examples. Two
particular finite quandles, given as subsets in the spheres, are studied in detail.

2.1. Examples of quandles

As mentioned in Section 1, we denote a quandle by (X, s), where the map s : X → Map(X,X) is called a
quandle structure. In this subsection, we give some examples of quandles.

Example 2.1. Let X be any nonempty set, and define s by sx = idX for any x ∈ X . Then (X, s) is a quandle,
which is called a trivial quandle.

Note that idX denotes the identity map. We need examples of nontrivial quandles. First of all, we recall
properties of reflections with respect to linear subspaces, which will be used to define some quandle structures.
Denote by O(n) the orthogonal group of Rn.

Lemma 2.1. Let V be a linear subspace in Rn, and denote by rV the reflection on Rn with respect to V . Then one has

(1) rV ∈ O(n);

(2) for any g ∈ O(n), it satisfies g ◦ rV = rg(V ) ◦ g.

Proof. Let ⟨, ⟩ be the canonical inner product on Rn, and denote by V ⊥ the orthogonal complement of V in Rn

with respect to ⟨, ⟩. Then, by definition, the reflection rV satisfies

rV (x+ y) = x− y (x ∈ V, y ∈ V ⊥). (2.1)

Therefore it is easy to show that rV preserves ⟨, ⟩, that is, rV ∈ O(n). This shows the first assertion. In order to
prove the second assertion, take any g ∈ O(n). Then one can see that g ◦ rV and rg(V ) ◦ g coincide with each
other on V , and also on V ⊥. Since both maps are linear, this completes the proof.

By using the reflections, we can define a quandle structure on the sphere Sn−1, to be exact, the unit sphere in
Rn centered at the origin. The following quandle (Sn−1, s) is called the sphere quandle in this paper.

Example 2.2. Let Sn−1 be the unit sphere in Rn. For each x ∈ Sn−1, let us define sx by the reflection with respect
to Span{x}. Then this s gives a quandle structure on Sn−1.

Proof. For each x ∈ Sn−1, the quandle structure is defined as

sx : Sn−1 → Sn−1 : y 7→ rSpan{x}(y). (2.2)

By definition, one can directly see that s is well-defined, that is, sx preserves Sn−1. Conditions (Q1) and (Q2)
are easy to check. Condition (Q3) follows from Lemma 2.1.

In order to describe more examples of quandles, we use the following notion of subquandles.

Definition 2.1. Let (X, s) be a quandle. A nonempty subset A ⊂ X is called a subquandle if s±1
a (A) ⊂ A holds

for every a ∈ A.

It is easy to see that a subquandle is a quandle. Subquandles provide several interesting examples of
quandles.

Example 2.3. Let r ∈ Z>0, and (S1, s) be the sphere quandle with n = 1. Then the following Dr is a subquandle:

Dr := {(cos(2kπ/r), sin(2kπ/r)) ∈ S1 | k ∈ Z}. (2.3)

This quandle Dr is called the dihedral quandle of order r, which is well-known. The following is also easy, but
provides one of key examples.

Example 2.4. Let (Sn−1, s) be the sphere quandle, and {e1, . . . , en} be the standard basis of Rn. Then the
following An−1 is a subquandle:

An−1 := {±e1, . . . ,±en}. (2.4)
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Proof. Since sx is involutive, we have only to show that sa(An−1) ⊂ An−1 for all a ∈ An−1. By the definition of
s, one can easily see that

sei = s−ei , sei(±ei) = ±ei, sei(±ej) = ∓ej (for i ̸= j). (2.5)

This completes the proof of this example.

Note that A0 = {±e1} is a trivial quandle, and A1 = {±e1,±e2} coincides with the dihedral quandle D4 of
order 4. Properties of the quandle An−1 will be mentioned in the following subsections.

2.2. Homogeneous quandles

In this subsection, we recall the definition of homogeneous quandles, and mention some examples.

Definition 2.2. Let (X, sX) and (Y, sY ) be quandles. Then f : X → Y is called a homomorphism if for any x ∈ X ,
it satisfies

f ◦ sXx = sYf(x) ◦ f. (2.6)

A bijective homomorphism is called an isomorphism. An isomorphism from a quandle (X, s) onto (X, s) itself
is called an automorphism of (X, s).

Definition 2.3. Let (X, s) be a quandle. The group of all automorphisms of (X, s) is called the automorphism
group of (X, s), and denoted by Aut(X, s). A quandle (X, s) is said to be homogeneous if Aut(X, s) acts transitively
on X .

For the automorphism group of a subquandle, one can easily see the following. The proof is an easy exercise.

Lemma 2.2. Let (X, s) be a quandle, and A be a subquandle of (X, s). Then the following N(A) acts on A as
automorphisms:

N(A) := {f ∈ Aut(X, s) | f(A) = A}. (2.7)

We here describe examples of homogeneous quandles. In fact, the examples mentioned in the previous
subsection are all homogeneous.

Example 2.5. The dihedral quandle Dr and the quandle An−1 = {±e1, . . . ,±en} are both homogeneous.

Proof. One knows O(n) ⊂ Aut(Sn−1, s) by Lemma 2.1, and hence we can use Lemma 2.2 for both cases. For the
dihedral quandle Dr, one can see that N(Dr) acts transitively on Dr, since it contains a rotation of angle 2π/r.
Similarly one can also show that N(An−1) acts transitively on An−1, since it contains a rotation of angle π/2 in
the eiej-plane, for any i, j.

2.3. Connected quandles

In this subsection, we recall the notion of connected quandles and connected components. We also describe
examples of connected and disconnected quandles.

Definition 2.4. Let (X, s) be a quandle. The group generated by {sx | x ∈ X} is called the inner automorphism
group of (X, s), and denoted by Inn(X, s). A quandle (X, s) is said to be connected if Inn(X, s) acts transitively
on X .

It follows from (Q2) and (Q3) that sx ∈ Aut(X, s) for all x ∈ X . Then one has Inn(X, s) ⊂ Aut(X, s), which
yields the following.

Proposition 2.1. If a quandle (X, s) is connected, then it is homogeneous.

For a quandle (X, s) and x ∈ X , the orbit Inn(X, s).x is called the connected component containing x. It is easy
to see that every connected component is a subquandle. Note that a quandle (X, s) is connected if and only if
any connected component coincides with X .

Example 2.6.

(1) The dihedral quandle Dr is connected if and only if r is odd;
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(2) The quandle An−1 = {±e1, . . . ,±en} is always disconnected.

Proof. The assertion for Dr is well-known. We have only to show the second assertion. If n = 1, then A0 = {±e1}
is trivial and hence disconnected. If n ≥ 2, then it is easy to see from (2.5) that {±ei} are connected components,
and hence An−1 is disconnected.

Finally in this subsection, we show that an automorphism maps a connected component onto a connected
component.

Proposition 2.2. Let φ ∈ Aut(X, s), and take x ∈ X . Then φ maps the connected component containing x onto the
connected component containing φ(x).

Proof. First of all, we recall that the inner automorphism group Inn(X, s) is a normal subgroup of Aut(X, s).
This follows from

f ◦ sy ◦ f−1 = sf(y) (2.8)

for any f ∈ Aut(X, s) and y ∈ X . Note that the connected component containing x is Inn(X, s).x. We thus have

φ(Inn(X, s).x) = φInn(X, s)φ−1.(φ(x)) = Inn(X, s).(φ(x)), (2.9)

which is the connected component containing φ(x).

2.4. Commutativity of transformation groups

In this subsection, We study the commutativity of G0(X, s) and Inn(X, s) for the quandles described above.
Recall that the definition of flat quandles is given in [10].

Definition 2.5. A quandle (X, s) is said to be flat if the group G0(X, s) generated by {sx ◦ sy | x, y ∈ X} is
abelian.

We are interested in flat quandles, and also in quandles with Inn(X, s) being abelian. Recall that flat
connected quandles have been classified in [10, 17].

Example 2.7.

(1) The dihedral quandle Dr is always flat, and it has an abelian inner automorphism group if and only if
r ∈ {1, 2, 4};

(2) The quandle An−1 = {±e1, . . . ,±en} has an abelian inner automorphism group, for every n ∈ Z≥1.

Proof. We show (1). For the dihedral quandle Dr, recall that sx is defined by the reflection rSpan{x}. Note that
every reflection is an element in O(2) with determinant −1. This yields that G0(Dr, s) is a subgroup of SO(2),
and hence it is abelian, which shows that Dr is flat. The assertion on Inn(Dr, s) follows from the following fact:
for x, y ∈ S1, two reflections rSpan{x} and rSpan{y} commute each other if and only if x and y are orthogonal or
parallel. In particular, the inner automorphism group is isomorphic to Z2 × Z2 if n = 4.

We show (2). For the quandle An−1, recall that s±ei is defined by the reflection rSpan{ei}, and this reflection
can be represented as a diagonal matrices with respect to the basis {e1, . . . , en}. This yields that rSpan{ei} and
rSpan{ej} commute, and hence sei and sej commute.

We conclude that the quandle An−1 = {±e1, . . . ,±en} is homogeneous, disconnected, and having abelian
inner automorphism group. In fact, An−1 are simplest examples of the quandles constructed in this paper.

3. Motivating examples

The quandle An := {±e1, . . . ,±en+1} defined in the previous section is homogeneous, disconnected, and
having an abelian inner automorphism group. Recall that An is defined as a subquandle of the sphere quandle
Sn. In this section, we introduce further examples of quandles with the same properties. They are given by
certain subquandles of the oriented real Grassmannians Gk(Rn)∼ (also called the oriented real Grassmannian
manifolds).
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3.1. Real Grassmannians

In this subsection, we briefly recall (nonoriented) real Grassmannians and their quandle structures. As a set,
real Grassmannians are defined by

Gk(Rn) := {V | a linear subspace in Rn with dimV = k}. (3.1)

Recall that rV denotes the reflection with respect to a linear subspace V in Rn (see Lemma 2.1). The quandle
structure on Gk(Rn) is induced from the reflections.

Proposition 3.1. For each V ∈ Gk(Rn), denote by sV : Gk(Rn) → Gk(Rn) the map induced from rV . Then this s gives
a quandle structure on Gk(Rn).

Proof. Note that the induced map sV is given as

sV (W ) := {rV (w) ∈ Rn | w ∈ W}. (3.2)

It is easy to see sV (W ) ∈ Gk(Rn), that is, s is well-defined. By the definition of s, Conditions (Q1) and (Q2) are
easy to check. Condition (Q3) follows from Lemma 2.1.

It also follows directly from Lemma 2.1 (2) that O(n) acts on Gk(Rn) as automorphisms.

3.2. Oriented real Grassmannians

In this subsection, we recall the definition and some basic facts on the oriented real Grassmannians Gk(Rn)∼.
First of all, let us recall an orientation of a vector space.

Definition 3.1. Let V be a k-dimensional real vector space, and let (v1, . . . , vk) and (w1, . . . , wk) be ordered bases
of V . Then they are said to have the same orientation if there exists g ∈ GL(k,R) with det(g) > 0 such that

(v1, . . . , vk) = (w1, . . . , wk)g. (3.3)

Note that the matrix g is so-called the change-of-basis matrix. It is clear that the above “same orientation”
gives an equivalence relation.

Definition 3.2. Each element of the following quotient space OR(V ) is called an orientation of V :

OR(V ) := {ordered bases of V }/“same orientation”. (3.4)

One can easily see that OR(V ) consists of two elements, that is, there exist exactly two orientations of V . An
orientation is denoted as σ = [(v1, . . . , vk)], where (v1, . . . , vk) is an ordered basis.

Definition 3.3. The set of all oriented k-dimensional linear subspaces in Rn is called the oriented real
Grassmannian, and denoted by

Gk(Rn)∼ := {(V, σ) | V ∈ Gk(Rn), σ ∈ OR(V )}. (3.5)

As in the nonoriented case, the quandle structure is induced from the reflections rV . First of all, we show
that O(n) acts on Gk(Rn)∼.

Lemma 3.1. The orthogonal group O(n) acts on Gk(Rn)∼, where the action of g ∈ O(n) on (W, τ) ∈ Gk(Rn)∼ with
τ = [(w1, . . . , wk)] is defined by

g.(W, τ) := (g(W ), [(g(w1), . . . , g(wk))]). (3.6)

Proof. One knows g(W ) ∈ Gk(Rn). Furthermore, if (w1, . . . , wk) and (w′
1, . . . , w

′
k) have the same orientation,

then so do (g(w1), . . . , g(wk)) and (g(w′
1), . . . , g(w

′
k)). This shows that the action is well-defined. One also needs

to show the conditions of the group actions, that is,

e.(W, τ) = (W, τ), h.(g.(W, τ)) = (hg).(W, τ), (3.7)

where e is the identify, and for any g, h ∈ O(n). Both of them follow directly from the definition.
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Recall that the reflection satisfies rV ∈ O(n). Therefore, by this lemma, rV induces a map from Gk(Rn)∼ onto
itself. This gives a quandle structure.

Proposition 3.2. For (V, σ) ∈ Gk(Rn)∼, let us denote by s(V,σ) the action on Gk(Rn)∼ induced from the reflection rV .
Then this s gives a quandle structure on Gk(Rn)∼. Furthermore, O(n) acts on Gk(Rn)∼ as automorphisms.

Proof. Conditions (Q1) and (Q2) are obvious. It follows from Lemma 2.1 that s satisfies (Q3), and also O(n) acts
on Gk(Rn)∼ as automorphisms.

It is well-known that Gk(Rn)∼ is a Riemannian symmetric space, whose geodesic symmetry at (V, σ) is
nothing but the above s(V,σ).

3.3. Some subquandles in the oriented real Grassmannians

In this subsection, we introduce some subquandles in Gk(Rn)∼, and prove that they are homogeneous,
disconnected, and having abelian inner automorphism groups. For simplicity of the notation, let us put

(i1, . . . , ik) := (Span{ei1 , . . . eik}, [(ei1 , . . . eik)]) ∈ Gk(Rn)∼. (3.8)

We also denote by −(i1, . . . , ik) the same linear subspace, but equipped with the opposite orientation.

Proposition 3.3. The following A(k, n) is a subquandle of Gk(Rn)∼:

A(k, n) := {±(i1, . . . , ik) ∈ Gk(Rn)∼ | 1 ≤ i1 < · · · < ik ≤ n}. (3.9)

Proof. Take any I := ±(i1, . . . , ik) ∈ A(k, n). We denote by rI the reflection with respect to Span{ei1 , . . . eik}.
Then it satisfies

rI(ej) =

{
ej (if j ∈ {i1, . . . , ik}),

−ej (otherwise). (3.10)

Recall that sI is induced from rI . Then sI is involutive, since so is rI . We thus have only to show that

sI(A(k, n)) ⊂ A(k, n). (3.11)

Take any J := ±(j1, . . . , jk) ∈ A(k, n). Then we have

sI(J) =

{
J (if #({j1, . . . , jk} \ {i1, . . . , ik}) is even),

−J (if #({j1, . . . , jk} \ {i1, . . . , ik}) is odd). (3.12)

This yields that sI(J) ∈ A(k, n), which completes the proof.

One can see from (3.12) that A(1, n) ∼= An−1. As for the case of An, the quandles A(k, n) have the following
nice properties.

Proposition 3.4. The quandle A(k, n) is homogeneous, disconnected, and having an abelian inner automorphism group.

Proof. First of all, we show the homogeneity. Note that O(n) acts on Gk(Rn)∼ as automorphisms by
Proposition 3.2. Hence, by Lemma 2.2, it is enough to prove that the normalizer N(A(k, n)) in O(n) acts
transitively on A(k, n). Take any I = ±(i1, . . . , ik) ∈ A(k, n), and show that there exists g ∈ N(A(k, n)) such that
g(I) = (1, . . . , k). First of all, similarly to the proof of Example 2.5, the normalizer N(A(k, n)) contains a rotation
of angle π/2 in the eiej-plane, for any i, j. Then there exists h ∈ N(A(k, n)) such that

h(Span{ei1 , . . . , eik}) = Span{e1, . . . , ek}. (3.13)

This yields that h(I) = ±(1, . . . , k). Here, let us put

g := (±1, 1, . . . , 1)h ∈ N(A(k, n)), (3.14)

where the double-signs correspond. Then we have g(I) = (1, . . . , k), which completes the proof of the
homogeneity.

We next show that it is disconnected. Assume that A(k, n) is connected. Then, for every J ∈ A(k, n), it follows
from (3.12) that

{±J} ⊃ Inn(A(k, n)).J = A(k, n) ⊃ {±J}. (3.15)

We thus have #A(k, n) = 2. However, such quandle must be trivial, which is a contradiction. This proves that
A(k, n) is disconnected.

We finally study the inner automorphism group. It follows from (3.10) that, for every I ∈ A(k, n), the
reflection rI can be realized as a diagonal matrices. Therefore, by the definition of sI , the inner automorphism
group Inn(A(k, n)) is abelian. This completes the proof.
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3.4. A key observation

In this subsection, we observe that one can construct a graph from the quandle A(k, n). Recall that a graph
G = (V (G), E(G)) consists of the set of vertices V (G) and the set of edges E(G).

We here describe an idea of our construction by using

A(2, 4) = {±(1, 2),±(1, 3),±(1, 4),±(2, 3),±(2, 4),±(3, 4)}. (3.16)

One knows that A(2, 4) is decomposed into 6 connected components, which are of the form {±(i, j)}. Recall
that a connected component is an orbit of the inner automorphism group. We denote by [i, j] := {±(i, j)}.

Example 3.1. For A(2, 4), let us construct a graph as follows:

• put V (G) := {[i, j] | 1 ≤ i < j ≤ 4}, that is, the connected components correspond to vertices;
• join [i, j] and [k, ℓ] by an edge if s±(i,j) acts nontrivially on {±(k, ℓ)}.

Then we obtain the graph in Fig. 1.

[1,2] [1,3]

[1,4] [2,3]

[2,4] [3,4]

Figure 1. The graph associated from A(2, 4)

Proof. One can directly show the assertion by (3.12). Note that s±(i,j) acts nontrivially on {±(k, ℓ)} if and only
if s±(k,ℓ) acts nontrivially on {±(i, j)}.

Conversely, one can expect that the quandle structure of A(2, 4) is reconstructed from the graph in Fig. 1. In
fact, this is true. More generally, starting from any graphs, one can construct quandles. We will formulate this
construction in the next sections.

4. The quandles associated to graphs

By a simple graph, we mean an undirected graph containing no loops or multiple edges. In this section,
we show the first part of Theorem 1.2. Namely, we construct quandles QG associated to simple graphs G, and
prove that they are always disconnected and having abelian inner automorphism groups.

4.1. Definition of QG

In this subsection, we define the quandle QG for a simple graph G, by referring to the examples given in
Subsection 3.4. We denote a graph by G = (V (G), E(G)), where V (G) is the set of vertices and E(G) is the set
of edges. For each v, w ∈ V (G), denote by v ∼ w if they are joined by an edge. We use the adjacent function
e : V (G)× V (G) → Z2 defined in (1.2).

Definition 4.1. Let G = (V (G), E(G)) be a simple graph, and put X := V (G)× Z2. Then we define the associated
map s : X → Map(X,X) by

s(v,a)(w, b) := (w, b+ e(v, w)). (4.1)

Intuitively, QG is constructed by attaching Z2 on each vertex of a graph G. The map s is defined by using
information of the edges.
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Proposition 4.1. Let G = (V (G), E(G)) be a simple graph. Then the associated map s is a quandle structure on
X := V (G)× Z2.

Proof. Since the graph G is simple, one has v ̸∼ v and hence e(v, v) = 0. This proves (Q1). Also, by the definition
of s, we have

s2(v,a)(w, b) = s(v,a)(w, b+ e(v, w)) = (w, b+ 2e(v, w)) = (w, b). (4.2)

This means s2(v,a) = id, and hence proves (Q2). It remains to show (Q3). By the definition of s, we have

s(v,a) ◦ s(w,b)(u, c) = s(v,a)(u, c+ e(w, u)) = (u, c+ e(w, u) + e(v, u)). (4.3)

On the other hand, since s(v,0) = s(v,1) by definition, it satisfies

s(s(v,a)(w,b)) = s(w,b+e(v,w)) = s(w,b). (4.4)

This yields that

s(s(v,a)(w,b)) ◦ s(v,a)(u, c) = s(w,b)(u, c+ e(v, u)) = (u, c+ e(v, u) + e(w, u)), (4.5)

which completes the proof.

Therefore, the pair (QG, s) is indeed a quandle for every graph G. This (QG, s) is called the quandle associated
to G in this paper.

4.2. Examples of QG

As examples, we here describe QG when G are easy graphs. The first case is an empty graph. Recall that a
graph is said to be empty or edgeless if there are no edges, that is, E(G) = ∅.

Example 4.1. A graph G is empty if and only if QG is a trivial quandle.

Proof. It follows easily from the definition of the associated map s.

The next easy example is given by a complete graph. Recall that a graph is said to be complete if any two
vertices are joined by an edge.

Example 4.2. If G is a complete graph with n vertices, then QG is isomorphic to the quandle An−1 =
{±e1, . . . ,±en} described in Example 2.4.

Proof. We denote by V (G) = {v1, . . . , vn}. Then one can directly see that

f : V (G)× Z2 → An−1 : (vi, a) 7→ (−1)aei (4.6)

gives a quandle isomorphism between QG and An−1.

In Subsection 3.3, the subquandle A(k, n) of the oriented real Grassmannian Gk(Rn)∼ is defined. We here
show that A(k, n) is constructed from a graph.

Example 4.3. Let N := {1, . . . , n} and fix k ∈ N . Let us define a graph G by

V (G) := {v ⊂ N | #v = k},
v ∼ w :⇔ #(v \ w) is odd.

Then the associated quandle QG is isomorphic to A(k, n).

Proof. We construct a map f : V (G)× Z2 → A(k, n). Let v ∈ V (G), and we use the notation defined in
Subsection 3.3. Then one has v = {i1, . . . , ik} with i1 < · · · < ik. In terms of this expression, we define

f({i1, . . . , ik}, a) :=
{

(i1, . . . , ik) (if a = 0),
−(i1, . . . , ik) (if a = 1).

(4.7)

It is obvious that f is bijective, and it follows from (3.12) that f is a quandle homomorphism.

The above graphs with k = 1 are complete graphs, and those with k = 2 are known as the Johnson graphs
J(n, 2). Recall that the Johnson graph J(n, k) is defined by the same set of vertices V (G), and v, w ∈ V (G) are
joined by an edge if #(v ∩ w) = k − 1.
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4.3. Properties of QG

In this subsection, we study some basic properties of the quandles QG associated to graphs G. In particular,
they are all disconnected and having abelian inner automorphism groups. We begin with fundamental
properties.

Proposition 4.2. For every graph G, the quandle QG satisfies the following:

(1) all connected components consist of at most two points;

(2) it is crossed, that is, for all x, y ∈ X , “sx(y) = y implies sy(x) = x”.

Proof. Take any (v, a) ∈ X . Recall that a connected component is an orbit of Inn(X, s). Hence, by the definition
of s, the connected component containing (v, a) satisfies

Inn(X, s).(v, a) ⊂ {(v, 0), (v, 1)}. (4.8)

This proves (1). The assertion (2) also follows easily from the definition of s. In fact, since edges of G have no
orientation, one knows that v ∼ w if and only if w ∼ v for all v, w ∈ V (G).

We see some more properties of QG. The following properties can be derived from the property mentioned
above.

Proposition 4.3. Let (X, s) be a quandle, and assume that all connected components consist of at most two points. Then
we have the following:

(1) (X, s) is disconnected if #X > 1;

(2) Inn(X, s) is abelian.

Proof. Assume that #X > 1 and (X, s) is connected. Then, by the assumption on connected components, we
have #X = 2. Hence X must be a trivial quandle, which is disconnected. This is a contradiction, and hence
proves (1). In order to show (2), take any x, y, z ∈ X . We have only to show that

sx ◦ sy(z) = sy ◦ sx(z). (4.9)

If Inn(X, s).z = {z}, then the claim easily follows. Assume that Inn(X, s).z consists of two points, namely {z, z′}.
Note that the symmetry group of {z, z′} is isomorphic to Z2, which is abelian. Therefore, sx|{z,z′} and sy|{z,z′}
commute, which completes the proof of (4.9).

Recall that #QG ≥ 2. Therefore, for every graph G, we have proved that QG is a disconnected quandle and
having an abelian inner automorphism group.

4.4. Note on abelian extensions

In this subsection, we mention that the quandles QG associated to graphs are abelian extensions. For an
abelian group A, we regard it as an additive group (A,+).

Definition 4.2. Let (X, s) be a quandle, and A be an abelian group. Then a map ϕ : X ×X → A is called a
quandle 2-cocycle if it satisfies

(1) ϕ(x, x) = 0 for any x ∈ X ;

(2) ϕ(x, y)− ϕ(x, z) + ϕ(sy(x), z)− ϕ(sz(x), sz(y)) = 0 for any x, y, z ∈ X .

In the case that (X, s) is a trivial quandle, Condition (2) holds for every map ϕ. By using a quandle 2-cocycle,
one can construct a new quandle, by extending the original quandle (X, s).

Proposition 4.4 ([3, 4]). Let (X, s) be a quandle, A be an abelian group, and ϕ : X ×X → A be a quandle 2-cocycle.
Then the map s defined by the following gives a quandle structure on X ×A:

s(x,a)(y, b) := (sx(y), b+ ϕ(v, w)) (x, y ∈ X, a, b ∈ A).

For a simple graph G = (V (G), E(G)), we regard the set of vertices V (G) as a trivial quandle. As an abelian
group, we take Z2. Then the adjacent function e : V (G)× V (G) → Z2 is a quandle 2-cocycle. Note that e(v, v) = 0
holds, since the simple graph G contains no loops. Hence one can obtain a quandle by this 2-cocycle, which is
nothing but the quandle QG defined in the previous subsection.
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5. The quandles associated to vertex-transitive graphs

Recall that a graph G = (V (G), E(G)) is said to be vertex-transitive if the graph automorphism group Aut(G)
acts transitively on V (G). In this section, we show the latter part of Theorem 1.2, that is, the quandle QG is
homogeneous if and only if G is vertex-transitive. A characterization of such quandles is also given.

5.1. Some isomorphisms of QG

In this subsection, we give some quandle isomorphisms and automorphisms on QG. This gives some
relations between graph automorphisms and quandle isomorphisms.

Lemma 5.1. Let G1 and G2 be graphs, and ϕ : V (G1) → V (G2) be a map. We consider

φ : V (G1)× Z2 → V (G2)× Z2 : (v, a) 7→ (ϕ(v), a). (5.1)

Then ϕ is a graph isomorphism between G1 and G2 if and only if φ is a quandle isomorphism between QG1
and QG2

.

Proof. It is easy to see that ϕ is bijective if and only if φ is bijective. Hence we have only to show that ϕ is a graph
homomorphism if and only if φ is a quandle homomorphism. One knows that ϕ is a graph homomorphism if
and only if

e(v, w) = e(ϕ(v), ϕ(w)) (∀v, w ∈ V (G1)). (5.2)

On the other hand, by definition, φ is a quandle homomorphism if and only if

φ ◦ s(v,a)(w, b) = sφ(v,a) ◦ φ(w, b) (5.3)

holds for any (v, a), (w, b) ∈ V (G1)× Z2. For the both sides of this equation, we have that

(LHS) = φ(w, b+ e(v, w)) = (ϕ(w), b+ e(v, w)),

(RHS) = s(ϕ(v),a)(ϕ(w), b) = (ϕ(w), b+ e(ϕ(v), ϕ(w))).
(5.4)

This proves that φ is a quandle isomorphism if and only if (5.2) holds, which completes the proof.

We need another isomorphism of QG, which fixes the graph but interchanges any two points on the same
vertex.

Lemma 5.2. Let QG := (V (G)× Z2, s) be the quandle associated to a graph G. Then for every u ∈ V (G), the following
ru is an automorphism of QG:

ru : V (G)× Z2 → V (G)× Z2 : (v, a) 7→
{

(v, a+ 1) (v = u),
(v, a) (v ̸= u).

(5.5)

Proof. It is clear that ru is bijective. In order to show that ru is a homomorphism, take any (v, a), (w, b) ∈
V (G)× Z2. We claim that

ru ◦ s(v,a)(w, b) = sru(v,a) ◦ ru(w, b). (5.6)

For simplicity of the notation, we put

δ(x, y) :=

{
1 (x = y),
0 (x ̸= y)

(5.7)

for x, y ∈ V (G). Then, for the both sides of the claim, one can see that

(LHS) = ru(w, b+ e(v, w)) = (w, b+ e(v, w) + δ(u,w)),

(RHS) = s(v,a+δ(u,v))(w, b+ δ(u,w)) = (w, b+ δ(u,w) + e(v, w)).
(5.8)

This completes the proof of the claim.
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5.2. The homogeneity

In this subsection, we prove the main result of this section, namely, QG is homogeneous if and only if G is
vertex-transitive. We start with a lemma on the connected components.

Lemma 5.3. Let QG be the quandle associated to a graph G, and assume that QG is nontrivial and homogeneous. Then
all connected components of QG consist of two points, which are of the form {(u, 0), (u, 1)} with u ∈ V (G).

Proof. Since QG is homogeneous, it follows from Proposition 2.2 that all connected components of QG have the
same cardinality. On the other hand, one knows from Proposition 4.2 that each connected component consists
of at most two points, namely

Inn(X, s).(u, a) ⊂ {(u, 0), (u, 1)}. (5.9)

If all connected components of QG consist of one point, then QG must be a trivial quandle, which is not the
case. Hence all connected components consist of two points.

We are in a position to prove the main result of this section. The isomorphisms obtained in the previous
subsection play fundamental roles.

Theorem 5.1. Let G be a graph, and QG be the quandle associated to G. Then QG is homogeneous if and only if G is
vertex-transitive.

Proof. Assume that G is vertex-transitive, and show that Aut(QG) acts transitively on V (G)× Z2. Take any
(v, a), (w, b) ∈ V (G)× Z2. By assumption, there exists ϕ ∈ Aut(G) such that ϕ(v) = w. It then follows from
Lemma 5.1 that there exists φ ∈ Aut(QG) such that

φ(v, a) = (ϕ(v), a) = (w, a). (5.10)

Therefore, by composing an automorphism given in Lemma 5.2 if necessary, one can find a quandle
automorphism which maps (v, a) into (w, b).

Conversely, assume that QG is homogeneous, and prove that G is vertex-transitive. When QG is a trivial
quandle, G is an empty graph, which is vertex-transitive. Therefore we have only to consider the case that QG

is nontrivial. Take any v, w ∈ V (G). Since QG is homogeneous, there exists a quandle isomorphism φ ∈ Aut(QG)
such that φ(v, 0) = (w, 0). Since QG is also nontrivial, Lemma 5.3 yields that all the connected components of
QG are of the form {(u, 0), (u, 1)}. Therefore, by applying Proposition 2.2, we can show that there exists a map
ϕ : V (G) → V (G) such that

φ(u, ∗) = (ϕ(u), ∗) (∀u ∈ V (G)). (5.11)

One knows ϕ(v) = w, and hence we have only to show that ϕ ∈ Aut(G). Here, by composing φ with the
automorphisms given in Lemma 5.2 if necessary, we can assume without loss of generality that

φ(u, a) = (ϕ(u), a) (∀u ∈ V (G), ∀a ∈ Z2). (5.12)

Lemma 5.1 thus yields that ϕ is a graph isomorphism.

Since there are a lot of vertex-transitive graphs, one can construct a lot of homogeneous disconnected
quandles with abelian inner automorphism groups. We also note that graphs G are not necessary finite. If
G is infinite, then we can construct an infinite quandle.

5.3. A characterization

In this subsection, we give a characterization of quandles QG associated to vertex-transitive graphs G. Recall
that a quandle Q is said to be crossed if for all x, y ∈ X , it satisfies “sx(y) = y implies sy(x) = x”.

Lemma 5.4. Let Q be a crossed quandle, and let {v0, v1} and {w0, w1} be connected components of Q. Then the following
are mutually equivalent:

(1) sv0(w0) = w0; (2) sv0(w1) = w1;

(3) sv1(w0) = w0; (4) sv1(w1) = w1;
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(5) sw0(v0) = v0; (6) sw0(v1) = v1;

(7) sw1(v0) = v0; (8) sw1(v1) = v1.

Proof. Since Q is crossed, one has the following four equivalences:

(1) ⇔ (5), (2) ⇔ (7), (3) ⇔ (6), (4) ⇔ (8). (5.13)

Since {w0, w1} is a connected component, it is preserved by svi . Therefore, svi gives a bijection from {w0, w1}
onto itself. This yields that

(1) ⇔ (2), (3) ⇔ (4). (5.14)

Similarly, since swi gives a bijection from {v0, v1} onto itself, one has that

(5) ⇔ (6), (7) ⇔ (8). (5.15)

This completes the proof.

By applying this lemma, we can give a sufficient condition for a quandle Q to be constructed from a graph
G.

Lemma 5.5. Let Q be a crossed quandle, and assume that all connected components of Q consist of two points. Then
there exists a graph G such that Q is isomorphic to QG.

Proof. First of all we construct a graph G. Let V be the set of all connected components of Q, which will be the
set of vertices. We write it as

V = {vλ | λ ∈ Λ}. (5.16)

The set of edges are defined as follows. By assumption, each vλ consists of two points, namely

vλ = {vλ0 , vλ1 }. (5.17)

We join vλ and vµ by an edge if svλ
0

acts nontrivially on vµ. This defines a graph G = (V,E), which is well-
defined by Lemma 5.4. Let e : V × V → Z2 be the adjacent function of the graph G, and denote by sQ the
quandle structure of Q. Then one has that

sQ
vλ
a
(vµb ) = vµ

b+e(vλ,vµ)
. (5.18)

Let QG = (V × Z2, s) be the quandle associated to the graph G. It remains to show that QG is isomorphic to Q.
We define a map

f : V × Z2 → Q : (vλ, a) 7→ vλa . (5.19)

This is clearly bijective, and also we can show that f is a homomorphism. In fact, by definition of the quandle
structure s, one has

f ◦ s(vλ,a)(v
µ, b) = f(vµ, b+ e(vλ, vµ)) = vµ

b+e(vλ,vµ)
. (5.20)

Furthermore, it follows from (5.18) that

sQ
f(vλ,a)

◦ f(vµ, b) = sQ
vλ
a
(vµb ) = vµ

b+e(vλ,vµ)
. (5.21)

This proves that f is a homomorphism, and hence an isomorphism.

We now give a characterization for quandles associated to vertex-transitive graphs. Note that we are only
interested in the case of nontrivial quandles.

Proposition 5.1. Let Q be a quandle. Then, it is isomorphic to QG for some nonempty vertex-transitive graph G if and
only if it satisfies

(1) all connected components of Q consist of two points;
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(2) Q is crossed;

(3) Q is homogeneous.

Proof. Let G be a nonempty vertex-transitive graph. Then, QG satisfies (1) by Lemma 5.3, (2) by Proposition 4.2,
and (3) by Theorem 5.1.

It remains to show the “if”-part. Assume that Q satisfies the above three conditions. By Conditions (1) and (2),
Lemma 5.5 yields that there exists a graph G such that Q is isomorphic to QG. Furthermore, by Condition (3),
Theorem 5.1 yields that G is vertex-transitive. Finally, G is nonempty since Q ∼= QG is nontrivial. This completes
the proof.
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