
Abstract—This paper presents a novel multi-channel coopera-
tive spectrum sensing and scheduling (MC2S3) framework for
spectrum and energy harvesting cognitive Internet of Things
(IoT) networks. We address the challenge of maximizing network
throughput by formulating a combinatorial problem that jointly
optimizes the sensing scheduling of primary channels (PCs), the
assignment of IoT devices for sensing scheduled PCs, and the
clustering and allocation of IoT nodes to efficiently use discovered
idle PCs; subject to spectrum utilization and collision avoidance
constraints. Recognizing the inherent complexity of the under-
lying NP-hard mixed-integer non-linear programming (MINLP)
problem, we propose a decomposition strategy that decouples
the master problem into PC exploration and exploitation sub-
problems. In the exploration phase, we derive closed-form solu-
tions for optimal sensing durations and detection thresholds that
satisfies spectrum utilization and collision avoidance constraints,
which are then used to develop a priority metric to rank PCs. The
proposed PC ranking informs a sequential PC scheduling and IoT
sensing assignment approach that exploits a linear bottleneck
assignment (LBA) strategy, proceeding until further scheduling
does not enhance network utility. For the exploitation phase, we
leverage a non-orthogonal multiple access (NOMA) strategy to
multiplex multiple IoT nodes on a single PC, employing an itera-
tive linear sum assignment (LSA) method for efficient allocation
to maximize utilization of idle PCs. Numerical results validate
the efficacy of our proposed methodologies, reaching an accuracy
of approximately 99% in the order of milliseconds, significantly
outperforming time complexity of brute-force benchmarks.

Index Terms—Internet of Things, Cognitive Radio Networks,
Cooperative Spectrum Sensing, Energy Detection, Energy Har-
vesting.

I. INTRODUCTION

a secondary base station (SBS) [4]. The overarching goal is
to minimize the exploration time by swiftly identifying the
greatest number of potentially idle PCs with a high probability
of being unoccupied. The duration of PC exploration predom-
inantly hinges on the assignment of IoT nodes to sense sched-
uled PCs, ultimately determined by the node with the longest
sensing time. Therefore, the overall channel exploration time
is set by the slowest IoT as the SBS cannot make a decision
until receiving local decisions from all IoT nodes. Moreover,
requiring more IoT nodes to cooperate on sensing improves
the detection accuracy of MC2S3. This necessitates a judicious
balance between the speed of detection and the accuracy of
cooperatively identifying idle spectrum opportunities. Another
subtle yet critical issue is that a PC with a high probability of
being idle may incur a high sensing duration if there is no IoT
nodes with good sensing quality on that PC. Thus, scheduling
such a PC to be sensed may deteriorate overall spectrum
discovery and available throughput for the IoT network, under-
scoring the importance of a joint optimization strategy for both
PC scheduling and IoT sensing assignment. It is also worth
noting that jointly optimizing sensing and scheduling tasks to
minimize the spectrum exploration time not only maximizes
the time remaining for the spectrum exploitation but also
minimizes the MC2S3 energy consumption and maximizes the
available time for wireless energy harvesting [5].

The spectrum exploitation phase focuses on the effective
allocation of identified idle PCs and the strategic clustering
of IoT devices, aiming to maximize the utility of limited
spectrum resources. In densely populated IoT networks, where
the demand for vacant PCs far exceeds the supply, achieving
high-quality service (QoS) becomes a formidable challenge.
Here, non-orthogonal multiple access (NOMA) techniques
offer a promising solution by allowing multiple users to share
the same spectrum resources through distinct identification
methods such as power levels or codes, thereby enhancing
spectrum efficiency [6]. However, the implementation of tra-
ditional power-domain NOMA schemes involves complexities
related to grant acquisition and power weight calculations,
which could introduce computational and signaling overheads,
especially in uplink transmissions [7]. To circumvent these
challenges, our study explores a grant-free operational model,
where transmit powers are predetermined, and the reception
disparity is tactically managed during the clustering phase by
grouping IoT nodes with distinct channel characteristics into
the same cluster.

Addressing the intertwined challenges of efficient spectrum
sensing, optimal scheduling, and effective exploitation of dis-
covered spectrum often falls within the real of combinatorial
problems, whose computational complexity is prohibitive even

       

T
[1],  [2].  In  particular,  stands  at  the  forefront  of  this  challenge,
facilitating  a  collaborative  mechanism  for  IoT  devices  to  detect
and  utilize  underutilized  spectrum  bands  across  multiple  pri-
mary  channels  (PCs),  thereby  addressing  the  spectrum  scarcity
problem  [3].  This  endeavor  unfolds  through  two  critical
phases:  spectrum  exploration  and  spectrum  exploitation,  each
harboring  distinct  complexities  and  optimization  prospects.
  During  the  spectrum  exploration  stage,  the  essence  of  multi-
channel  cooperative  spectrum  sensing  scheduling  (MC2S3)
unfolds  as  multiple  IoT  nodes  concurrently  sense  various  PCs,
reporting  their  findings  to  a  central  decision  maker,  typically
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for moderate size of networks. Accordingly, this paper con-
tributes to the advancement of cognitive IoT networks through
developing fast yet efficient solutions for enhancing network
throughput, energy efficiency, and overall performance in the
face of growing spectrum demands.

A. Related Works

Cooperative Spectrum Sensing (CSS) has emerged as a piv-
otal technology to address the challenges of spectrum scarcity
in cognitive IoT networks, focusing on optimizing spectral
and energy efficiency while ensuring minimal interference
with primary network (PN). This subsection reviews recent
advancements in CSS, highlighting various strategies aimed
at optimizing sensing operations, energy consumption, and
network throughput.

Heuristic Solutions and Optimization Techniques have been
proposed to address the challenges in CSS, aiming at im-
proving energy efficiency and network utility. Chauhan et
al. introduced a CSS scheme using a greedy-based heuristic
solution to enhance network utility and energy efficiency in
heterogeneous multi-channel CRNs. This approach adaptively
optimizes the sensing duration based on the received signal-to-
noise ratio (SNR) [8]. On the other hand, Cao et al. proposed
a PSO-based CSS strategy, focusing on system throughput
and energy efficiency optimization. This strategy balances
sensing performance and energy consumption effectively [9].
Likewise, Kaschel et al. explored energy-efficient solutions for
dynamic CRNs, proposing a framework to predict energy con-
sumption in CSS tasks, minimizing energy consumption with
low-complexity algorithms [10]. Moreover, a green approach
with an emphasis on high energy efficiency through spectrum
sensing and power allocation optimization is proposed in [11],
demonstrating significant energy efficient improvements. Fi-
nally, Al-Kofahi et al. proposed Spectrum Sensing as a Service
(SSaS) approach to optimize sensor selection to minimize
energy consumption with a sub-optimal greedy algorithm [12].
In [13] and [14], statistical and systematic approaches are of-
fered to evaluate network lifetime and identifying correlations
between spectrum sensing, clustering algorithms, and energy-
harvesting technology, respectively. Finally, Wu et al. explored
the impact of user characteristics on CSS performance in
mobile CRNs, proposing a dynamic detection scheme to
optimize performance [15].

Machine Learning (ML) Approaches have also been utilized
to enhance sensing accuracy and efficiency in CSS. Ning et
al. presented a reinforcement learning-enabled CSS scheme
for CRNs, optimizing the scanning order of channels and
the selection of cooperative partners to improve detection
efficiency [16]. Shi et al. employed multiple ML algorithms,
including unsupervised and supervised learning techniques,
to tackle the challenges of complex sensing models in CSS
[17]. Moreover, Ahmed et al. integrated CR technology with
IoT, employing SVM for spectrum sensing and allocation,
demonstrating high reliability in frequency band allocation
[18].

Game-Theoretic Models have been applied to extend net-
work lifetime and improve sensing quality and cooperation

among sensors. Bagheri et al. proposed a novel game-theoretic
sensor selection algorithm for MCSS in WSNs, focusing on
extending the network lifetime while ensuring the quality of
sensing [19]. Rajendran et al. introduced a distributed coalition
formation game with a genetic algorithm for optimal coalition
head selection in CSS among SUs, enhancing sensing accuracy
and minimizing energy consumption [20].

Cooperative Prediction and Sensing Schemes have also been
studied to minimize energy consumption and maintain spectral
efficiency. Chauhan et al. proposed a cooperative spectrum
prediction-driven sensing scheme employing long short-term
memory networks for local spectrum prediction, aiming at
reducing energy consumption [21]. Gharib et al. proposed
a heterogeneous multi-band multi-user CSS scheme for IoT
in CR networks, improving detection performance and CRN
throughput through optimized leader selection and cooperative
sensing [22].

B. Main Contributions

The main contributions of this paper can be summarized as
follows:

‚ We consider MC2S3 for spectrum and energy harvesting
cognitive IoT networks. An optimal problem formulation
is provided to maximize overall IoT network throughput
through joint optimization of sensing scheduling of PCs,
assignment of IoTs to sense scheduled PCs, and clustering
and allocating IoT nodes to exploit discovered idle PCs;
subject to collision and spectrum utilization constraints
of CSS. The proposed system model considers practical
aspects including channel reporting errors as well as
channel switching and reporting latency.

‚ Since the optimal problem falls into the class of
mixed-integer non-linear programming (MINLP) prob-
lem, which is known to be NP-hard, we propose a decom-
position approach to decouple it into PC exploration and
exploitation sub-problems. For the PC exploration sub-
problem, we derive optimal sensing durations and detec-
tion thresholds in closed-form to inform a PC ranking
mechanism based on a newly proposed priority metric.
PCs are scheduled sequentially according to their priority,
and IoT nodes are assigned using a linear bottleneck
assignment (LBA) strategy to minimize exploration time.
This process continues until additional PC scheduling
does not further benefit the network’s utility.

‚ For the exploitation phase, upon identifying a set of idle
PCs, we organize IoT nodes into clusters and allocate
them to discovered idle PCs. Given the potential disparity
between the number of IoT nodes and available idle PCs,
we employ a non-orthogonal multiple access (NOMA)
strategy. This allows for the multiplexing of multiple
IoT nodes on a single PC. Allocation is done using an
iterative linear sum assignment (LSA) method, adding
IoT nodes to an idle PC until all nodes are allocated,
thus maximizing the utilization of available spectrum
resources.

‚ Our numerical analysis demonstrates that the proposed
methodologies achieve approximately 99% accuracy in
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milliseconds, a significant improvement over traditional
brute-force approaches that exhaustively search all pos-
sible combinations to identify optimal sensing schedules
and IoT node clustering.

C. Paper Organization and Notations

The remainder of paper is organized as follows: Section
II delineates the system model. Section III provide details
of MC2S3, multi-modal energy harvesting, and NOMA-based
IoT data transmission. Section IV formulates the optimal
problem and outline the proposed solution methodology. Sec-
tion V presents proposed decomposed approach and explain
its algorithmic implementation. Section VI provide numerical
results. Finally, Section VII papers with a few remarks.

Notations: Throughout the paper, sets and their cardinality
are denoted with calligraphic and regular uppercase letters
(e.g., |A| “ A), respectively. Vectors and matrices are repre-
sented in lowercase and uppercase boldfaces (e.g., a and A),
respectively. The ith member of a vector and set is denoted
by aris and Atiu, respectively. Likewise, matrix A’s entry on
ith row and jth column is denoted by Ari, js. Subscripts m,
n, and i are used for indexing PCs, IoT nodes, and idle PCs,
respectively.

II. SYSTEM MODEL

This section introduces system models for PN, secondary
network (SN), and underlying models for sensing, reporting,
and communication channels.

A. Primary Network

We consider a PN which is licensed to operate on M
downlink PCs, whose index set is denoted by M, each with
a bandwidth of W Hz. The PN consists of a single primary
base station that communicates with its associated primary
users over dedicated PCs. Primary transmissions operate on a
synchronous communication protocol with time-slot duration
of T . The actual occupancy state of a PC is denoted by
Om P t0, 1u, with Om “ 1 if PCm is busy, Om “ 0 otherwise.
The binary hypotheses correspond to the idle and busy PC
states are denoted as H0

m and H1
m, respectively. The PC traffic

is modeled as an independent and identically distributed (i.i.d.)
random process such that πm0 and πm1 represent the apriori
probability of being idle and busy for PCs, respectively. We
assume that these apriori probabilities are obtained over long-
term observations and known to the SN.

B. Secondary Network

The SN comprises of N time synchronous energy and spec-
trum harvesting IoT devices, whose index set is denoted by
N . The SN is orchestrated by a SBS that also follows a time-
slotted operation synchronized to the PN. As shown in Fig. 1,
each time-slot of duration T is split into two stages: multi-
channel exploration and exploitation. In the multi-channel
exploration stage, the IoT devices collaboratively searches for
the available bands by means of a MC2S3 policy, wherein the
SBS assigns a set of PCs to each IoT device for sequential
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Figure 1: Time-slotted operation of the secondary network.

sensing, which requires IoT devices to switch channel and
adjust their operating frequency to the assigned channels.
Accordingly, the binary sensing assignment matrix is denoted
by X P t0, 1uMˆN , whose elements are given by

xnm “

#

1 , if IoTn is assigned to sense PCm

0 , otherwise
, (1)

@m P M,@n P N . Hence, the set of PCs assigned to IoTn for
sequential sensing is represented by Mn “ tm|xnm “ 1,@mu,
whose cardinality is Mn “

ř

n x
n
m. Likewise, the cluster of

IoT nodes that cooperatively sense PCm is denoted by Nm “

tn | xnm “ 1,@nu, whose cardinality is Nm “
ř

m x
n
m. To

reach a better global decision, MC2S3 typically requires PCs
to be sensed by a certain number of IoTs, i.e., Nm ě N̄ .

However, sensing all PCs may require IoTs to search over
a large number of PCs and results in limited exploration time,
especially when N̄ " N

M . At this point, PC sensing scheduling
becomes paramount, which is represented by y P t0, 1uM with
ym “ 1 if PCm is scheduled for sensing, ym “ 0 otherwise.
Following the completion of sequential sensing, IoTs report
their local decisions on channel occupancy states to the SBS
that makes global decisions and broadcasts the list of I idle
PCs, I. Denoting overall sensing, switching, and reporting
duration for IoTn by T sn, the overall multi-channel search time
is determined by the IoT taking the longest channel search time
(e.g., IoTn in Fig. 1) as the SBS needs to receive all reports
to reach a conclusion.

In the multi-channel exploitation stage, IoT devices are
scheduled to transmit data over the residual time after the
multi-channel exploration. Denoting the number of sample
matrix as S P NMˆN , the overall transmission duration is
given by TXpX, y,Sq “ T ´ TSpX,y,Sq, during which
IoT devices exploit the discovered idle PCs, I, and busy
PCs, MzI, for data transmission and RF energy harvesting,
respectively. During the exploitation stage, the SN operates
in a NOMA fashion, wherein IoT devices are clustered to
exploit idle PCs. Accordingly, the binary PC allocation and
IoT clustering matrix is denoted by Z P t0, 1uMˆN , whose
elements are given by

znm “

#

1 , if IoTn transmits at PCm

0 , otherwise
,@m P M,@n P N ,

(2)
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by Cm “ tn | znm “ 1,@nu, @m, |Cm| “ Cm ď
P

N
M

T

.

C. Channel Model

The sensing channel gain matrix between the PBS and IoT
devices is denoted by H P RMˆN, whose elements hnm,@m P

r1,M s,@n P r1, N s, are given by

hnm “ GmGnKm

„

d0
dnm

ȷθ

10ψ
n
m{10 (3)

where Gt is the transmitter gain of the PBS, Gn is the receiver
gain of IoTn, Km “ c

4πd0fm
, c is the speed of light, fm is

the carrier frequency of the PCm, d0 is a reference distance,
dnm is the distance between the PBS and IoTn, θ is the path
loss exponent, 10ψ

n
m{10 is the log-normal shadowing, and

ψnm is a normal random variable representing the variation
in received power with a standard deviation of σnm, i.e.,
ψnm „ N p0, σnmq. The reporting between SBS and IoTn occurs
on a dedicated control channel, which is denoted by gsn and
follows the composite channel gain similar to (3). Likewise,
the transmission channel gain matrix between the SBS and IoT
devices is denoted by H̃ P RMˆN, whose elements, h̃nm, can
also be obtained following the same model presented in (3).
We assume all channels to be quasi-static which experience flat
fading during the sensing, reporting, and transmission phases.

III. MULTI-CHANNEL COOPERATIVE SPECTRUM SENSING
AND ENERGY HARVESTING

In this section, we delineate the spectrum exploitation and
exploration stages by providing the technical details of multi-
channel cooperative spectrum sensing, multi-modal energy
harvesting, and IoT data transmission.

A. Spectrum Exploration Stage

Since our main focus in this paper is the scheduling aspects
of the CSS, we prefer energy detection as a generic method
because it does not require any apriori information regarding
the PN’s physical layer features. Without loss of generality,
let us focus on spectrum sensing of PCm with IoT devices
belong to Nm. First, IoTn P Nm measures the energy of
received signal on PCm P M for a number of samples, Snm,
and compares it with a detection threshold, εnm, to reach a
local decision on the idle and busy states of PCm.

The overall channel search time for IoTn comprises of
three phases: 1) Energy detection duration, T edn ; 2) channel
switching time T swn ; and 3) reporting time, T rn . Denoting the
sampling frequency and interval by W and τs “ 1{W , the
number of samples determines the energy detection duration
for IoTn,@n P Nm on PBm as τnm “ Snmτs. We assume that
the channel switching time obeys triangularity and linearity
properties [23], i.e., β|f cMntiu ´ f cMntju

|, i ‰ j, 1 ď i, j ď

Mn, where β is a switching factor that depends on hardware
parameters and power consumption and f cMntiu ´ f cMntju

is
the central frequency of the PCi/PCj , pi, jq P Mn. Accord-
ingly, the channel search time for IoTn can be expressed as

T snpX, y, Sq “ T edn ` T swn ` T rn (4)

T edn “ τs
ÿ

m

Snmx
n
mym,

T swn “ β
ˇ

ˇ

ˇ
f cMntiu ´ f c0

ˇ

ˇ

ˇ
`

Mn
ÿ

i“1

β
ˇ

ˇ

ˇ
f cMntiu ´ f cMnti´1u

ˇ

ˇ

ˇ
, (6)

T rn “ τr
ÿ

m

xnmym, (7)and

f c0 is the central frequency of the last PC sensed in the
previous time slot. Following from (4), the overall multi-
channel exploration time is given by

TSpX, y, Sq “ max
nPN

tT snpX, y, Squ. (8)

For a normalized noise variance and large enough Snm,
the probability of false alarm, P fm,n fi PrH1

m|H0
ms, and the

probability of detection, P dm,npSnm, ε
n
mq fi PrH1

m|H1
ms, are

respectively given by [24]

P fm,npSnm, ε
n
mq “ Q

”

pεnm ´ 1q
a

Snm

ı

, (9)

P dm,npSnm, ε
n
mq ptq “ Q

«

pεnm ´ γnm ´ 1q

d

Snm
2γnm ` 1

ff

,

(10)

where γnm is the received sensing signal-to-noise-ratio (SNR)
at IoTn on the PCm and Q pxq “ 1?

2π

ş`8

x
e´y2{2dy denote

the right-tail probability of a normalized Gaussian distribution.
Notice in (9) and (10) that both probabilities are jointly

determined by the detection threshold and number of sam-
ples, i.e., sensing duration. Since false alarm and detection
probabilities are key metrics to measure sensing accuracy,
a joint optimization of these variables is necessary to reach
predetermined thresholds. After the sequential local sensing
process, the IoTn sends its binary result unm P t0, 1u to
the SBS over a binary symmetric channel (BSC), which is
received by the SBS as ũnm. The error probability of the BSC is
defined as pnm “ P rũnm “ 0|unm “ 1s “ P rũnm “ 1|unm “ 0s.
Accordingly, the SBS receives the local false alarm and
detection probabilities as

P̃ fm,npSnm, ε
n
mq “ pnm

“

1 ´ P fm,n
‰

` r1 ´ pnmsP fm,n (11)

P̃ dm,npSnm, ε
n
mq “ pnm

“

1 ´ P dm,n
‰

` r1 ´ pnmsP dm,n (12)

The SBS collects ũnm, @m,@n, and makes the global deci-
sion using the k-out-of-N decision fusion test

Km “
ÿ

nPNm

ũnmx
n
m

H1
m

¡
H0

m

κm, (13)

where 1 ď κm ď Nm is the voting rule. For instance,
κm “ 1, κm “ Nm, and κm “ rNm

2 s are referred to
as OR, AND, and majority voting rules, respectively. Km
follows Binomial distribution if ũnm’s are i.i.d, which naturally
requires all reported local detection and false alarm proba-
bilities to be identical If the i.i.d condition is satisfied, the
global false alarm QfmpSnm, ε

n
mq “ P

“

Km ě κm|H0
m

‰

and
detection QdmpSnm, ε

n
mq “ P

“

Km ě κm|H1
m

‰

probabilities
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can be expressed by using the probability mass function (pmf)
of the Binomial variable as follows

QfmpSnm, ε
n
mq “ P

“

Km ě κm|H0
m

‰

“ (14)
Nm
ÿ

i“κm

ˆ

Nm
i

˙

´

P̃ fmpSnm, ε
n
mq

¯i ´

1 ´ P̃ fmpSnm, ε
n
mq

¯Nm´i

,

QdmpSnm, ε
n
mq “ P

“

Km ě κm|H1
m

‰

“ (15)
Nm
ÿ

i“κm

ˆ

Nm
i

˙

´

P̃ dmpSnm, ε
n
mq

¯i ´

1 ´ P̃ dmpSnm, ε
n
mq

¯Nm´i

.

Indeed, opportunistic spectrum access schemes typically re-
quire spectrum utilization constraint, i.e., QfmpSnm, ε

n
mq ď Q̄f ,

and collision avoidance constraint, i.e., QdmpSnm, ε
n
mq ě Q̄d,

are satisfied at the same time. For instance, predetermined
thresholds of Q̄f “ 0.01 and Q̄d “ 0.99 ensure that idle and
busy channels are utilized and correctly detected 99% of the
time, respectively. Since both QfmpSnm, ε

n
mq and QdmpSnm, ε

n
mq

are determined by the cluster size, Nm, the global false alarm
and detection probability constraints require reported local
false alarm and detection probabilities to respectively satisfy

P̃ f,‹m pNmq ď

#

1 ´ Nm
a

1 ´ Q̄f , κm “ 1
Nm

a

Q̄f , κm “ Nm
, (16)

P̃ d,‹m pNmq ě

#

1 ´
Nm

a

1 ´ Q̄d , κm “ 1
Nm

a

Q̄d , κm “ Nm
, (17)

which can be solved numerically for other voting rules, 1 ă

κm ă Nm. In order to satisfy both i.i.d. conditions and global
constraints, IoTn P Nm needs to adjust its local false alarm
and detection probabilities according to the erroneous BSC
channel conditions as

P f
‹

m,npNmq ď
P̃
f,‹pNmq
m ´ pnm
1 ´ 2pnm

, (18)

P d
‹

m,npNmq ě
P̃ d,‹m pNmq ´ pnm

1 ´ 2pnm
, (19)

which follows from (11) and (12), respectively.

B. Multi-Modal Energy Harvesting

In addition to scavenging energy from other ambient
sources, e.g., flexible solar patches, IoT devices are also as-
sumed to harvest RF energy from busy PCs. The energy arrival
rate for RF and non-RF energy modalities are denoted bu χRFm,n
and χnsol [J/s] which depends on received power on PCm and
light intensity along with hardware specifications (e.g., energy
conversion and storing efficiency, etc.), respectively. Indeed,
energy detectors can be designed to support both spectrum
sensing and RF energy harvesting on the same platform
through power splitting or time switching [25]. Following the
spectrum searching, each IoT switch themselves to the PC
with the highest reception power, yielding the total harvested
energy of Enh “ χnsolT `argmaxmtχRFm,npT ´TSpX, y, Sqqu,
where the first and second terms are harvested energy from
RF and solar ambient sources, respectively. Since the non-
RF energy harvesting is independent of MC2S3, we will
focus our attention on the RF energy harvesting. In case

of time switching mode, the harvested RF energy can only
be maximized by minimizing the channel exploration phase,
which will be the main focus of the formulated problem and
developed solution methodology in the sequel.

C. IoT Data Transmission

The efficient use of discovered idle spectrum is of utmost
importance, especially for dense SNs trying to utilize limited
vacant PCs of a PN exhibiting frequent traffic characteristics,
i.e., I ! N . In such scenarios, exploitation of OMA to
avoid interference may not provide required QoS demands for
numerous IoT nodes that merely depends on the free spectrum.
At this point, NOMA can offer high spectrum efficiency by
multiplexing several users in the same time/frequency resource
by distinguishing each with discrete codes, power levels, etc.
For instance, NOMA allows SN to serve at most C “

P

I
N

T

IoT nodes at each vacant PC. The traditional power-domain
NOMA schemes requires grant acquisition and optimal power
weight calculations, which may incur computational complex-
ity and signaling overhead, especially in the UL transmission.
Therefore, we consider a grant-free operation where transmit
powers are set a predetermined level while power reception
disparity is implicitly implemented during the clustering phase
by admitting IoT nodes with distinct channels into the same
cluster.

Without loss of generality, let us elucidate how NOMA
can facilitate data transmission for the ith IoT cluster, Ci, by
dividing exploration duration into αTXpX, y,Sq and p1 ´

αqTXpX, y,Sq for DL and UL traffic, respectively. α P r0, 1s

is a design parameter and can be set based on temporal traffic
characteristics of the SN. Due to the quasi-static channel
assumption and time-division multiplexing during the same
time slot, the DL/UL common channel gains of Ci sorted in de-
scending order can be denoted by h̃i “ rh̃1i , . . . , h̃

j
i , . . . , h̃

Ci
i s.

Hence, the received DL and UL signals for IoTj , j P Ci, are
respectively given by

qrji “

˜

ÿ

jPCi

a

P isqωji qsj

¸

h̃ji ` n, (20)

prji “
ÿ

jPCi

a

Pj h̃
j
i pωji psj ` n, (21)

where P is fi P smax{I is the maximum DL transmission power
at PCi such that the maximum transmit power of the SBS,
P smax, is equally shared by clusters and members within
cluster, Pj is the maximum transmit power of IoTj , qωji /pωji
is the DL/UL power allocation of IoTj , qsj{psj is the DL/UL
message for IoTj , and n „ N p0, σ2q is the additive white
Gaussian thermal noise, σ2 “ N0W is the thermal noise
power, and N0 is the thermal noise power spectral density.
It is worth noting that cluster members’ channel gains play
the crucial role of power weights to ensure power reception
disparity, which primarily determines the spectral efficiency of
NOMA schemes. At the receiver side, a successive interference
cancellation (SIC) receiver iteratively decodes the messages in
the order of reception power and removes decoded messages
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Figure 2: Depiction of Alg. 1 (up) and Alg. 2 (down).

to reduce interference at each time step, leading to following
DL and UL SINRs

qγji “
|h̃ji |

2
qωji

ϵ
řj´1
k“1 |h̃ji |

2
qωki `

řCi

l“j`1 |h̃ji |
2

qωli ` σ2{P is
, (22)

pγji “
|h̃ji |

2
pωji

řj´1
k“1 |h̃ki |2pωki ` ϵ

řCi

l“j`1 |h̃li|
2

pωli ` σ2{Pj
. (23)

Accordingly, the combined bidirectional data rate of IoTj on
PCi is given by

Rji “

”

α log2p1 ` pγji q ` p1 ´ αq log2p1 ` qγji q

ı

, j P Ci (24)

which can also be denoted as Rji pZq by setting Zri, Cis “ 1
and multiplying ωba terms with Zra, bs elements in (22).

IV. PROBLEM FORMULATION
AND SOLUTION METHODOLOGY

The throughput maximization of cognitive IoT networks
depends on two main criteria:

1) Discovery of the highest possible number of idle PCs to
maximize the spectrum available for IoT nodes. At this
point, joint optimization of sensing scheduling variables
(i.e., X,y), are of paramount importance to schedule PCs
with a high probability of being idle and low sensing
duration.

2) The optimal utilization of discovered idle PCs through
effective PC allocation and IoT clustering.

Accordingly, overall throughput achievable by the SN can be
expressed as in (25), where the first and second parts are

related to spectrum exploration and exploitation problems.
Following from (25), optimal formulation of the spectrum ex-
ploration and exploitation problem can be obtained as follows

Po : max
X,y,Z
S,E

RpX, y, Z,S, Eq

C1
o s.t.: Q̄d ď QdmpSnm, ε

n
mq, @m P tm| ym “ 1u

C2
o : QfmpSnm, ε

n
mq ď Q̄f , @m P tm| ym “ 1u

C3
o : xnm ď ym, @m;@n

C4
o : N̄ym ď

ÿ

nPN
xnm, @m

C5
o : S ď Snm ď T {Ts, @m;@n

C6
o : 0 ď T ´ TSpX,y,Sq,

C7
o :

ÿ

mPM
znm ď 1, @n

C8
o :

ÿ

nPN
znm ď

R

N

M

V

, @m

C9
o : X P t0, 1u

MˆN
,y P t0, 1u

M
,

Z P t0, 1u
MˆN

,S P N`
MˆN

,E P RBˆM

,

where S is a positive real matrix with entries Snm, and E P

RBˆM is a real matrix with entries εnm. In Po, C1
o and C2

o are
the collision and spectrum utilization constraints, respectively.
C3
o ensures that if the PCm is not scheduled for sensing then

no IoT can be assigned to sense the PCm. C4
o requires that a

scheduled PC must be sensed by the cooperation of at least
N̄ IoT nodes. C5

o sets the upper bound for number of samples
to T {Ts which is the maximum number of samples possible
within a timeslot duration and sets the lower bound of S on
the required number of samples to invoke the central limit
theorem to ensure that assumptions are hold for (9) and (10).
C6
o limits the spectrum exploration time by time slot duration

T . C7
o assures that an IoT can be admitted to at most one

cluster, i.e., can utilize at most one PC. On the other hand,
C8
o limits cluster size to

P

N
M

T

as explained in the previous
section. Finally, C9

o defines the variable domains.
Po is an MINLP problem which incurs impractical com-

putational complexity even for moderate size of networks.
Therefore, developing fast yet high-performance sub-optimal
solutions is necessary to achieve satisfactory results for practi-
cal purposes. It is obvious from (25) that spectrum exploitation
and exploration can be decoupled; hence, Po can be decom-
posed into two problems: 1) MC2S3 and 2) clustering of IoT
nodes and allocation of discovered idle PCs.

In the following subsections, we will provide solution
methodology for these two subproblems. In the former sub-
section, optimal sensing durations and detection thresholds are
derived in closed-form for a given set of IoT nodes. Then, we
propose a PC ranking approach based on a priority metric,
which is the best achievable utility if PCm is assigned to
the best N̄ IoT nodes with the lowest sensing duration. As
depicted in Fig. 2, we iteratively schedule the first m PCs
to be sensed in the mth iteration, where we assign N̄ IoT
nodes to sense m PCs iteratively. If there is an improvement
in terms of total utility, we proceed with scheduling m ` 1
best PCs to be sensed, otherwise we terminate. In the latter
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RpX, y, Z,S, Eq “

Utility Function (Average Total Achievable Throughput)
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkj

ÿ

@mPM
ymπ

0
mp1 ´QfmpSnm, ε

n
mqqTXpX, y,Sq

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

Spectrum Exploration

Total Achievable IoT Rate
hkkkkkkkkkikkkkkkkkkj

˜

ÿ

@nPN
RnmpZq

¸

looooooooomooooooooon

Spectrum Exploitation

, (25)

subsection, we cluster N IoT nodes and allocate each cluster to
previously discovered I idle PCs, which is also done through
rN{Is consecutive bi-partite matching as illustrated in Fig. 2.

V. DECOMPOSED SPECTRUM EXPLORATION
AND EXPLOITATION

By ignoring the second part of (25) and excluding the
irrelevant constraints related to spectrum exploitation, the
MC2S3 can be directly obtained from Po as

P1 : max
X,y,S,E

ÿ

@mPM
ymπ

0
mp1 ´QfmpSnm, ε

n
mqqTXpX, y,Sq

C1
o : s.t. Q̄d ď QdmpSnm, ε

n
mq, @m P tm| ym “ 1u

C2
o : QfmpSnm, ε

n
mq ď Q̄f , @m P tm| ym “ 1u

C3
o : xnm ď ym, @m;@n

C4
o : N̄ym ď

ÿ

nPN
xnm, @m

C5
o : S ď Snm ď T {Ts, @m;@n

C6
o : 0 ď T ´ TSpX,y,Sq,

C9
o : X P t0, 1u

MˆN
,y P t0, 1u

M
,

S P N`
MˆN

,E P RBˆM

,

which attains the optimal point when QfmpSnm, ε
n
mq “ Q̄f

and QdmpSnm, ε
n
mq “ Q̄d as QfmpSnm, ε

n
mq ă Q̄f and Q̄d ą

QdmpSnm, ε
n
mq require more strict thresholds and sensing du-

ration, respectively; which reduces throughput and causes
suboptimality. As explained in (16) and (17), the false alarm
and detection probabilities satisfying QfmpSnm, ε

n
mq “ Q̄f

and QdmpSnm, ε
n
mq “ Q̄d can be obtained as P f

‹

m,npN̄q

and P d
‹

m,npN̄q, respectively. By substituting P f
‹

m,npN̄q and
P d

‹

m,npN̄q into (18) and (19), respectively, then solving for εnm
and Snm respectively yields the following optimal detection
threshold and number of samples

ε‹
m,n ď 1 `

Q´1
`

P f
‹

m,n

˘

a

S‹
m,n

, (26)

S‹
m,n ě

«

Q´1
`

P d
‹

m,n

˘ ?
2γnm ` 1 ´ Q´1

`

P f
‹

m,n

˘

γnm

ff2

, (27)

which are necessary and sufficient conditions to satisfy
QfmpSnm, ε

n
mq “ Q̄f and QdmpSnm, ε

n
mq “ Q̄d. By leveraging

optimal number of samples, S‹, P1 can be reduced to the

following problem

P1
1 :max

X,y

ÿ

@mPM
ymπ

0
mp1 ´ Q̄f qTXpX, y,S‹q

C1
o : s.t. xnm ď ym, @m;@n

C2
o : N̄ym ď

ÿ

nPN
xnm, @m

C3
o : 0 ď T ´ TSpX,y,S‹q,

C4
o : X P t0, 1u

MˆN
,y P t0, 1u

M

,

which is still NP-Hard and requires a fast yet efficient heuristic
solution for practical purposes.

The proposed solution is detailed in Algorithm 1, which
starts with a channel ranking procedure in Line 2. As explained
in Section V-A, the channels are ranked based on their best
possible average throughput considering their probability of
being idle and channel exploitation time. Then, the optimal
sensing duration and priority list returned from PC RANK is
used by IOT ASSIGN procedure in Line 3. As explained in
Section V-B, IOT ASSIGN procedure iteratively schedules PCs
following the priority list such that mth iteration schedules
PCs with the highest priority and assign N̄ IoTs for each
scheduled PC, which is terminated if scheduling pm ` 1qth

PC degrades the average throughput obtained in the mth

iteration. Based on returned sensing scheduling matrices, the
SBS broadcasts the sensing lists to IoT nodes in Line 4,
which are then report their local decisions in Line 5. The SBS
eventually make a decision on the list of idle PCs using the
voting rule in (13).

A. PC Priority Ranking

To ensure that N̄ reports satisfy global false alarm and de-
tection probabilities (i.e., C1

o and C2
o ), Line 9 of the PC RANK

first computes required detection and false alarm probabilities
reports as per (16) and (17), which are then used in Line 10 to
obtain required local detection and false alarm probabilities by
taking the BER of the reporting channel into account. Based
on the local probabilities, we compute the matrix of optimal
number of samples as derived in (27). Thereafter, the for-
loop between Lines 12-15 acquires the PC scheduling priority
metrics for each PC by repeating the following steps: Line
13 sorts the mth column of S‹, S‹

rm, :s, to reorder IoTs in
ascending order of number of samples. Then, Line 14 takes the
first N̄ element of S‹

rm, :s to calculate the average maximum
throughput of PCm if it is sensed by the best N̄ possible
IoT nodes. Finally, Line 16 returns the priority list following
sorting PCs in descending order of their utility performance.
With this priority list, having a higher apriori probability of
being idle becomes as important as having a less sensing
duration for better utilization of the idle PCs.
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Algorithm 1 : Multi-Channel Cooperative Spectrum Sensing
and Scheduling (MC2S3)

1: Input: M,N, N̄, Q̄f , Q̄d, S̄, T, Ts, π
0
m,H, pnm

2: ℘‹,S‹
Ð PC RANKpπo

m, T, Ts, N̄ , Q̄f q

3: y‹,X‹
Ð IOT ASSIGN(℘‹,S‹, π0

m, T, Q̄f )
4: The SBS broadcasts sensing and scheduling decisions
5: IoT nodes share decisions (un

m,@m,n) with the SBS
6: I Ð as per (13)
7: return I
8: procedure PC RANK(πo

m, pnm, T, Ts, N̄ , Q̄f , Q̄d)
9: P̃ d,‹

m pN̄q{P̃ f,‹
m pN̄q Ð as per (16) and (17), @m.

10: P i‹

m,npN̄q Ð as per (18) and (19), i P tf, du

11: S‹
Ð Substitute P i‹

m,npN̄q, i P tf, du, into (27)
12: for m “ 1 : M do
13: ℵ Ð SORTASCEND(S‹

rm, :s)
14: ℘rms Ð πo

mp1 ´ Q̄f qpT ´
řN̄

i“1 ℵrisTsq

15: end for
16: ℘‹

Ð SORTDESCENDp℘m,@mq

17: return ℘‹,S‹

18: end procedure

19: procedure IOT ASSIGN(℘‹,S‹, π0
m, T, Q̄f )

20: τ Ð 0
21: for m “ 1 : M do
22: X Ð 0MˆN ,y Ð 0M

23: ξ Ð ℘r1 : ms

24: yrξs Ð 1
25: Q Ð S‹

rξ, :s
26: S̃ Ð S‹

rξ, :s
27: for i “ 1 : N̄ do
28: δ Ð LINEAR BOTTLENECK ASSIGNMENTpQq

29: for j “ 1 : m do
30: Xrj, δrjss Ð 1
31: Qr:, δrjss Ð Qr:, δrjss ` S̃rj, δrjss

32: Qrj, δrjss Ð 8

33: end for
34: end for
35: Φpmq Ð

ř

iP℘r1:ms
π0
i p1 ´ Q̄f qpT ´ TSpX, y, S‹

qq

36: if Φpmq ě τ then
37: τ Ð Φpmq

38: else
39: Break
40: end if
41: end for
42: return y,X
43: end procedure

44: procedure LINEAR BOTTLENECK ASSIGNMENT(Q)

45: χ Ð max
χ

"

min
@i,@j

tQri, jsχri, jsu

*

46: s.t.
ř

i χri, js ď 1,@j
47:

ř

j χri, js “ 1,@i
48: return χ
49: end procedure

B. IoT Sensing Assignment

The IoT sensing assignment procedure starts with initial-
ization of utility (i.e., average throughput) threshold in Line
20, followed by a for-loop between Lines 21-39. Line 22
initializes sensing scheduling variables; then Line 23 schedules
first m PCs from ℘ to be sensed, which is reflected on the
PC scheduling variable in Line 24. The columns of scheduled
PCs are extracted from S‹ to obtain a cost matrix Q P RmˆN

in Line 25, which is also stored as S̃ for future purposes.

After that, the inner for-loop between Lines 27-34 assign
an IoT to each PC at each iteration, until all PCs are assigned
with a total of N̄ IoTs for sensing. In Line 28, the LBA is
executed to find the best IoT assignments that minimizes the
maximum sensing duration among all IoT nodes. The LBA
returns a vector δ P Nm whose jth element’s value correspond
to the index of IoT assigned for sensing PCj . The first step of
for-loop between Lines 29-33 updates the assignment matrix
by setting Xrj, δrjss “ 1. Line 31 adds sensing duration
of assigned IoT to account for its sensing duties in the next
round of assignments. Then, Line 32 updates cost matrix with
Qrj, δrjss “ 8 for preventing selected IoTs to be assigned to
sense the same PC again. Exploiting the sensing scheduling
matrices, Line 35 computes the utility function, which is
compared with the threshold between Lines 36-40; where
threshold is updated if adding mth PC into scheduling matrix
improves the throughput, otherwise Line 39 breaks the for loop
and corresponding sensing scheduling matrices are returned in
Line 42.

C. PC Allocation and IoT Clustering

Given the set of idle PCs are obtained through Algorithm
1, now it is time to focus on the second part of (25) and ex-
cluding the irrelevant constraints related to spectrum sensing.
Accordingly, PC allocation and IoT clustering can be directly
obtained from Po as follows

P2 : max
ZPt0,1u

IˆN

ÿ

iPI
nPN

Rni pZq

C1
o s.t.:

ÿ

mPM
znm ď 1, @n

C2
o :

ÿ

nPN
znm ď

R

N

I

V

, @m

,

which is also a combinatorial problem and NP-hard. The
proposed solution is illustrated in Fig. 2 and detailed in
Algorithm 2, where initialization starts with sorting IoT nodes
based on their channel gain and assigning the IoT node
with ith strongest channel to the ith PC among I idle PCs,
i P r1, Is. The for-loop between Lines 7-14 iteratively admits
IoT nodes into I clusters over K´1 iteration. At each iteration,
Line 8 first updates the set of admission awaiting nodes,
then Line 9 calls COMPUTE COST procedure to generate cost
matrix whose index Qri, js represent the data rate if Aktju is
admitted to Ci. In Line 10, the linear sum assignment obtains
the matching with the highest sumrate, which is followed by
cluster and clustering matrix updates in Lines 12 and 13,
respectively.

D. Computational Complexity Analysis

The computational complexity of solving simplified prob-
lem P 1

1 in a brute-force fashion can be obtained by considering
following combinations: 1)

řM
m“1

`

M
m

˘

is total number of
scheduling combinations where

`

M
m

˘

selects m PCs out of M
PCs, 2) For each of selected m PCs, we need to choose N̄
nodes out of N IoT nodes. Accordingly, the overall computa-
tional complexity is given by O

´

K
řM
m“1

`

M
m

˘`

N
N̄

˘m
¯

where
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1: Input: N, I, α, H̃
2: I Ð as per (13)
3: K Ð

P

N
I

T

4: Ñ Ð Sort IoTs in descending order of channel gains
5: Ci Ð Ñ tiu, i P r1, . . . , Is

6: Zj
i Ð 1, j P Ci

7: for k “ 1 : K ´ 1 do
8: Ak Ð Ñ ´

ŤI
i“1 Ci

9: Q Ð COMPUTE COST(Ak, Ci,@i)
10: χ ÐÐ LINEAR SUM ASSIGNMENTpQq

11: Ci Ð Ci

Ť

Aktju, χj
i “ 1,@pi, jq

12: Zri, js Ð 1,@j P Ci

13: end for
14: The SBS broadcasts PC Allocation and IoT clustering
15: return Z,

16: procedure COMPUTE COST(Ak, Ci,@i)
17: Q Ð 0IˆAk

18: for i “ 1 : I do
19: for j “ 1 : Ak do
20: Ti Ð Ci

Ť

Aktju

21: Qri, js Ð Rj
i , j P Ti

22: end for
23: end for
24: return Q
25: end procedure

26: procedure LINEAR SUM ASSIGNMENT(Q)
27: χ Ð max

χ

ř

@i,@j Qri, jsχri, js

28: s.t.
ř

i χri, js ď 1,@j
29:

ř

j χri, js “ 1,@i
30: return χ
31: end procedure

K is the number of operations required for each combination.
On the other hand, the proposed PC ranking algorithm has
O pMN logN `M logMq complexity where the first and
second terms are induced from the SORTASCEND and SORT-
DESCEND operations in Lines 13 and 16, respectively. The
complexity of proposed PC allocation and IoT assignment
procedure is dominated by the cubic complexity of the LBA
[26], yielding O

`
ř

m N̄pmaxpm,Nqq3
˘

.
On the other hand, the computational complexity of solving

simplified problem P2 in a brute-force fashion can be obtained
by assigning K “ rNI s IoT nodes to a cluster at each iteration,
decrementing the pool of available workers by K after each
task assignment, and multiplying the combinations possible for
each task. Assuming rNI s is an integer, the computational com-
plexity becomes O

´

śM´1
i“0

`

N´iK
K

˘

¯

. In case of frequency
selective channels, the order of iteration is also need to be
taken care of, yielding an overall O

´

M !
śM´1
i“0

`

N´iK
K

˘

¯

complexity for the exhaustive PC allocation and IoT clus-
tering. On the other hand, the computational complexity of
Algorithm 2 is mainly driven by two steps: 1) IoT sorting
and 2) iterative IoT matching. The IoT sorting in Line 5
has a complexity of O pN logNq. For PC allocation and IoT
clustering, the complexity of for-loop between lines 7-13 is
O

´

řK´1
k pmaxpI, Akqq3

¯

where .
The overall complexity of the proposed decomposition

approach can be furhter simplified in two steps: 1) Algorithm

Par. Value Par. Value Par. Value
Q̄f 0.01 W 180 KHz Gm 3 dBi
Q̄d 0.99 pnm 10´3 Gn 3 dBi
N̄ 4 τr 1 ms d0 10 m
S̄ 30 Ps 30 dBm σn

m 8 dB
T 1 s Pn 10 dBm fc 0.9 GHz

1 has O
`

MN̄N3
˘

assuming that all PCs are scheduled
and N ě M and 2) Algorithm 2 has O

`

KN3
˘

assuming
N ě Ak ě I . Finally, the overall algorithm has a complexity
of O

``

K `MN̄
˘

N3
˘

VI. NUMERICAL RESULTS

In order to gain a clear insight into the impact of various
system parameters on the SN performance, IoT nodes are
assumed to have identical system parameters. Since our focus
is to demonstrate the effect of spectrum sensing and scheduling
on the available RF energy harvesting time, we consider a
unitary energy arrival rate for all IoT nodes. Moreover, the
channel switching factor is set to be β “ 0.1 ms/MHz
[23]. Unless it is explicitly stated otherwise, we employ the
parameter values summarized in Table I.

A. Optimality and Run Time Comparison

Before delving into performance evaluation of proposed so-
lutions in a large scale network, we believe it is better to com-
pare optimality and run time complexity with the brute-force
approach, where we exhaustively explore all combinations to
find the optimal solutions. We start with the comparison of Al-
gorithm 2 as shown in Fig. 3a, where we considering clustering
N “ t3, 6, 9, 12, 15u IoT nodes into I “ 3 PCs/clusters, yiled-
ing following cluster sizes C “ t1, 2, 3, 4, 5u. The proposed
iterative LSA approach reaches %98.5 - %99.5 optimality
while MOSEK1 solver of CVX2 reaches %100 optimality. Fig.
3a clear shows that computational complexity of the brute-
force approach increases exponentially as the number of IoT
increases even for a very low number of PCs, I “ 3. To further
investigate the optimality and complexity of the proposed
iterative LSA approach, we drop brute-force approach and
focus on the comparison with the CVX-MOSEK solution for
a more realistic network size in Fig. 3b, where we show that
our solution reaches %99- %100 optimality while keeping the
complexity 2 orders of magnitude less than the CVX-MOSEK.

Given that the efficacy of linear assignment solutions have
been shown in Fig. 3a and Fig. 3b, we will focus on comparing
proposed M2CS3 approach with the brute-force solution in
Fig. 3c, where we consider assignment of N “ 50 IoT nodes
to sense M “ t4, 8, 12, 16, 20u scheduled PCs. The proposed
M2CS3 approach reaches %99.99 performance of brute-force
solution in less than 0.1 seconds, proving the efficacy of the
PC ranking and LBA-based sensing assignment.

1MOSEK is a large scale optimization software widely used to solve Linear,
Quadratic, Semidefinite and Mixed Integer problems [27].

2CVX is a modeling system for constructing and solving disciplined convex
programs [28].
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Figure 3: The optimality and run time complexity comparison
for: a) Algorithm 2 and b) Algorithm 1.
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Figure 4: The impact of number of IoT nodes and PCs on
exploration time and average total harvested RF energy.

B. Exploration Time and Harvested Energy

As we already shown the optimality and speed of proposed
solutions in the previous section, the rest of this section will
consider larger network sizes and exclude comparisons with
exhaustive solutions. The channel exploration time, TS with
respect to N for M “ 10 is shown in Fig. 4a where maximum
voting rule and AND rules requires lowest and highest sensing
duration, respectively. TS also reduces as N increases as
having more IoT nodes increase the likelihood of having IoT
nodes with better sensing attributes. On the other hand, Fig. 4b
shows that having more PCs increases the TS as the likelihood
of having PCs with higher probability of being idle increases,
which yields more PCs to be scheduled and more time spent
for sensing. The impact of TS on the average total harvested
RF energy (ĒRF “

χRF

M

ř

m π
1
mQ̄dpT´TSq) is also shown in

Fig. 4a and Fig. 4b. Fig. 4a shows that as N increases we have
more nodes to harvest RF energy with more exploitation time
to harvest energy. On the other hand, the impact of having
more PCs is limited since our algorithms focused more on
scheduling PCs with higher probability of being idle.

It is also important to investigate N and required number
of sensing IoT nodes per PC, N̄ , for given M . Fig. 5a and
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Figure 5: Impact of N and N̄ on exploration time and #
scheduled PCs: a) N̄ “ 3 and b) N̄ “ 5

Fig. 5b show that N ď M yields under utilization of idle
PCs as low number of sensing IoT nodes cause a limited
discovery of spectrum. This is also closely related to how
many IoT nodes required to sense each PC. Setting a lower
N̄ can allow us to discover more PCs as N̄ “ 3 and N̄ “ 5
compared in Fig. 5a and Fig. 5b, respectively. Here, the impact
of voting rule becomes more obvious as having less TS allow
MVR to schedule more PCs, improving overall idle spectrum
discovery. For the same set up, we also show normalized and
average network throughput per IoT node in Fig. 6, where
N̄ “ 3 and MVR provides a better performance than other
schemes. Moreover, it is obvious that even if all PCs are
scheduled by N “ 30, the NOMA scheme was capable of
providing similar performance for additional IoT nodes thanks
to effective multiplexing of NOMA.

VII. CONCLUSIONS

In this paper, we introduced a comprehensive framework,
MC2S3, designed to enhance the throughput of cognitive
IoT networks through advanced multi-channel cooperative
spectrum sensing and scheduling. By tackling the challenge
of optimizing network throughput with a novel decomposition

5045403530252015105
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-2

10
-1

10
0

Figure 6: Algorithm 1 vs. Brute-Force.

Figure 7: Normalized network throughput per IoT node.

strategy, we effectively addressed the NP-hard nature of the
joint optimization of sensing scheduling, device assignment,
and node clustering within these networks. Our approach,
which intelligently divides the problem into manageable sub-
problems of PC exploration and exploitation, not only ensures
efficient spectrum utilization but also minimizes potential
collision with primary networks. The adoption of NOMA for
the exploitation phase further underscores our framework’s
capability to maximize the use of available spectrum resources
by accommodating multiple IoT nodes on a single PC. Nu-
merical analysis underscores the superiority of our proposed
methodologies, showcasing near-perfect accuracy and signifi-
cant performance gains over conventional brute-force methods.
The implications of our findings are twofold: they pave the
way for more efficient cognitive IoT network operations and
offer a scalable solution for future spectrum and energy
harvesting endeavors. Future work will focus on extending this
framework to accommodate dynamic network environments
and exploring the integration of machine learning techniques
for enhanced decision-making processes.

REFERENCES

[1] A. Celik, I. Romdhane, G. Kaddoum, and A. M. Eltawil, “A top-down
survey on optical wireless communications for the internet of things,”
IEEE Communications Surveys Tutorials, vol. 25, no. 1, pp. 1–45, 2023.

[2] M. Khasawneh, A. Azab, S. Alrabaee, H. Sakkal, and H. H. Bakhit,
“Convergence of iot and cognitive radio networks: A survey of appli-
cations, techniques, and challenges,” IEEE Access, vol. 11, pp. 71097–
71112, 2023.

[3] A. Gharib, W. Ejaz, and M. Ibnkahla, “Distributed spectrum sensing for
iot networks: Architecture, challenges, and learning,” IEEE Internet of
Things Magazine, vol. 4, no. 2, pp. 66–73, 2021.

[4] W. Ejaz and M. Ibnkahla, “Multiband spectrum sensing and resource
allocation for iot in cognitive 5g networks,” IEEE Internet of Things
Journal, vol. 5, no. 1, pp. 150–163, 2018.

[5] N.-N. Dao, W. Na, A.-T. Tran, D. N. Nguyen, and S. Cho, “Energy-
efficient spectrum sensing for iot devices,” IEEE Systems Journal,
vol. 15, no. 1, pp. 1077–1085, 2021.

[6] F. Zhou, Y. Wu, Y.-C. Liang, Z. Li, Y. Wang, and K.-K. Wong, “State
of the art, taxonomy, and open issues on cognitive radio networks with
noma,” IEEE Wireless Communications, vol. 25, no. 2, pp. 100–108,
2018.

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

       BALKAN  JOURNAL  OF  ELECTRICAL  &  COMPUTER  ENGINEERING,  Vol.  12,  No.  2,  June 2024 187

https://dergipark.org.tr/bajece


[7] S. Arzykulov, A. Celik, G. Nauryzbayev, and A. M. Eltawil, “Uav-
assisted cooperative cognitive noma: Deployment, clustering, and
resource allocation,” IEEE Transactions on Cognitive Communications
and Networking, vol. 8, no. 1, pp. 263–281, 2022.

[8] P. Chauhan, S. K. Deka, B. C. Chatterjee, and N. Sarma, “Utility
driven cooperative spectrum sensing scheduling for heterogeneous multi-
channel cognitive radio networks,” Telecommunication Systems, vol. 78,
no. 1, pp. 25–37, 2021.

[9] Y. Cao and H. Pan, “Energy-efficient cooperative spectrum sensing
strategy for cognitive wireless sensor networks based on particle swarm
optimization,” IEEE Access, vol. 8, pp. 214707–214715, 2020.
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