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Abstract

In this paper, we introduce a mathematical model given by

cDα
t u = ∇ · D∇u + ρ f (u) in Ω, (1)

where f (u) = 1
1−u/K , u/K ̸= 1, K > 0, to enhance established mathematical methodologies for better

understanding glioblastoma dynamics at the macroscopic scale. The tumor growth model exhibits an
innovative structure even within the conventional framework, including a proliferation term, f (u),
presented in a different form compared to existing macroscopic glioblastoma models. Moreover, it
represents a further refined model by incorporating a calibration criterion based on the integration of a
fractional derivative, α, which differs from the existing models for glioblastoma. Throughout this study,
we initially discuss the modeling dynamics of the tumor growth model. Given the frequent recurrence
observed in glioblastoma cases, we then track tumor mass formation and provide predictions for tumor
visibility timing on medical imaging to elucidate the recurrence periods. Furthermore, we investigate
the correlation between tumor growth speed and survival duration to uncover the relationship between
these two variables through an experimental approach. To conduct these patient-specific analyses, we
employ glioblastoma patient data and present the results via numerical simulations. In conclusion,
the findings on tumor visibility timing align with empirical observations, and the investigations into
patient survival further corroborate the well-established inter-patient variability for glioblastoma cases.
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1 Introduction

Glioblastoma, an aggressive brain tumor known for its high lethality, exhibits an elusive structure
owing to its intricate cellular nature. Due to this challenging cellular architecture and histological
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diversity, glioblastomas have long been recognized as exemplars of tumor heterogeneity, earning
the appellation "multiforme" [1]. In accordance with the 2021 classification of Central Nervous
System (CNS) tumors by the World Health Organization (WHO), glioblastomas are officially
categorized as Isocitrate dehydrogenase (IDH) wild type, signifying the most aggressive variant
among diffuse gliomas [2].
The current therapeutic approaches for glioblastoma include a multimodal strategy involving sur-
gical intervention, radiation therapy, and chemotherapy [3]. The standard treatment protocols for
newly diagnosed glioblastoma patients typically begin with a maximally safe resection, followed
by a combined treatment phase comprising both radiotherapy and chemotherapy. In the aftermath,
a monotherapy phase comprising adjuvant chemotherapy ensues. Unfortunately, despite this
intensive treatment schedule and advancements in medical imaging for early glioblastoma detec-
tion, instances of recurrence near the resection margin persist [4–6]. Even though chemotherapy
appears to be the most efficient way to reach all tumor cells, leading to apparent regression on
magnetic resonance imaging (MRI), the extent of tumor spread is almost unaffected due to the
continued motility of tumor cells [7]. As a result, extensively invaded tumor cells remain below
the detection capabilities of MRI, and recurrences manifest upon treatment cessation. Considering
this reality, we delve into an exploration of recurrence periods in a cohort of ten patients as part of
this study. By doing this, we aim to predict the timing of tumor visibility on MRI. We consider that
there are at least three benefits to this analysis: 1) There may be an opportunity for early detection
of tumor recurrence; 2) Understanding recurrence trends may contribute to a more personalized
approach to patient care; 3) The focus on predicting tumor visibility on MRI scans may help
optimize imaging resources. In conducting this analysis, we take into account the dynamics of the
angiogenesis process. Angiogenesis involves the formation of new capillary blood vessels from
existing microvessels as well as the differential recruitment of relevant supporting cells to different
parts of the vascular system [8]. New blood vessels formed through angiogenesis provide the
means for further cell proliferation by ensuring a constant supply of nutrients and oxygen. On the
other hand, one of the pathological features that distinguish glioblastoma from low-grade glial
tumors is microvascular proliferation [9]. However, T1-weighted MRI with gadolinium contrast
(T1Gd) images the abnormally leaky vasculature within the tumor and outlines the bulk of the
lesion [10]. Taking into account all these factors and acknowledging a direct correlation between
the count of proliferating tumor cells and blood vessels, we produce results regarding the visibility
of the tumor by taking the count of glioblastoma cells into consideration. Therefore, we assign all
parameter values for the model while considering T1Gd.
The objectives behind mathematically modeling brain tumor growth are multifaceted. These
encompass mechanisms for deciphering the regulation of disease progression, adapting models to
individual patients, and correlating them with clinically relevant data to gauge tumor occurrences
such as recurrence trends, aggressiveness, and treatment response. Unlike microscopic models,
which are not suitable for medical images, macroscopic models prove more efficient in capturing
the average behavior of tumor cells and modeling the evolution of local tumor cell densities
than individual cells [11]. In mathematical models at the macroscopic scale, tumors undergo
classification based on their motility, denoting invasiveness, and the rate of cellular division,
denoting proliferation, and are typically elucidated through the lens of reaction-diffusion formal-
ism [7, 11–24]. However, it is noteworthy that existing models utilize classical reaction-diffusion
approaches, particularly in the context of glioblastoma growth. To the best of our knowledge,
fractional reaction-diffusion modeling for glioblastoma growth has not been reported in the
literature, despite the increasing prevalence of fractional models for disease modeling [25–29].
In this work, we propose a fractional tumor growth model at a macroscopic scale, rooted in
a mathematical problem known as the quenching problem [30], which incorporates a type of



68 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 1, 66–85

reaction-diffusion equation. In the context of the quenching problem, studies have delved into
the global existence of its solutions, and analyses pertaining to quenching and non-quenching
scenarios [31–35]. The relationship between quenching and blow-up problems has been another
focal point to investigate [36, 37]. This investigation has been extended to parabolic systems, with
a specific focus on quenching behavior in the presence of singular multi-nonlinearities [38–42].
More recently, attention has turned towards fractional versions of the problem [43, 44]. This shift is
driven by the burgeoning interest in fractional calculus that has evolved over the last few decades.
In addition, fractional differential equations have gained significant attention due to their potential
applications across diverse areas in science and engineering along with their notable theoretical
importance [9, 45–49]. Various definitions of fractional derivatives have been proposed in the
literature. Among these, one of the most widely recognized is the Caputo fractional derivative
[45, 47, 50, 51], notable for its memory effect. Additionally, it is known that the Caputo fractional
derivative becomes equivalent to the conventional derivative as the fractional derivative order
approaches a conventional derivative order. Considering all of these, we employ the Caputo
derivative within the glioblastoma growth model to discern the memory effect and observe its
differences from the classical derivative. We consider that such a selection serves as an appropriate
operator for conducting analyses in this work that incorporate temporal assessments. Therefore,
we anticipate that a more effective fitting of the growth model to patient data can be achieved
by employing the Caputo derivative as a calibration criterion. To build up the growth model,
we enhance the conventional framework of the quenching problem to more effectively capture
glioblastoma dynamics through tailored modifications. Since temporal considerations are in
question here, we first introduce the Caputo fractional derivative to the time-dependent term in
the mathematical equation. As a second modification, we incorporate a term that represents the
maximum cell carrying capacity of the tissue, K, into the proliferation term, f (u). We consider
that this approach offers a more efficient modeling framework, facilitating an investigation into
the potential trajectory of tumor cell density over a meaningful time frame.

The subsequent sections of this paper are organized as follows: Section 2 provides a brief explo-
ration of the theoretical groundwork for the tumor growth model, including properties of the
Caputo fractional derivative. Section 3 presents the tumor growth model, its initialization and im-
plementation along with the numerical scheme. Section 4 presents key findings, encompassing an
exploration of the fundamental dynamics and operational principles of the model, investigations
into the timing of tumor visibility in a patient cohort, and an analysis of the relationship between
tumor growth speeds and patient survival.

2 Theoretical background

In this section, we provide an overview of the growth model’s background and highlight some
properties related to the Caputo fractional derivative.

In 1975, Kawarada proposed a one-dimensional initial-boundary-value problem, which is known
as the quenching problem, denoted as

ut(x, t) = uxx(x, t) +
1

1 − u
in (0, L)× (0, T),

u(0, t) = u(L, t) = 0 in (0, T),

u(x, 0) = 0 on [0, L],

(2)

where L is a positive real number indicating the length of spatial domain [30]. Mathematically, a
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solution of problem (2) is said to quench if there exists a finite time T such that

lim
t→T−

sup {| ut(x, t) |: x ∈ [0, L]} → ∞. (3)

The value of T represents the quenching time. A necessary condition for appearance of quenching
is

lim
t→T−

max{| u(x, t) |: x ∈ [0, L]} → 1−. (4)

One of the important results for problem (2) is provided by the following lemma.

Lemma 1 [32] If T < +∞, then there exists x∗ ∈ [0, L] such that

lim
(x,t)→(x∗,T)

u(x, t) = 1. (5)

We now provide the relevant definitions for the Caputo fractional derivative. Let Γ(·) be Euler’s
gamma function.

Definition 1 [45, page 92] Let 0 < α < 1 and u(x) ∈ AC[a, b]. Then the left-sided and right-sided
Caputo fractional derivatives of u exist almost everywhere and are respectively defined as

(c
aD

α
x) (u(x)) =

(
a I1−α

x

) du(x)
dx

, x > a,

(c
xD

α
b) (u(x)) = −

(
x I1−α

b

) du(x)
dx

, x < b.

The set AC[a, b] denotes the collection of all functions that are absolutely continuous in domain
[a, b].
In a similar manner, one can articulate a partial fractional derivative for a function with multiple
variables as follows.

Definition 2 [45, page 358] The Caputo fractional derivative of a function u(x, t), with 0 < α < 1
denoting the order of the derivative, is defined as

(cDα
t ) (u(x, t)) =

1
Γ(1 − α)

∫ t

0
(t − s)−α ∂u(x, s)

∂s
ds,

where 0 < x < L and t > 0.

Remark 1 [47, page 79] If u(x, t) is continuously differentiable on t, then (cDα
t ) (u(x, t)) → ∂u(x, t)

∂t
as

α → 1.

3 Method

In the subsequent part of this section, we present our tumor growth model, its initialization and
implementation along with the specified numerical scheme.
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Tumor growth model

In this work, we model the spatio-temporal evolution of glioblastoma growth using a time-
fractional partial differential equation with Ω = (0, L)× (0, T) given by

cDα
t u︸ ︷︷ ︸

the distribution
of glioblastoma cell density

= ∇ · D∇u︸ ︷︷ ︸
net invasion

of glioblastoma cells

+ ρ f (u)︸ ︷︷ ︸
net proliferation

of glioblastoma cells

in Ω︸︷︷︸
brain

anatomy

, (6)

where α, 0 < α ≤ 1, is the Caputo fractional derivative order, u = u(t, x, y) (cells/mm3) is the
glioblastoma cell density, D (mm2/year) is the net invasion rate, ρ (1/year) is the net proliferation
rate, and the proliferation term satisfy

f (u) =
1

1 − u/K
, u/K ̸= 1, K > 0, (7)

where K (cells/mm3) is the maximum cell carrying capacity of tissue for tumor cells. The equation
(6) can be solved under various dimensional assumptions. Here, we employ a two-dimensional
spatial derivative in the equation.

Hypothesis

To provide a theoretical foundation for our findings, we propose the following hypothesis, consid-
ering statements (3)-(4) and Lemma 1 given in Section 2.

Hypothesis. If the glioblastoma cell density, u, approaches the maximum cell carrying capacity of
the tissue, K

u → K, K < +∞, t → T, (8)

then the distribution of glioblastoma cell density, cDα
t u, increases

cDα
t u → ∞, t → T. (9)

Then, there exist a critical point (T, x∗, y∗), such that the glioblastoma cell density, u, reaches the
maximum cell carrying capacity of tissue, K

lim
(t, x, y)→(T, x∗, y∗)

u = K, T < +∞. (10)

This allows the model to approximate the critical point at which the glioblastoma cell density
reaches the maximum cell carrying capacity of the tissue, K, allowing the examination of the time
interval leading to this important event. At this juncture, we make two assumptions: i) When the
glioblastoma cell density reaches the maximum cell carrying capacity of tissue, K, a critical and
lethal cell population becomes detectable on MRI; ii) When the glioblastoma cell density reaches
the maximum cell carrying capacity of tissue, K, it results in necrosis, detectable through MRI. In
both cases, the glioblastoma cell density should become visible at a certain time t ∈ (0, T) before
reaching the maximum cell carrying capacity of the tissue, K. Hence, this implies that equation (6)
can serve as a prognostic tool for predicting the timing of tumor visibility.

Note that, given that the model is defined in a closed domain, the statement (9) refers to a growth
in the distribution of glioblastoma cell density, cDα

t u, rather than a true approximation to infinity.
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Once the glioblastoma cell density, u, reaches the maximum cell carrying capacity of the tissue, K,
in a finite time period T < +∞, the distribution of glioblastoma cell density, cDα

t u, proceeds over
the same time period.

Model initialization and implementation

The complete specification of equation (6) necessitates the inclusion of both initial and boundary
conditions. The tumor theoretically begins with a single cancerous cell, but the timing and
specifics of its initial growth and spread are unknown. We assume that at the time of diagnosis,
any previous, presumably uniform distribution of cells has already been disrupted. Thus, in order
to characterize the current behavior of tumor cells, we employ the Gaussian distribution as given
by

u(0, x, y) = u0 exp

(
−
|x − x0|

2 + |y − y0|
2

2σ2

)
> 0, (11)

where u0 is the initial cell density, σ is the standard deviation, and x0, y0 is the peak of the Gaussian
distribution. Utilizing such an initial condition, we anticipate that tumor cells exhibit denser
clustering around the center of the tumor, gradually decreasing in density as one moves away
from the center. We impose a no-flux boundary condition

∇u · n⃗ = 0, in ∂Ω, (12)

where n⃗ is the outward unit normal to ∂Ω. The skull and ventricles are not invaded by the tumor
cells and serve as domain boundaries as indicated by equation (12).

We implement a finite difference scheme to solve the time-fractional equation (6), along with the
initial condition (11) and the boundary condition (12), by following [43]. In particular, we employ
a numerical scheme that incorporates the Caputo fractional derivative for the time-dependent
term along with the two-dimensional space-dependent derivative, as given by

1
Γ(1 − α)

k−1∑
m=0

u(tm+1, xi, yj)− u(tm, xi, yj)

τ

∫ tm+1

tm

(tk − s)−α ds

= D
{u(tk−1, xi−1, yj)− 2u(tk−1, xi, yj) + u(tk−1, xi+1, yj)

∆x2

}
+ D

{u(tk−1, xi, yj−1)− 2u(tk−1, xi, yj) + u(tk−1, xi, yj+1)

∆y2

}
+ ρ f (u(tk−1, xi, yj)),

(13)

where the time step size is τ. Accordingly, the temporal nodes are given by tk = kτ, k = 0, 1, . . . , Nt.
Similarly, the spatial nodes are defined as xi = i∆x, i = 0, 1, . . . , Nx with ∆x = Lx/Nx and
yj = j∆y, j = 0, 1, . . . , Ny with ∆y = Ly/Ny, representing the spatial step sizes.

Note that the Caputo fractional derivative, which is given in Definition 2, is applicable only
within the order interval of 0 < α < 1. Thus, incorporating the fractional derivative order of
1 directly into the numerical scheme (13) is not feasible. However, Remark 1 indicates that the
Caputo fractional derivative converges toward the classical derivative as the values of α approach
1. This implies that the fractional numerical scheme (13) turns into a classical scheme. Hence,
we additionally implement and execute the well-known classical finite difference scheme to
conduct comparative assessments in the subsequent parts. We explore the distinctions between
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the fractional and classical derivatives by utilizing α values that are smaller and closer to 1.

4 Results

In this section, we first discuss the dynamics of the growth model under different fractional
derivative orders of α. We observe that the growth model is characterized by predominant
proliferation behavior. Recognizing the potential utility of this outcome as a tool for monitoring
tumor mass formation, we proceed to estimate the timing of tumor visibility on MRI for a specified
patient cohort. Finally, we analyze the correlation between variations in tumor growth speed and
patient survival through an experimental study. For all computational approaches and simulations
here, we use Python programming language.

Dominance assessment of proliferation rate

Throughout our investigations, we integrate the parameter values from the existing studies
considering T1Gd MRI into our growth model. In this section, we explain the dynamics modeled
by equation (6), along with the initial condition (11) and the boundary condition (12), before
discussing results on tumor visibility timing. To conduct these analyses, we leverage the numerical
data pertaining to invasion, D, and proliferation, ρ, rates for a cohort of glioblastoma patients
provided in [52]. These values, estimated from lesion volumes obtained from MRI scans, including
post-contrast T1Gd [7, 20, 52], are derived from a single MRI time point before treatment. In this
work, we set a range for the data presented in [52] and perform investigations on this specific
patient cohort. We confine our investigation to a numerical interval for invasion rates, ranging
from 1.1542 to 7.2827, as specified in Table 1.

Table 1. D: net rate of invasion; ρ: net rate of proliferation; Surv. Days: Overall survival days; Censorship
(1=censored): The term ’censored’ signifies incomplete information, as the event (e.g., death or failure) did not
occur within the study period or the patient was lost to follow-up.; The units are D ∼ mm2/year; ρ ∼ 1/year

Patient Gender D ρ Surv. Days Censorship
1 F 3.65 22.975 1292 0
2 F 1.1542 11.515 375 0
3 F 4.5951 22.975 65 0
4 F 7.2827 18.25 124 0
5 F 5.7849 14.496 115 0
6 M 2.303 36.414 126 0
7 M 4.5951 11.515 2139 1
8 M 7.2827 29.924 224 0
9 M 3.65 14.496 260 0

10 M 5.7849 9.1467 1143 0
Mean - 4.60826 19.17067 586.3 -

The data presented in this table is sourced from Reference [52]

Considering the Caputo fractional derivative definition given by Definition 2, it is clear that
directly assigning the derivative order of 1 to the model is not applicable. Taking into account
Remark 1, it is seen that in the scenario where α = 1, the numerical scheme (13) transitions into
the classical numerical scheme. Therefore, we set one of the α values to 0.9 to facilitate observation
of the approximation to the classical numerical scheme characterized by α = 1. Accordingly, we
execute the model individually for each patient, utilizing fractional derivative orders of α = 0.5,
α = 0.9, and α = 1 for the analyses. We place the peak of the Gaussian distribution given by (11)
at the center of the domain.
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

(e) Patient 5 (f) Patient 6
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(g) Patient 7 (h) Patient 8

(i) Patient 9 (j) Patient 10

Figure 1. The maximum glioblastoma cell density observed each day over a twenty-day period under the three
different derivative orders for each patient listed in Table 1 and the corresponding tumor visibility timing. Each
small data point on the curves, depicted as asterisks, corresponds to consecutive days. Arrow symbols, along
with corresponding numerical annotations, signify the days on which the tumor cell count achieved the threshold
of 50 cells/mm2 within the respective day. The term α represents the Caputo fractional derivative order

We keep both the initial cell density, u0 = 0.0147, and the standard deviation, σ = 2.86 mm, in
the Gaussian distribution constant, in accordance with [13, 14, 18, 19]. We hold the maximum
cell carrying capacity of the tissue constant at K = 108 cells/mm3 for all simulations, consistent
with [20]. We consider invasion and proliferation coefficients, denoted as D and ρ, respectively, as
patient-specific values, as in Table 1. To execute the model, we employ the numerical scheme with
a time step of τ = 0.01, and a spatial discretization involving a domain length of 50 mm with 25
grid points. With the adjustments above, we generate daily glioblastoma cell densities for each
patient over a twenty-day period, as demonstrated in Figure 1.

As a result, in Figure 1, the consideration of both proliferation rates and glioblastoma cell density
values on the y-axes revealed a conspicuous trend, showcasing the dominance of proliferation
rates in the model across all examined cases. Stated differently, the model notably initiated the
generation of glioblastoma cell densities, with a specific focus on proliferation rates. This indicates
that the tumor growth model may be an effective tool for tracking the temporal evolution of tumor
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mass formation. Upon comparison of data from cases where each pair has the same proliferation
rates, such as in the cases of Patients 1 and 3, Patients 2 and 7, or Patients 5 and 9, it was observed
that a higher value of the invasion parameter slowed down the effect of the proliferation parameter.
Accordingly, a slowdown in the growth rate of glioblastoma cell density was observed.

On the other hand, the numerical range identified in Table 1 for invasion parameter values,
which comes from the data source, resulted in consistently smaller invasion rates than their
proliferation counterparts in each case. Therefore, we now conduct an additional analysis to
assess the dominance of the proliferation rate in the reverse case. To do this, we select arbitrary
invasion and proliferation rates, namely, D = 7.01 and ρ = 4.99, while maintaining consistency
with all other parameters and methodologies employed in the preceding analyses. Accordingly,
we present a magnified visualization illustrating the early stages of glioblastoma cell density for
the three distinct derivative orders of α, as shown in Figure 2.

Figure 2. Magnified view of the initiation of glioblastoma cell density under the three different derivative orders
of α with the arbitrary parameter values of D and ρ

For the arbitrary parameter values, it was clearly observed that glioblastoma initiation commences
with a numerical value closely aligned with the proliferation rate, ρ = 4.99, for all three derivative
orders of α, as shown in Figure 2. In conclusion, the proliferation rate being smaller than the inva-
sion rate does not constitute a transformative factor influencing the dominance of the proliferative
behavior in the model. Therefore, this analysis further underscores the tumor growth model’s
efficacy in capturing the process of glioblastoma mass formation.

Investigation of tumor visibility timing

The complexity of glioblastoma and its propensity for recurrence underscore the need for a
nuanced understanding of its recurrence patterns for improved patient-specific management.
In this section, we address this void and perform a patient-specific short-term follow-up to
investigate the timing of glioblastoma cell visibility on MRI for the recurrence period. The
analyses conducted in the preceding section emphasize the efficacy of the tumor growth model in
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tracking the glioblastoma formation process, thereby affirming its ability to predict tumor visibility
timing. In light of this finding, we proceed with our further discussions over the patient cohort
presented in Table 1, which comprises ten patients newly diagnosed with glioblastoma.
Due to the invasive nature of glioblastoma, only a portion of the tumor can be detected with
available medical imaging techniques. Examinations of computed tomography (CT) images and
microscopic studies on postmortem brain slices indicate a detection threshold of 40, 000 cells/cm2

for advanced CT scans [23]. This threshold corresponds to approximately 400 cells in the approxi-
mately 1 mm2 area covered by a 10x objective, or approximately 25 cells in the same area covered by
a 40x objective for a histopathologist [21]. In this study, we adopt a threshold value of 50 cells/mm2

as a threshold. For a histopathologist, this threshold may correspond to approximately 5 cells in
an area covered by a 10× objective, following [21]. Here, we conduct examinations assuming
that all patients receive standard treatment. With the same numerical scheme adjustments as in
the previous section, we consider a twenty-day recurrence period following standard treatment.
As mentioned in Subsection 4 and illustrated in Figure 1, under the three specified α values,
the maximum glioblastoma densities were generated, which were attained daily throughout
the considered recurrence time frame. Then, we determine the days on which the 50 cells/mm2

threshold was reached for each patient under the three derivative orders of α.

Figure 3. The maximum glioblastoma cell density observed each day over a twenty-day period under the three
different derivative orders of α for the mean value and the corresponding tumor visibility timing

In conclusion, the classical derivative, defined by the order of α = 1, depicted a growth pattern that
rapidly reached the tumor visibility threshold of 50 cells/mm2 in the initial time steps, exhibiting
a rapid departure from this threshold. A similar trend was observed when choosing α = 0.9 as
a value close to the classical order. In contrast, when the fractional derivative order was set to
α = 0.5, the model showed a higher sensitivity to the tumor visibility threshold. That is, significant
variations in the time for the tumor to reach the visibility threshold were observed for α = 0.5
across the examined time span. Moreover, upon comparing Patient 2 and Patient 7, both exhibiting
identical proliferation rates, it became evident that a higher invasion rate led to a delay in tumor
visibility timing for α = 0.5, unlike other derivative orders. In contrast to the remaining cases,
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Patient 10, characterized by a comparatively lower proliferation rate and a higher invasion rate, it
was observed that the tumor visibility threshold for α = 0.5 was not reached in the relevant time
period. However, given its proximity to the tumor visibility threshold on the twentieth day, it can
be anticipated that the visibility threshold will likely be reached in the ensuing days. Consequently,
analyses revealed that fractional derivatives model a more controlled growth behavior in contrast
to the classical derivative.
It is notable that the tumor typically reached the 50 cells/mm2 threshold within the same day for
the derivative orders of α = 0.9 and α = 1, except for Patient 10. It is essential to elucidate that
this does not necessarily denote the same cell count. Rather, this means that the glioblastoma
densities exceeded the threshold on the specified day and manifested varied values beyond this
threshold for both derivative orders.
As a final step, we investigate the timing of tumor visibility for the mean value of both invasion
and proliferation rates presented in Table 1. As observed in Figure 3, the glioblastoma cell density
surpassed the tumor visibility threshold within six days for the mean under all three distinct
derivative orders of α. Given that the empirical evidence indicates the presence of glioma cells
throughout the CNS within seven days following the implantation of tumors into a rat brain [21],
our findings appear to be coherent with this observed phenomenon.

Investigation of tumor growth speed and survival correlation

As an additional experimental study, we examine the connection between patient survival and
tumor growth speed for patients with glioblastoma in this part. To accomplish this, we employ
a metric that considers the successive interday tumor growth speed. Here we consider a period
from the initial diagnosis of glioblastoma to the day of death for the simulations. We use the
numerical data extracted from [52], and presented in Table 2. To execute the model, we adopt
identical parameter values as detailed in Subsection 4, with the exception of the time step, which
is set to τ = 0.1 with a fractional order of α = 0.5.

Table 2. D : net rate of invasion; ρ: net rate of proliferation; Surv. Days: Overall survival days (from diagnosis to
death); The units are D ∼ mm2/year; ρ ∼ 1/year

Patient Gender D ρ Surv. Days
1 F 1.1542 11.515 375
2 F 1.8293 289.24 446
3 M 2.303 36.414 126
4 M 0.91684 5.7712 862

The data presented in this table is sourced from Reference [52]

We first explore the temporal trends of glioblastoma densities considering the survival duration
of patients, as illustrated in Figure 4. When glioblastoma cell densities were examined, tumor
growth trends within this group revealed the predominance of the proliferation term, as in the
patient group discussed in Subsection 4. To further analyze the current growth trend for each
patient, we apply a metric given by

∆GCVk = uk+1
max − uk

max, (14)

where k ∈ [1, S − 1]. Here, S is the total number of survival days in the period after diagnosis,
expressed as survival days in Table 2, umax is the maximum cell density, and k is the time index.
To reveal potential patterns among the patients, we apply metric (14) to the daily maximum
glioblastoma cell densities obtained above, as visualized in Figure 5. In conclusion, the glioblas-
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Figure 4. The maximum glioblastoma cell densities over the survival duration of patients listed in Table 2

toma cell densities exhibited a deceleration in growth speed when compared to the preceding
days, as a specific pattern across four patients. This deceleration may be attributed to necrosis
formation, indicating cell death within the tumor tissue, particularly given the dominance of the
proliferation phenomenon in the model. To perform a patient-specific analysis of this change,
we impose two arbitrary thresholds indexed to each patient’s own tumor cell densities. These
express two criteria of the form T1 = 0.20max(∆GCVk) and T2 = 0.06max(∆GCVk). We then
determine the first days when the glioblastoma cell variation, ∆GCVk, fell below these thresholds
for each patient. When reviewing the outcomes, it was observed that in the case of Patient 1, death
ensued relatively quickly after the ∆GCVk value fell below the second threshold, T2, while in the
cases of Patients 2 and 4, death occurred much later. In contrast, in the instance of Patient 3, death
was noted after the ∆GCVk value fell below the first threshold, T1, before attaining the second
threshold, T2. Consequently, no remarkable patterns were observed linking the thresholds to the
glioblastoma cell variation during the survival days. We also examine the final delta values of
the patients, as shown in Figure 6. The values displayed on the y-axis in Figure 6 correspond
to the final delta values for the two days preceding the occurrence of death. In conclusion, the
examined patient cohort did not exhibit any significant patterns in this temporal window. How-
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ever, these conclusions further corroborated the long-recognized yet unexplained heterogeneity in
inter-patient variability among glioblastoma cases, as mentioned in [53, 54].

(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Figure 5. Correlation of glioblastoma cell variation with patient survival under the fractional order of α =
0.5. Each pink marker on the curves signifies the values commencing from the initial delta, ∆GCV1, which
corresponds to the first two days after diagnosis, extending to the final delta value, ∆GCVS−1, representing the
consecutive two days before mortality. The pink dotted line denotes the first threshold, T1, representing the
point at which the ∆GCVk value reaches %20 of the maximum value of ∆GCVk. Similarly, the sea green dotted
line delineates the second threshold, T2, symbolizing the point at which the ∆GCVk value reaches %6 of the
maximum value of ∆GCVk. The days marked in black adjacent to the dotted lines signify the initiation of these
events

5 Discussion

In this work, we use an explicit fractional finite difference scheme for the simulations. In addition
to the established stability issues associated with explicit schemes, it is noteworthy that the
inclusion of fractional derivatives in the employed numerical scheme introduced an additional
layer of complexity to this challenging scenario. In cases not included in this study but defined
with relatively larger invasion rates, difficulties were encountered in managing these high values.
The applied fractional numerical scheme faced challenges in handling a wider range of invasion
parameter values, particularly for values below the fractional order α = 0.5, which serves as
the lower limit in the investigative scope of this study. To address these challenges, a finer-scale
temporal discretization strategy was employed. However, this adjustment resulted in a significant
escalation of computational time with simulations extending up to thirty-six hours. These findings
recommended the adoption of implicit methods in future studies as a prudent and feasible strategy
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Figure 6. The values of the final delta, ∆GCVS−1, for the patients listed in Table 2

to mitigate computational time and efficiently handle extensive numerical data. By this means, it
appears possible to leverage the subtle effects of smaller fractional orders across a broad range of
parameter values.
Upon theoretical evaluation of the decrease in the speed of increase in maximum cell densities for
each day over the survival period discussed in Subsection 4, it can be inferred that the observed
deceleration reflects convergence behavior to a singular point in the proliferation term, f (u).
However, this deceleration may be attributed to necrosis formation, which signifies cell death in
the tumor tissue, particularly when considering the dominance of the proliferation phenomenon
in the model. Examining the growth model’s ability to effectively capture necrosis occurrences
would have been facilitated with more detailed information about the studied patient cohort.
Regrettably, this study was unable to access such detailed data. Future research endeavors are
anticipated to provide opportunities for more comprehensive analysis in this regard. In the context
of the final experiments, the ∆GCVk value for all four patients fell below the initial threshold, T1,
on nearly the same days, as illustrated in Figure 5. This is attributable to the proximate invasion
rates observed across the cases. Working with patient data characterized by higher invasion rates
may lead to variability in this regard.
Overall, the findings presented in this study should be contextualized within the scope of experi-
mental investigations conducted through a mathematical equation. To transparently evaluate the
advantages of the proposed growth model, conducting rigorous assessments involving clinical
validations, such as in vivo or in vitro, would be highly enlightening. To the best of our knowledge,
our growth model, even in its classical form has not been explored in the context of cancer research.
This suggests the model’s potential as a focal point for future cancer investigations within the
realm of mathematical modeling.

6 Conclusion

In this work, we introduced a mathematical model to investigate glioblastoma growth at a macro-
scopic scale, presenting a structure that incorporates a calibration criterion based on fractional
derivatives. The findings highlighted the importance of incorporating fractional derivatives in
refining mathematical models to better capture real-life observations. The analyses strongly re-
vealed the dominance of the proliferation phenomenon in the proposed growth model, suggesting
its robustness as a tool for tracking glioblastoma mass formation and predicting the timing of
tumor visibility on MRI during recurrence follow-up. Estimates of tumor visibility timing, con-
ducted with consideration for three distinct derivative orders, pointed towards a more controlled
approach with small fractional derivative orders. The obtained findings regarding tumor visibility
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timing exhibited consonance with the empirical observations, reinforcing the validity of our
methodology. The analyses of the relationship between patient survival and tumor growth speed,
utilizing the growth model developed in this research, further substantiated the well-established,
yet inexplicable, variations in inter-patient variability for glioblastoma cases.
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