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Abstract: The dynamics of solid material dissolving in a solvent are fundamentally described by the Noyes-Whitney
equation. For the purpose of simulating intricate processes with memory effects and non-local behaviors, fractional calculus
offers a strong foundation. We explore the effects of memory and non-locality on dissolution kinetics by solving the Noyes-
Whitney equation using fractional derivatives. By means of mathematical analysis, we provide insights into the dissolving
processes in chemical engineering and pharmaceutical applications by clarifying the behavior of the Noyes-Whitney equation
with proportional fractional derivative. In this study, after discussing the characteristics and theories of the proportional
fractional derivative on a time scale, we solve the proportional fractional Noyes-Whitney dynamic equation in the presence of
the initial condition and give several examples on various time scales via the proportional fractional derivative.
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Noyes-Whitney Dinamik Denkleminin Coziimlerinin Oransal Kesirli Tiireve Gore Incelenmesi

Oz: Kati maddenin bir ¢dziicii iginde ¢dziinmesinin dinamigi temel olarak Noyes-Whitney denklemi ile tanimlamr.
Karmasik stiregleri hafiza etkileri ve yerel olmayan davranislarla simiile etmek amacryla kesirli analiz gii¢lii bir temel sunar.
Noyes-Whitney denklemini kesirli tiirevler kullanarak ¢ozerek hafizanin ve yerel olmamanin ¢éziinme kinetigi iizerindeki
etkilerini arastirryoruz. Matematiksel analiz yoluyla, Noyes-Whitney denkleminin orantili kesirli tiirevle davramisimi agikliga
kavusturarak kimya miihendisligi ve farmasd&tik uygulamalardaki ¢oziinme siireglerine iliskin bilgiler sagliyoruz. Bu calismada
oransal kesirli tiirevin 6zelliklerini ve teorilerini zaman Olgeginde verdikten sonra oransal kesirli Noyes-Whitney dinamik
denklemini baslangi¢ kosulunun varli§inda ve oransal kesirli tiirev iizerinden ¢esitli zaman 6lgeklerinde birka¢ 6rnek vererek
¢ozilyoruz.

Anahtar kelimeler: Noyes-Whitney dinamik denklemi, kesirli hesap, oransal kesirli tiirev.
1. Introduction

Numerous industrial and scientific operations depend heavily on the kinetics of a solid substance's dissolution
in a solvent. Based on variables including surface area, diffusion coefficient, and concentration gradient, the
Noyes-Whitney equation [15,23,26,30,32,33] offers a standard model for explaining dissolution rates. We
introduce a proportional fractional derivative to the Noyes-Whitney equation in this study, inspired by the non-
local behaviors and memory effects found in dissolution events.

The classical fractional derivative operators [1,10,11,17,19,24,25,27,34] are extended by the new
conformable fractional derivative, named proportional fractional derivative [4,5,18], with parameters k, and k;.
If P° is the unit operator and P! is the classical differential operator, then the differential operator P is called a
proportional derivative where 8 € [0,1]. In order to overcome some constraints of the current fractional calculus
operators and offer a more adaptable framework for characterizing the behavior of complex systems with
fractional-order dynamics, the conformable fractional derivative was developed.

With respect to parameters k, and x,, the proportional fractional derivative is defined as follows:

Definition 1.1 [5] Assume that 8 € [0,1], ko, k;: [0,1] X R = R{ are continuous functions and that
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L}L%L Ko (ﬁl t) = 0' ﬁll)rgh_ Kl(ﬁ' t) = 1,
Jim k(B0 =1 lim k(8,6 =0, (1.1)
Ko(ﬁ' t) * O' ﬁ € (0:1]1 Kl(ﬁl t) * 0' .8 € [0'1)’

are true. In this situation, if the function ¢ is differentiable at t and (p’:%(p, then the differential operator P#
defined by

PEo(t)=k, (B, )9 () + o (B, D)@' (1), (1.2)
is said to be proportional.

It is possible to modify the behavior and characteristics of the proportional fractional derivative operator by
varying the parameters x, and ;. With respect to linearity, commutativity, and the chain rule, the proportional
fractional derivative with parameters x, and k; inherits some of the beneficial characteristics of conventional
fractional derivatives. Furthermore, when modeling complicated systems [8,31] with fractional-order dynamics, it
provides increased flexibility and adaptability. There are several applications of this fractional derivative in the
domains of signal processing, physics, engineering, biology, and finance [3,7,9,16,21,22,28]. Among the
phenomena displaying fractional-order behavior include viscoelasticity, anomalous diffusion, fractional-order
control systems, and so on. The features and behavior of this derivative are investigated through mathematical
modeling and analysis, utilizing experimental validation, numerical simulations, and analytical techniques. The
fractional derivative operator can be tailored to the unique properties of the system under study because to the
flexibility offered by the parameters k, and k,. In comparison to conventional fractional calculus operators, the
proportional fractional derivative with parameters k, and k; offers greater flexibility and versatility, making it a
useful tool for characterizing and comprehending the dynamics of complex systems with fractional-order behavior.

A time scale T is a closed, nonempty subset of the real numbers that denotes the domain of evolution of a
dynamic process. It offers a comprehensive framework for researching dynamic processes and systems that change
throughout different kinds and durations of time. Time scales having irregular or non-uniform time intervals can
be modeled using continuous, discrete, or hybrid time scales. Since its introduction by Stefan Hilger in 1988 [20],
time scale calculus has grown to be an essential tool for the study of dynamic systems with a wide range of temporal
features. Numerous disciplines, including engineering, physics, biology, economics, and finance, can benefit from
the use of time scale calculus. It is applied to population dynamics, mathematical biology, control theory, signal
processing, and other fields to model and understand dynamic systems.

A basic equation used to characterize the rate at which a solid material dissolves into a solvent is the Noyes-
Whitney equation, sometimes referred to as the Noyes-Whitney equation of dissolution kinetics. It offers a
numerical connection between the dissolution rate and other process-influencing variables.

The aim of the study is to obtain analytical solutions of the fractional derivative Noyes-Whitney Dynamic

Equation with proportional delay. The formula for the Noyes-Whitney problem is

2= 5(R;—R), R(0)=0. (1.3)
The solubility of the substance, or the concentration of its saturated solution, is represented by R; the concentration
at the expiration of the time ¢ is represented by R;; and & is a constant. This indicates that the solution profile, as
derived from the integration of Eq. (1.3), is exponential and reaches the plateau value R, in an indefinite amount
of time:

R =Ry(1—e~%). (1.4)

In this article, we consider the proportional fractional Noyes-Whitney dynamic equation
PBR(t) = 6(R; — R)(t). (1.5)
Firstly, we will give some properties and theories about the proportional fractional derivative on a time scale, and

then we will find the solution of Eq. (1.5) with the initial condition and give some examples on different time
scales.

36



Tuba GULSEN, Melek DONMEZ

2. Preliminaries

Some basic definitions and features of proportional fractional calculus theories will be covered in this part.
Firstly, let us denote on a time scale T by u, p and o the graininess function, the backward and forward jump
operators, respectively, and additionally note that T*=T — {m} if there is a maximum m point of T; else, T*=T.
Detailed information about time scale calculation can be found in [2,6,12-15,23,26,30,33].

The proportional delta derivative of the function ¢ : T — R of order B € [0, 1] at point t € T* will now be
defined.

Let us define
3(’]1‘):{ @:T > R : PPo(t) exists and is finite for all t € 'I]'k},
as the collection of all proportional delta differentiable functions [29].

Theorem 2.1 [29] Let ¢ : T —» R be a function, t € T¥; k, and k; be continuous functions that fulfill the
conditions (1.1). In this case

PPo(t)=Ko(B, t) 9 (t) + K1(B, 1) @ (1), 2.1

defines the B-th order proportional derivative of ¢ at point t where 8 € [0, 1].

Lemma 2.2 [29] If ¢, ¢, : T = R are proportional delta differentiable at the point t € T* and x, and k, satisfy
the conditions (1.1) and are continuous functions, then the following properties are provided:

(i) PPlpg, + co,1=pPPp,] + ¢PPlp,], allp, ¢ ER;

(i) Pﬁ[‘ﬂﬁpz]: Qolopﬁ[‘Pz] + PP (P10, — 17 @211 (B, .);

v g [01] _ PPlodd 027 - 01PPl@a]l | ¢1° o
(iii) D Lpz] o +(p2a’€1(ﬁ:-): 02027 # 0

Definition 2.3 [29] Let 8 € [0, 1] and k,, x; : [0, 1] x T > R¢ be continuous functions that fulfill (1.1). p: T - R
is regarded as being S-regressive if the requirement

H%M(ﬂio, all t € T,
o\p,

is hold. The collection of all f-regressive and rd-continuous functions on T is represented by Rz=R; (T).

Definition 2.4 [29] Let B € (0, 1],p € Rs. Assume that ko, k; are continuous functions and p/rc, k/k, delta
integrable functions on T, and that (1.1) is satisfied.

E (t, s)=exp U —Log 1+W (‘[))A‘L’], 2.2)

= 1 B,
E,(t, s)=exp U mLog 1 — Kl(g TT) #(r))Ar] s,t €T,
N

defines the proportional exponential function on T for operator P#, where Log is the fundamental logarithm
function.

t
E - @ -ri (B0 _
E,(t, s)=exp US ( ) )AT], u() =0, (2.3)

Definition 2.5 [29] Letp : T — Rand 8 € (0, 1]. Let us use ERE to define all positive g-regressive components
of R, that is,
(@ —Kx1(B,7)
®i={pen: 1 +EO=BB D () > O,all e T}.
Theorem 2.6 [29] Ifp € ERE and B € (0, 1], the following properties are true:

@) E,(a(t), s)= ( 1+ %’;{f” ,u(t)) E,(t,);
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(ii) E (t,s)=

Ep (s 0’

(iii) E,(t, s)E,(s, 1)=E,(t,1);

@) Bt )= ( BE2E2) B, (1, 9).

Lemma 2.7 [29] Let 8 € (0,1] and p € R. For fixed s € T,
PEIE,(.,9)]=p®E,(,5),

and for the proportional exponential function E,,

| [ e@Eto@ 4 |_
P [f (5. At | =¢p(t). 2.4

Definition 2.8 [29] Assume that ¢ € C,4(R), B € (0,1], and ¢, € T. The indefinite proportional integral (anti
derivative) is defined as

[ PPo(t)A,t=p(t) + cEy(t, t,), VEET,c ER,

with respect to Lemma 2.7

t
t = _ P([@Ep(t, o(7)) —
J, 0(@Ey(t, (7)) 4pT = L T At, AgT= o(ﬁ 5 4%, (2.5)

describes the indefinite proportional integral (anti derivative) of ¢ on [a, b]y.

Lemma 2.9 [29] Let B € (0, 1], ¢ € C,4(R), and K, k; be continuous functions and satisfy (1.1). Then,

Pk Uat ¢(T)E0 (t,a(1)) Aﬁ‘[] =p(t). 26

Lemma 2.10 [29] If ¢ € J(T),

fPﬁW@H%@ﬂ@D%FﬂMﬂ%@ﬁ@MLm

Definition 2.11 [4] It is assumed that ¢ : T — C is regulated. Afterward, for each g € Hg(f), where Hgz(f) is
the set of all complex numbers that fulfill

Ko+ f79(u—K) #0, g—K €Ry,

—_ - h_K1
h gf*(1+u——)

0

the proportional fractional Laplace transform of ¢ is given as

(oo}

Ly(9)(w) = f P QEn(£0) Ag .

Theorem 2.12 [4] Assume that ¢4, ¢, : T — C are regulated; y,,y, € C. Thus, for u € Hﬁ(qu) n Hﬁ((pz),

Lp(y,0, +7,0,) @) = v,Lg(0,) (W) +v,L(9,) W)
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Lemma 2.13 [4] (i) Lg(1)(u) = %EO(OO,O), u € Hy(1),
_ Eg(0,0)

(i) Lg (Eq (00,0)) =

u-q

3. Main Results

Using the Laplace transform, solutions of the proportional fractional Noyes-Whitney problem

{ PER(t) = 8(R; — R)(Y), (3.1)
R(0) = R, (3.2)

for various time scales will be found in this section.

Theorem 3.1 The solutions of the proportional fractional Noyes-Whitney problem (3.1)-(3.2) is

R(t) = Ry + (Ry — ROE_5(t,0), (3.3)
where R (t) = R,.

Proof: Using the initial condition (3.2) and the proportional fractional Laplace transform of both sides of Eq. (3.1)
can result in the discovery that

Lg(PPRY(wW) = Lp(§(Rs — R))(w)
= 8(R, - R)Lp(1) ()
= 5RLp(1)() — SLp(R) (),
and then using lemma 2.13

_ Eq(00,0
uLg (R)(w) — RoEo(0,0) = &R, % ~ 8Lp(R)(w),
L B 6R, + Ryu g 0
g(R)(u) = o) 0(0,0),
= (B4 22) By (e0,0).

By applying the inverse proportional fractional Laplace transform to both sides,
R(t) = R; + (Ry — R)E_5(t,0),

1s found.

Example 3.2 Let T=7Zx,(8,t) = (1 — )32, Kky(B,t) = f317F)/2 In this case, the solution of the
problem

{ PV2R(t) = == (R, — R)(D), (34)

R(0) = R,, (3.5)
is

R(t) = Ry + (R, — Ry)exp[tLog?2].
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Solution Since u(t) = 1, from the definition of the proportional fractional exponential function (4), we have

t

3,3
F “2t2
E_s(t,0) = exp Log| 1-— Au

3
2

0

= exp [fot Log?2 Au]

= exp[Log2 Y5 1]
= exp[tLogZ].
Hence, the solution of (3.4)-(3.5) is given that
R(t) = Ry + (Ry — Ry)exp[tLog?2].

38
Example 3.3 Let T = 3N° K. (B,t) = (1 =), ko(B,t) = Btz. In this case, the solution of the problem is:
{ PY3R(t) = —=(Rs — R)(D), (3.6)
R(1) =R, 3.7
R(t) = R, + (R, — R,)3%.
t L 1
- +,
f ﬁLog(l— 7 32t>Au
s 3
‘1
= exp f —Log3 Aul
0 2u

exp [Log3 Zi/g 1]

Solution: Since u(t) = 2t, we get

E_s(t1) = exp

k-1
exp [Log3 Zgo 1]

exp|kLog3],
=3 t=3% keN,
and the solution can be obtained as

R(t) = R, + (R, — R,)3".

4. Conclusion

Following a discussion of the properties and theories of the proportional fractional derivative on a time scale, we
solve the proportional fractional Noyes-Whitney dynamic equation in this study while the initial condition is
present. We then provide multiple examples using the proportional fractional derivative on different time scales.
We provide light on the behavior of the Noyes-Whitney equation with proportional fractional derivative, so
offering insights into dissolving processes in chemical engineering and medicinal applications.
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