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ABSTRACT 

The most significant component of the skeletal and muscular system, whose function is vital to human existence, are 
the bones. Breaking a bone might occur from a specific hit or from a violent rearward movement. In this study, bone 
fracture detection was performed using convolutional neural network (CNN) based models, Faster R-CNN and 
RetinaNet, as well as a transformer-based model, DETR (Detection Transformer). A detailed investigation was 
conducted using different backbone networks for each model. This study's primary contributions are a methodical 
assessment of the performance variations between CNN and transformer designs. Models trained on an open-source 
dataset consisting of 5145 images were tested on 750 test images. According to the results, the RetinaNet/ResNet101 
model exhibited superior performance with a 0.901 mAP50 ratio compared to other models. The obtained results show 
promising outcomes that the trained models could be utilized in computer-aided diagnosis (CAD) systems. 
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Otomatik Kemik Kırığı Tespitinde Evrişimsel Sinir Ağları ve Transformer Modellerinin 
Performansının Analizi 

 
ÖZ 

İnsan varlığı için hayati önem taşıyan iskelet ve kas sisteminin en önemli bileşeni kemiklerdir. Bir kemiğin kırılması 
belirli bir darbeden veya şiddetli bir geriye doğru hareketten kaynaklanabilir. Bu çalışmada, kemik kırığı tespiti, 
evrişimli sinir ağı (ESA) tabanlı modeller olan Faster R-CNN ve RetinaNet, ayrıca bir transformer tabanlı model olan 
DETR (Detection Transformer) kullanılarak gerçekleştirilmiştir. Her model için farklı omurga ağları kullanılarak 
detaylı bir inceleme yapılmıştır. Bu çalışmanın birincil katkıları, CNN ve transformatör tasarımları arasındaki 
performans farklılıklarının yöntemsel bir değerlendirmesidir. 5145 görüntüden oluşan açık kaynaklı bir veri setinde 
eğitilen modeller, 750 test görüntüsünde test edilmiştir. Sonuçlara göre, RetinaNet/ResNet101 modeli diğer modellere 
göre daha üstün performans sergileyerek 0.901 mAP50 oranına ulaşmıştır. Elde edilen sonuçlar, eğitilen modellerin 
bilgisayar destekli tanı (BDT) sistemlerinde kullanılabilecek vaat edici sonuçlar sunmaktadır. 
 
Anahtar Kelimeler: Derin öğrenme, medikal görüntüleme, nesne tespiti, evrişimsel sinir ağları, görüş 
transformatörü 
 
 
INTRODUCTION  
 
A bone is among the most fundamental components that 
make up our body's support and mobility system [1]. 
Bones have many tasks such as keeping our body upright, 
protecting internal organs, and walking. An adult 
human's body contains 206 bones in total [2]. Bones can 
be broken as a result of falling, trauma, or impact. Bone 
fractures are manually detected by radiologists after x-

ray images are taken, and the result is transmitted to the 
orthopedic doctor. Manual detection can be time-
consuming. Also, sometimes radiologists or orthopedic 
doctors may not be available in emergency departments 
late at night. In this case, other doctors can be less capable 
to identify minor fractures due to their lack of 
specialization and may prolong the patient's recovery 
process by applying the wrong treatment to the patient 
[3]. Additionally, early diagnosis plays an important role 
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in the selection of appropriate treatment methods and the 
success of treatment [4].  Computer-aided diagnosis also 
helps minimize human errors during treatment [5]. 
Previously, the usefulness of diagnostic computers for 
bone fracture detection was very limited in practical 
clinical settings, mainly due to its low accuracy. 
Recently, thanks to the availability of extensive, 
annotated image datasets, many new studies on CAD 
based on deep learning have been presented [6]. CNNs 
used in image analysis are an important network within 
the scope of deep learning [7]. CNNs represent a 
specialized branch of artificial neural networks designed 
particularly for tasks involving visual data processing, 
such as image recognition and analysis. CNN algorithms 
can perform object detection and classification on 
medical images as well as on many images. In such cases, 
they can be utilized to comprehend the content of the 
image or determine the location of objects by extracting 
features from complex structures within the image. In the 
study conducted by Ozdemir et al. [8], CNN models were 
comprehensively compared on augmented images, 
demonstrating the success of CNN models. 
Faster R-CNN [9] and RetinaNet [10] are common 
architectures of CNNs used for object detection. Faster 
R-CNN performs object detection in two stages, first 
suggesting the regions where the objects may be, and 
then the location is determined from the suggested region 
[9]. In RetinaNet, focal loss [10] solves the class 
imbalance problem and detects objects of different sizes 
using anchor boxes [10]. The differences between Faster 
R-CNN and RetinaNet are that Faster R-CNN uses 
regional proposals, and RetinaNet uses anchor boxes. In 
addition, cross-entropy is used as a generality loss 
function in Faster R-CNN, and focal loss is used in 
RetinaNet. Vision transformer [11] is used for object 
identification inspired by the transformer [12] 
architecture. DETR [13] is a model based on the 
transformer architecture used for object detection. DETR 
also uses the transformer structure that performs all 
object detection at once. 
In this study, CNN-based architectures Faster R-CNN 
and RetinaNet, and the DETR model based on 
transformer architecture, were used. These models were 
employed to detect the fractured region in broken bone 
images in x-ray images and compared to measure which 
model performs better. 
The primary findings of this research include: 

• Our study comprehensively examines the 
advantages and disadvantages of CNN-based 
architectures compared to transformer-based 
architectures. 

• A comprehensive comparison of Faster R-CNN, 
RetinaNet, and DETR models was conducted. 

• Our comprehensive study provides a different 
approach to bone fracture detection, 
contributing significantly to the development of 
computer-aided diagnostic systems. 

The remaining portions of this study's content are 
categorized into the following sections: In the literature 

review section, existing studies are examined. The 
material and method section contains the models that 
were utilized in this investigation. Results and discussion 
include performance metrics, model experimental 
results, and a discussion of the findings. Future research 
and a conclusion are provided in the section conclusion. 
 
LITERATURE REVIEW 
 
Numerous studies have been conducted using state-of-
the-art models of convolutional neural networks in the 
literature. Some studies have focused on bone fracture 
detection. 
In the study by Warin et al. [14], a total of 1710 
mandibular images were used, and 855 of these images 
had fractures. First, the images were classified in binary 
as fracture and nonfracture. DenseNet-169 [15] and 
ResNet50 models were used for classification. 
Meanwhile, the outcomes that the specialists discovered, 
and residents were compared. According to the results, 
DenseNet-169 performed 100% classification. In broken 
bone detection, the Faster R-CNN model outperformed 
the YOLOv5 model with an f1 score of 90.67%. 
Kim et al. [16] proposed an assessment method utilizing 
a stacked autoencoder (SAE) for bone fracture 
investigation that builds upon prior research in the fields 
of unsupervised learning, medical imaging, and structural 
health monitoring. This novel approach aligns with 
recent efforts to enhance the accuracy and efficiency of 
fracture analysis without relying solely on traditional 
imaging techniques. Additionally, the use of virtual 
spectrograms and a short-time Fourier transform in 
image-based training signifies a departure from 
conventional methodologies. 
The study conducted by Tao et al. [17] applied an 
automated segmentation method in medical imaging, 
focusing specifically on the segmentation of zygomatic 
bones in cone-beam computed tomography (CBCT) 
images. The utilization of attention maps generated by 
gradient-weighted class activation mapping (Grad-
CAM) and guided Grad-CAM algorithms for improved 
interpretability represents a novel contribution to the 
field. Comparisons with human dentists highlight the 
efficiency and accuracy gains achieved by the proposed 
model, setting it apart as a promising tool for 3D 
modeling in preoperative planning scenarios. While 
achieving a 99.64 accuracy rate, a dice coefficient score 
of 92.34 was obtained. 
In their study, Ahmed and Hawezi [18] used the 
integration of machine learning algorithms in medical 
imaging, particularly for bone fracture detection, 
representing a significant advancement in enhancing 
diagnostic accuracy. The proposed system, 
encompassing pre-processing, edge detection, feature 
extraction, and machine learning classifications, 
underscores the multidimensional approach employed to 
refine the diagnostic process. The findings, with support 
vector machine (SVM) exhibiting an accuracy rate of 
0.92 among the algorithms. 
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Du et al. [19] contributes to the field of skeletal bone age 
assessment (BAA) by proposing an innovative two-stage 
segmentation method for hand bone X-ray images. The 
importance of accurate segmentation in BAA is 
emphasized, given the intricate structure and small 
features of hand bones. The utilization of the OSA-
YOLOv5 network for initial extraction and the 
subsequent application of GRU-UNet for separation 
mark a novel approach to enhance accuracy and 
completeness in segmentation. The GRU-UNet 
segmentation model demonstrates a significant 
improvement, achieving a 14.70% higher accuracy than 
the conventional Unet [20]. 
The study conducted by Karanam et al. [2] contributes to 
the burgeoning field of fracture detection by presenting a 
comprehensive overview of various techniques and 
methodologies. Notably, the study addresses a critical 
gap in existing literature by emphasizing the importance 
of not only detecting but also classifying bone fractures. 
This work serves as a valuable resource for researchers 
aiming to develop models that can automatically detect 
and classify fractures, supporting the construction of 
fracture detection. 
In their study, conducted by Caron et al. [3] contributes 
to the advancing understanding of osteoporosis by 
presenting a novel approach to studying microdamage 
development in trabecular bone under mechanical 
loading. The study is centered on the usage of YOLOv4 
[21] and Unet. The proposed two-step approach 
showcases the potential of YOLOv4 for microdamage 
detection and Unet for segmentation, offering promising 
results in accurately identifying and delineating 
microdamage regions. With average intersection over 
unions (IoUs) of 45.32% and 51.12% and mean average 
precisions (mAPs) of 28.79% and 46.22% for samples 1 
and 2, respectively, the YOLOv4p5 model performed the 
best. 
In their study, Zheng et al. [22] contributes to medical 
imaging by presenting a novel two-stage method 
designed for the automatic identification and localization 
of complex pelvic fractures. The proposed method stands 
out by harnessing the symmetry properties of pelvic 
anatomy and capturing symmetric feature differences 
caused by fractures on both sides, addressing limitations 
observed in existing methods that focus solely on image 
or geometric features. Leveraging supervised contrastive 
learning with a siamese deep neural network, 
incorporating a structural attention mechanism and a 
structure-focused attention (SFA) module, the method 
demonstrates superior mean accuracy and sensitivity as 
opposed to cutting-edge contrastive learning methods 
and advanced classification networks. 
Our study distinguishes itself in the literature by 
meticulously focusing on fracture detection in medical 
imaging, with a distinct emphasis on CNN models and 
transformer models. Unlike earlier works, we adopted 
state-of-the-art detection models for our investigation, 
carefully selected for their potential advantages in our 
targeted domain. Our comparative analysis involves a 
thorough comparison between CNN and transformer 

models for fracture detection, along with a 
comprehensive evaluation. Ultimately, our research 
contributes to the burgeoning field of medical imaging, 
addressing critical gaps and paving the way for 
advancements in fracture detection that hold significant 
implications for clinical applications. 
 
MATERIAL AND METHOD 
 
In this section, dataset and object detection models 
employed for fracture detection are introduced.  
 
Dataset 
 
In this study, the dataset used for bone fracture detection 
is open source and obtained from the Roboflow platform 
[23]. The information regarding the utilized dataset is 
provided in Table 1. 
 
Table 1. Dataset for bone fracture 
 
 Train Val Test Total 

Dataset 5145 750 750 6645 

 
There are 6645 images in all in the entire dataset, which 
encompass fractures from different types of bones. The 
dataset contains images of hand, finger, arm, leg, toe, and 
hip fractures. Figure 1 shows some of the images taken 
from the dataset. 

 
Figure 1. Sample images for fractures. The green-colored 
bounding boxes represent the ground truth. 
 
Faster R-CNN 
 
In order to extract features from the images, Faster R-
CNN uses models like visual geometry group (VGG) 
[24] and residual network (ResNet) [25] as a backbone in 
the initial stage of the process [26]. Simultaneously, the 
VGG architecture is used as the backbone in the article 
on Faster R-CNN. 
In the other stage of Faster R-CNN, the region proposal 
network (RPN) creates recommended regions for object 
detection, processing the image only once [27]. The 
purpose of the RPN is to send the extracted features to a 
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1x1 convolutional layer using 3x3 convolution and 2x2 
max pooling layers. Two cells make up the RPN's output 
layer: one predicts the region bounding box, and the other 
determines if an item is there or not [27]. Subsequently, 
ROI pooling outputs the maximum feature map of each 
region and brings the regions proposed by RPN in 
different sizes to the same size [28]. After passing 
through convolution and fully connected layers, target 
class identification, and sensitive box presenter 
regression are performed. 
Once region proposals are generated, the Fast R-CNN 
detector refines these proposals and classifies objects 
[29]. The classification loss penalizes incorrect class 
predictions. Cross-entropy loss is commonly used in 
classification problems. Equation 1 presents the cross-
entropy loss. 
 
𝐻𝐻(𝑦𝑦,𝑦𝑦) = −�𝑦𝑦. 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦 + 1 − 𝑦𝑦) × 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑦𝑦)�       (1) 
 
where, 𝑦𝑦 is the true label (ground truth), which is either 0 
or 1. 𝑦𝑦 is the predicted probability of the positive class. 
Bounding box regression loss penalizes inaccurate 
bounding box regression. The Smooth L1 Loss function 
measures the absolute difference by comparing the 
ground truth with the bounding box drawn by the model 
[30].  The Smooth L1 loss is given in Equation 2. 
 

𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑆𝑆ℎ𝐿𝐿1(𝑥𝑥) = � 0.5𝑥𝑥2 𝑖𝑖𝑖𝑖|𝑥𝑥| < 0
|𝑥𝑥| − 0.5 𝑙𝑙𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

                  (2) 

 
where, 𝑥𝑥 is the discrepancy between the predicted 
bounding box coordinates and the ground truth bounding 
box coordinates. 
Figure 2 shows the architecture of the Faster R-CNN. 
 

Figure 2. Architecture of Faster R-CNN. 
 
As illustrated in Figure 2, during the initial stage of Faster 
R-CNN, the input image undergoes processing through a 
CNN backbone, such as ResNet or VGG, extracting a 
hierarchical set of feature maps. Concurrently, the RPN 
operates on these feature maps to generate region 
proposals. 
 
RetinaNet 
 
RetinaNet is a model proposed to address the issue of 
excessive foreground and background imbalance 
encountered during the training of other models in object 
detection [31]. RetinaNet consists of two main 
components: Feature Pyramid Network (FPN) [32] and 
focal loss. 

CNN is used by FPN to capture richer information at a 
reduced resolution. The top-down path employs high-
resolution feature maps, focusing on the general features 
of the image [33]. Pyramidal links in the specified paths 
of the FPN enable bottom-up or top-down connections, 
bringing together different feature levels and scales. 
Simultaneously, high-resolution feature maps and low-
resolution feature maps merge. This merging enhances 
the visibility of small objects with larger feature maps, 
and large objects become more visible in small feature 
maps. 
In general, loss functions assign the same importance to 
each sample because most samples belong to the same 
class. However, in some rare cases, this can cause the 
model to lose focus. Focal Loss, used in RetinaNet, is 
designed to prevent this by paying less attention to easily 
classifiable samples and more attention to more complex 
samples. Focal loss is given in Equation 3. 
 
𝐹𝐹𝑙𝑙𝐹𝐹𝐹𝐹𝑙𝑙𝐿𝐿𝑙𝑙𝑒𝑒𝑒𝑒(𝑝𝑝𝑡𝑡) = −(1 − 𝑝𝑝𝑡𝑡)𝛾𝛾𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑡𝑡)                        (3) 
 
where, 𝑝𝑝𝑡𝑡  is the predicted probability of the true class, 
and 𝛾𝛾 is a tunable focusing parameter (typically a positive 
value). The term (1 − 𝑝𝑝𝑡𝑡)𝛾𝛾 is the focal weight, which 
down-weights the contribution of well-classified 
examples. Figure 3 shows the architecture of the 
RetinaNet. 

Figure 3. Architecture of RetinaNet 
 
To attain the highest level of performance, RetinaNet 
combines a focal loss with an FPN, as can be observed in 
Figure 3. 
 
Detection Transformer (DETR) 
 
DETR is inspired by the transformer-based architecture. 
DETR can process the image in a single stage and 
estimate the object positions and class of objects. The 
input layer, transformer layer, and output layer are the 
three layers that make up DETR [34]. 
Firstly, in the input layer, the image passes through CNN 
layers using a backbone. Extracted features are used to 
identify the objects in the next stages. In the transformer 
layer of DETR, there are encoder and decoder. The 
encoder matches the features extracted from the 
backbone and the reference boxes [35]. Using the 
attention mechanism, the relationship between different 
objects in an image is learned. In the decoder part, 
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classification and predictions are made for object 
detection. In the output layer, a feed-forward network is 
used so that each layer produces an output for object 
detection and classification using the output from the 
previous layer. 
The loss functions used in DETR are Hungarian Loss and 
Smooth L1 Loss [13]. Hungarian Loss calculates the 
absolute difference between the class labels predicted by 
the model and the actual class labels. The Hungarian loss 
is given in Equation 4. 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝑙𝑙𝐹𝐹𝑒𝑒𝑖𝑖𝐹𝐹𝐻𝐻𝐿𝐿𝑙𝑙𝑒𝑒𝑒𝑒 = −∑ 𝐶𝐶𝑙𝑙𝑒𝑒𝑆𝑆𝑁𝑁

𝑖𝑖=1 �𝑖𝑖, 𝐹𝐹𝑒𝑒𝑒𝑒𝑖𝑖𝑙𝑙𝐻𝐻𝑆𝑆𝑒𝑒𝐻𝐻𝑆𝑆[𝑖𝑖]�       (4) 
 
where, 𝑁𝑁 is the total number of predicted boxes, 
𝐹𝐹𝑒𝑒𝑒𝑒𝑖𝑖𝑙𝑙𝐻𝐻𝑆𝑆𝑒𝑒𝐻𝐻𝑆𝑆[𝑖𝑖] is the index of the ground truth box 
assigned to the predicted box 𝑖𝑖 according to the optimal 
assignment, and 𝐶𝐶𝑙𝑙𝑒𝑒𝑆𝑆 is the cost matrix representing the 
cost of assigning each predicted box to each ground truth 
box. Figure 4 displays the DETR's architecture. 

Figure 4. Architecture of DETR 
 
DETR is an object detection architecture that uses 
transformer-based models to achieve accurate and 
effective detection tasks, as can be seen in Figure 4. 
 
RESULTS AND DISCUSSION 
 
Metrics are implemented to assess and enhance the 
model's performance by determining whether the model 
properly or mistakenly predicts item detections. 
Simultaneously, they help to take necessary actions 
according to the model's state by evaluating its 
performance. The metrics used to test object detection 
models are as follows: 
Precision: It measures the accuracy of positive 
predictions made by the model. The precision is given in 
Equation 5. 
 
𝑃𝑃𝑒𝑒𝑒𝑒𝐹𝐹𝑖𝑖𝑒𝑒𝑖𝑖𝑙𝑙𝐻𝐻 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
                                                      (5) 

 
Recall: It measures the ability of the model to capture all 
positive instances. Recall is given by Equation 6. 
 
𝑅𝑅𝑒𝑒𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁
                                                            (6) 

F1 Score: It considers both precision and recall to provide 
a balanced assessment of a model's performance. The F1 
Score is given by Equation 7. 
 

𝐹𝐹1 − 𝑆𝑆𝐹𝐹𝑙𝑙𝑒𝑒𝑒𝑒 = 2×𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃×𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

                                 (7) 
 
mAP(Mean Average Precision): It combines precision 
and recall to provide a comprehensive measure of how 
well a model identifies and localizes objects in an image. 
mAP is given in Equation 8. 
 
𝑆𝑆𝑚𝑚𝑃𝑃 = 1

𝐶𝐶
∑ 𝑚𝑚𝑃𝑃𝑃𝑃𝐶𝐶
𝑃𝑃=1                                                        (8) 

 
where, 𝐶𝐶 is the whole count of classes. 𝑚𝑚𝑃𝑃𝑃𝑃 is the average 
precision for a class 𝐹𝐹. 
Faster R-CNN, RetinaNet, and DETR models were tested 
using 750 test images. Both training and testing processes 
were conducted in the Google Colaboratory 
environment. Table 2 displays the results that were 
achieved. 
 
Table 2. Results of the model’s performances 
 

Model/Backbone mAP50 Precision Recall F1-
Score 

FasterR-
CNN/ResNet50 

0.828 0.899 0.906 0.902 

FasterR-
CNN/ResNet101 

0.832 0.906 0.907 0.907 

RetinaNet/ResNet50 0.896 0.921 0.878 0.899 

RetinaNet/ResNet101 0.901 0.917 0.880 0.898 

DETR/ResNet50 0.844 0.870 0.883 0.887 

DETR/ResNet101 0.840 0.905 0.887 0.896 

 
The backbone of the Faster R-CNN and RetinaNet 
models contains FPN. Although the same type of 
backbone is used in the models, the depths of the 
backbones are different. Faster R-CNN and RetinaNet 
models were trained for 20,000 iterations, while DETR 
models were trained for 200 epochs. A batch size of 8 and 
a learning rate of 0.0001 were applied to each model 
during training. Additionally, adam was used to optimize 
the models.  
In Table 2, the highest mAP50 value is observed in the 
RetinaNet-ResNet101 model with a ratio of 0.901, 
indicating high success in object detection. The 
RetinaNet/ResNet50 model also demonstrates good 
performance with a high mAP50 value of 0.896. 
However, Faster R-CNN models have lower but still 
acceptable mAP50 values. The Faster R-CNN/ResNet50 
model and Faster R-CNN/ResNet101 model achieved 
ratios of 0.828 and 0.832, respectively. 
The highest Precision value is 0.921, belonging to the 
RetinaNet/ResNet50 model, indicating how accurately 
the model identifies true positive objects. Other models 
also have high Precision values. While the 
RetinaNet/ResNet101 model has a precision ratio of 
0.917, slightly behind the RetinaNet/ResNet50 model, it 
outperforms other models. 
The highest Recall value is 0.907, observed in the Faster 
R-CNN/ResNet101 model, indicating its ability to detect 
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truly positive objects with a high success rate. The Faster 
R-CNN/ResNet50 model showed a recall ratio of 0.906, 
very close to the performance of the Faster R-
CNN/ResNet101 model.  
The highest F1-Score value is 0.907, belonging to the 
Faster R-CNN/ResNet101 model, demonstrating a good 
balance between Precision and Recall metrics. The Faster 
R-CNN/ResNet50 model also has a high F1-Score value 
of 0.902, indicating a well-maintained balance. 
The mAP50 values for DETR/ResNet50 and 
DETR/ResNet101 models are 0.844 and 0.840, 
respectively. These values indicate that DETR models 
have an average performance in object detection. The 
Precision value for the DETR/ResNet50 model is 0.870, 
while for the DETR/ResNet101 model, it is 0.905. These 
values indicate the proportion of detected objects by 
DETR models that are truly positive. The Recall values 
for DETR/ResNet50 and DETR/ResNet101 models are 
0.883 and 0.887, respectively. The DETR/ResNet101 
model has a slightly higher Recall value compared to 
DETR/ResNet50. 
RetinaNet generally outperforms Faster R-CNN and 
DETR in terms of mAP50, precision, indicating its 
superiority in object detection accuracy and reduction of 
false positives. Faster R-CNN achieves the highest recall, 
suggesting its effectiveness in capturing a higher 
proportion of true positive instances. DETR shows 
competitive performance but falls slightly behind in 
terms of mAP50, precision, and F1-Score compared to 
RetinaNet and Faster R-CNN. 
Figure 5 displays the RetinaNet/ResNet101 model's 
prediction results. 

 

 
Figure 5. RetinaNet/ResNet101 prediction results. 
 
Figure 5 displays sample images of prediction results 
obtained using the RetinaNet/ResNet101 model. The 
green color represents the ground truth, while the yellow 

color represents the predicted bounding box. 
Additionally, confidence score values are also shown. 
The model exhibiting the best performance in terms of 
mAP50 ratio, RetinaNet/ResNet101, is compared with 
existing studies in Table 3. Existing studies have used 
similar datasets aimed at bone fracture detection. 
 
Table 3. Evaluation of the suggested model in the light of 
previous research. 
 

Paper Model/Back 
bone mAP50 Precision Recall F1-

Score 
Ma and 
Luo [36] 

Faster R-
CNN+CrackN
et 

- 0.897 0.904
9 

0.9014 

Guan et 
al. [37] 

CNN 0.620 - - - 

Guan et 
al. [38] 

DCFPN 0.821 - - - 

Zou and 
Arshad 
[39] 

YOLOv7-
ATT 

0.862 - - - 

Caron et 
al. [3] 

YOLOv4p5 0.462 - - - 

Proposed 
Model 

RetinaNet/Res
Net101 

0.901 0.917 0.880 0.898 

 
The analysis of the presented table reveals notable 
insights into the performance of various object detection 
models. The Faster R-CNN+CrackNet model, as 
reported in Ma and Luo [36], achieved a precision of 
0.897, recall of 0.9049, and an F1-Score of 0.9014, but 
no mAP50 value was provided. When compared to the 
recommended model, Faster R-CNN+CrackNet 
surpasses our model in terms of recall and F1-score, 
while our proposed model excels in precision.  The CNN 
model proposed by Guan et al. [37] achieved a modest 
mAP50 of 0.6204, highlighting its limitations. Similarly, 
the DCFPN model proposed by Guan et al. [38] showed 
a mAP50 of 0.821, while YOLOv7-ATT proposed by 
Zou and Arshad [39] demonstrated a mAP50 of 0.862. 
The proposed method performs competitively with these 
models in terms of mAP50. YOLOv4p5 proposed by 
Caron et al. [3], with a mAP50 of 0.4622, lags 
significantly behind the proposed model.  
In terms of precision, the proposed model excels with a 
value of 0.917, demonstrating its ability to minimize false 
positives. The CNN model proposed by Guan et al. [37], 
lacks precision information, necessitating further 
evaluation. For recall, the Faster R-CNN+CrackNet 
model proposed by Ma and Luo [36] achieves the highest 
score at 0.9049, emphasizing its effectiveness in 
capturing true positives. In contrast, the proposed model 
exhibits a slightly lower recall of 0.880, indicative of its 
potential trade-off with precision. Lastly, considering the 
F1-Score, the proposed RetinaNet/ResNet101 remains 
superior with a value of 0.898, offering a balanced 
performance between precision and recall. Meanwhile, 
YOLOv4p5 again lags behind without specific F1-Score 
information.  
Overall, the RetinaNet/ResNet101 model outperforms 
other models according to the mAP50 metric, while 
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surpassing the Faster R-CNN+CrackNet model in terms 
of precision. The Faster R-CNN+CrackNet model 
outperformed our model only in the Recall and F1-Score 
metrics. 
 
CONCLUSION 
 
Faster R-CNN, RetinaNet, DETR models were compared 
for bone fracture detection based on mAP, precision, 
recall and F1-score values. The RetinaNet/ResNet101 
model has the highest mAP and precision, which may be 
due to the fact that they are more complex samples thanks 
to Focal loss. The DETR models, which comes from a 
vision transformer-based architecture instead of a CNN-
based architecture like Faster R-CNN and RetinaNet, is 
very close to the Faster R-CNN models in terms of F1 
score. Considering all these results, it is decided that 
CNN-based models such as Faster R-CNN and RetinaNet 
are the most suitable for optimal bone fracture detection. 
However, it is important to recognize certain limitations 
in our study. Firstly, the model's dependence on 
extensive training data might pose challenges in 
scenarios where acquiring a diverse and sufficiently large 
dataset is difficult. The generalizability of the model to 
various imaging conditions and patient demographics 
may be compromised as a result. Secondly, the lack of 
interpretability in deep learning models remains a 
concern, as understanding the decision-making process is 
crucial, especially in medical applications. 
In future studies, we aim to explore the potential benefits 
of ensemble models, amalgamating predictions from 
various architectures to create a synergistic and more 
robust framework for fracture detection. Additionally, 
our future endeavors will include extensive real-world 
validation studies across diverse clinical settings, 
ensuring the practical effectiveness and reliability of the 
bone fracture detection models in authentic healthcare 
environments. 
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