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Keywords ABSTRACT

Insurance, Claim Modelling is a key issue to get a fair pricing in insurance. Poisson
Frequency Data, distribution is the basic model for count data when the assumptions of
Zero Inflated Poisson process are assured. Since the insurers tend not to state the small
Models, Hurdle claims to get the deductibles and no claim discounts, insurance data has
Models more zeros than expected which makes the contradictions of the Poisson

process assumptions that is the equality mean and variance value.

However, not to take account excess zeros makes the knowledge

deficiency to get the better pricing for the portfolio. In this paper we will

compare Poisson Models and Zero Inflated Models which account for this

fact for claim frequency data. Also we will review the models in use for

count data and also compare Hurdle Models as an alternative to Zero

. Inflated Models. Our results represent that Hurdle Models are better fit

JEL Classification a0 the other models we compare. We used Akaike’s Information
C46, C10, D30 Criteria(AIC) as model selection measures.

1. INTRODUCTION

Modelling is a key issue in insurance to get a fair pricing which is the major task for the
actuaries. In this concept, the distribution of the data set which is investigated is very
important. Poisson distribution is the basic model to be applied to count data. However,
the equivalence of mean and variance assumption of the Poisson process is not satisfied
for insurance data because the insurers tend not to state the small claims to get the
deductibles and no claim discounts which cause insurance data set generally has more
zeros than expected. In that reason overdispersion which is the situation of that the
variance is greater than the mean is seem to be main problem for the insurance dataset.
Negative Binomial Model is developed as an alternative to handle overdispersed count
data. However, the Negative Binomial Model can also be violated by overdispersion when
the variance is greater than the calculated value of ,u+a,u2. Overdispersion can be
occurred in two ways as apparent and real overdispersion. Missing variables, outliers,
requiring interaction term or misspecified link function can cause apparent overdispersion
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while the violation of distributional assumptions can cause real overdispersion. Zero
Inflated Models developed to handle inflated zero values for the dependent variable
which cause the violation of distribution assumptions (Hilbe,2012).

2. LITERATURE REVIEW

Zero Inflated Poisson Models are developed by Lambert (1992) to handle zero-inflated
count data. Zero Inflated Models combine two sources of zero outcomes which are called
“true zeros” and “excess zeros”. Greene(1994) has investigated Zero Inflated Models as
modifications of the Poisson and the Negative Binomial models. He also presents the test
procedure to separate the zero inflation and overdispersion. Fahrmeir and Echavarria
(2006) developed structured additive regression models for overdispersed and zero
inflated data. They applied the models to the patent data and also motor insurance data
to investigate good indicators for patent. Boucher, Denuit and Guillen (2009) presented
different risk classification models for panel count data based on the Zero Inflated Poisson
distribution. They suggested a new approximation taking account the behavior of
insureds. Zhao&Zhou (2012) discussed longitudinal models of claim counts with excess
zeros. They modelled claim counts by using copula function.

Mullahy (1986) has first discussed in the econometric literature hurdle count data models
which is also called two part models by Heiloron (Heilbron, 1994). Gurmu (1998)
introduced a Generalized Hurdle Model for the handling of overdispersion and also
underdispersion which is the situation of that the variance is less than the mean. Ridout et
al.(1998) reviewed some zero inflated models and hurdle models and gave an example
on biological count data. Saffari, Adnan and Greene (2012) suggested using a Hurdle
Negative Binomial Regression Model to overcome the problem of overdispersion. They
introduced a censored Hurdle Negative Binomial Model on count data with many zeros.
Greene (2007) has compared Zero Inflated and Hurdle Models. In this work it is also
described several extensions of the models and is presented an application to health care
demand data for comparison the models. Hurlimann (1990) presented the usage of
parametric models on the claim frequency distribution with extra zeros. Yip&Yao (2006)
present application of Zero Inflated Models to insurance claim frequency data. They
reviewed the development of Zero Inflated Models and take attention that there is very
few application on claim frequency data in the literature. Flynn (2009) compared
traditional Poisson and Negative Binomial models to the Zero Inflated Models. He applied
Zero Inflated Models and some data mining techniques to claim frequency data and also
attached efficient preprocess procedure for the categorical variables. Morata (2009)
examined a priori ratemaking procedure for the portfolios include different types of claims
by using bivariate Poisson Models with Zero Inflated Models. Bermudez and Karlis (2011)
extended this work based on Bayesian inference by using multivariate Poisson Regression
Models with their zero inflated versions. Mouatassim and Ezzahid(2012) compare poisson
model to the zero inflated model and applied to health insurance data set. Mouatassim,
Ezzahid and Belasri(2012) analized operational risk to the zero inflated data and assess the
impact of ZIP distribution on the operational capital charge. They concluded that the zero
inflated Poisson distribution is better fit then Poisson distribution for modeling
operational risk frequency.
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In this paper, we are motivated from Yip and Yau (2006) and try to extend their results
with different data set. We used a company specific data with four independent variables.
In the next section, we give a brief literature and then we continued with quick
explanation about traditional Poisson and Negative Binomial Models beside Zero Inflated
and Hurdle Models. We give descriptive statistics and counts for our dependent variable
which is claim frequency to monitor our data set. Finally we present and summarized our
results in the last section.

3. DATA AND METHODOLOGY
Data

The data set that we considered in this paper contains claim frequencies for automobile
portfolio of a Turkish insurance company occurred between 2012 and 2014. The data
contains information from 10.814 policyholders and it is a company-specific data. There
are four independent variables which are insureds gender, marital status, age and vehicles
age. Below Figurel presents histogram of claim frequencies of policyholders on the left
hand side. The histogram of Claim Frequencies represents that the dataset contains very
large proportion of zeros which refers to overdispersion. Claim counts are also seen on the
right hand side in Tablel.

Figure 1: Histogram of Claim Frequency Table 1: Counts of Claim Frequencies
A7 Claim Frequency Count
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According to the Tablel given above, the data set contains 8.544 zero counts which is 79%
of the data set. Also, 3 and greater than 3 claim frequencies form approximately 1% of the
data set. Below it is given the distribution of counts and ratios according to the
explanatory variables by codes in Table2. According to the Table 2, looking at the insureds
characteristics, 72% of the data set are male and 28% of the data set are female. In
addition, 78% are married, 15% are single, 5% are divorced and 2% of the data set are
widow. Furthermore, insureds aged between 36 and 50 years filed about 38% of total
claims and 31% of the insureds are younger than 35. And, 3% of the insureds are older
than 71 years old. Looking at the vehicles properties, it is seem that 80% of the vehicles
are between 0 and 5 years old, 19% of the vehicles are between 6 and 10 years old, 1% of
the vehicles are between 11 and 15 years old.

734



Journal of Business, Economics & Finance (2015), Vol.4 (4)

Sarul & Sahin

Table 2: Summary of the dataset

Claim
Variables Code Groups Frequency Ratio
1 Female 3047 28
Gender
2 Male 7767 72
1 Single 1617 15
Marital Status 2 Married 8457 78
3 Divorced 503 5
4 Widow 237 2
1 0-5 8637 80
. 2 6-10 2011 19
Vehicle Age 3 11-15 155 1
4 16-20 11 0
1 0-35 3397 31
2 36-50 4108 38
Insureds Age
3 51-70 2940 27
4 71-100 369 3

Methodology

In this section, we first lay out the Probability Mass Function (PMF) for the Poisson and
Negative Binomial model. Then we continued with the same for Zero Inflated Poisson,
Zero Inflated Negative Binomial and the Hurdle Model. Poisson and Negative Binomial
distribution is traditionally used the claim count distribution in general insurance.

Poisson distribution

The Poisson probability distribution function is formulated as

—/13’

e
P(Y =yld) = y=0,1,2,..

y!

A is the expected value and the variance of Poisson distribution.

Likelihood function for the Poisson Model:

N N oy
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i=1 i

=1

where 1; = E (v;]x;) = e*if.

Poisson Regression Model provide a standard framework for the analysis of count data
with unignorable assumptions. One of the assumptions of the Poisson distribution is the
mean and the variance equivalence. In practice, however, count data often exhibit larger
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variance than predicted by the mean (overdispersion). Therefore count data will be more
convenient to use the Negative Binomial distribution is not provided on the assumption of
the Poisson distribution (Hardin&Hilbe, 2011) (Loeys et al., 2012).

Negative Binomial Distribution
-1
r'y+a™) [ at ]a [ i ]y

PV =ylda) = yir(e™) |at+ 2 al+1

A is the expected value and the variance of the distribution. a is the over dispersion
parameter, when a = 0 the Negative Binomial distribution is the same as Poisson
distribution. Likelihood function for the Negative Binomial Model:

N -1

_ = T o+a)[ at ]* K 1
LBy X) = Bp(yilxi) B 1_[ y!T(a™t) [a‘l + ui] [a‘l + ui]

i=1

where u; = E(y;|x;) = e*if and parameter values of count models are estimated using
maximum likelihood. One of the most common specifications for Negative Binomial Model
is to allow the ratio of the variance to the expected value of Y to vary according to the
following specification:

Var(r) _

EQD) 1—-aE))

where a = In(o) and o is the "over dispersion parameter". Under this specification, when
o= 0 (i.e. 0 = 1) the model reduces to the Poisson. Because the Negative Binomial and
Poisson models are nested in this way, t-tests for o = 1, or a Likelihood-Ratio or Wald test,
can be used to test for the presence of significant amounts of over dispersion (Zorn,
1996).

Zero-Inflated Models

The other problem with Poisson Regression Models having far more zeros than expected
by the distributional assumptions of the Poisson and Negative Binomial models result in
incorrect parameter estimates. (Hardin& Hilbe,2012) Using Zero Inflated Poisson
(Lambert, 1992) or Zero Inflated Negative Binomial models are proposed as a solution for
this problem (Loeys et al., 2012).

In general, count responses having two kinds of zeros “true zeros” and “excess zeros”, at
that point Zero Inflated Models attempt to account for excess zeros. Zero Inflated Models
estimate two equations, one for the count model and one for the excess zeros.

nm+(1—-me™?, y=0

PY=y|AT) = Ay
(Y =ylAm) (1_ﬂ)ey'

, y=12,.. (1)
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Ais the expected value of Poisson distribution and m is the over dispersion parameter.
Hurdle Models

Hurdle Models were developed by Mullahy(1986) to deal with count responses having
more zeros than allowed by the distribution assumptions of Poisson and Negative
Binomial regression, like Zero Inflated models. (Hardin& Hilbe,2012) The differences
between the Hurdle Models and the Zero Inflated Models are that zero and non-zero
counts are separately modelling in the Hurdle Models(Loeys et al., 2012) and also Hurdle
model assumes that all zero counts are true zeros(Potts&Elith, 2006).

The Hurdle Model of count data can be expressed as follows for the Poisson and
Negative Binomial distribution.

The Poisson Hurdle Model Specification

We consider a Hurdle Poisson Regression Model in which the response variable Y has the
distribution
1 y=0
P(Y =yA 1) =4 (1 —m) eV
(1—eMHy!
Zero inflated Poisson distribution is parameterized as given by Equation (1) with
mo=m+ (1—me %

y>0

The Negative Binomial Hurdle Model Specification

We consider a Hurdle Negative Binomial Regression Model in which the response variable
Y has the distribution
M, y=20

g
A=) =

P(Y =ylA o, mp) =

y>0

= . = La_l) —a -y yqy
where g=g;1a)= T DI a5 (1+ad) arA.
Maximum Likelihood Estimation (MLE) method is used to estimate parameters in the Zero
Inflated Models.

This study includes Poisson, Negative Binomial, ZIP, ZINB, Hurdle and Hurdle NB to
accommodate the excess zeros for insurance claim count data. In this paper, Akaike’s
information criteria (AIC) and log-likelihood values are used for model selection measures.
It is also used dispersion parameters to test for overdispersion. The generalized Pearson
X2 statistic which is the standard measure of goodness of fit is used to evaluate the
sufficiency of the analyzing methods. It has the calculated value as follows;

Z Yar (l;l;z
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This statistic follows a y? distribution with n — k degrees of freedom, where n is the total
number of observations and k is the number of parameters (Cameron&Trivedi, 1998).
Akaike’s information criteria (AIC) and log-likelihood are basic methods of assessing the
performance of the models and model selection. The AIC is defined as follows:

AIC = —2log likelihood + 2k
where k = number of parameters. In general, the smaller AIC value refers to the better
model.

4. RESULTS

In this section we follow analysis of our data set. We applied zero inflated and hurdle
models to the insurance data set and compare to the poisson and negative binomial
models. Parameter estimates of models is given in Appendix 1. Below it is given Akaike
information criteria and log-likelihood values to select best model of the data set in Table
3.

Table 3: Information criteria for models

Models AIC Log-likelihood
Poisson 14277 -7127,4
Negative Binomial 14040 -7008,2
Zero Inflated Poisson 14068 -7011,9
Zero Inflated Negative Binomial 14052 -7003,2
Hurdle 14067 -7011,7
Hurdle Negative Binomial 14052 -7003,2

According to the Table 3, Poisson Model is not best performing model for the data set
with the biggest AIC value. Since the Negative Binomal model has the smallest AIC value,
one can say that Negative Binomial Model is the best model for the data set. However,
dispersion parameter for the Negative Binomial Model is 1,0405 and dispersion parameter
for the Poisson Model is 1,201623 which represent that dependent variable claim
frequency is overdispersed. On the other hand, we used Vuong test if the zero inflated
model is above the poisson model and zero inflated negative binomial model is above the
negative binomial model. The Vuong test (Vuong, 1989) is a test to compare Zero inflated
methods to the non-nested models for counts data. For the poisson part, computed
statistic of Vuong’s test is V=-6,722759 (p value = 8,91579e-12) which indicates that Zero
Inflated Poisson regression fits better than standard Poisson regression and for the
Negative Binomial part, computed statistic of Vuong’s test is V= -1,569072 (p value =
0,0583156) which indicates that Zero Inflated Negative Binomial Model fits better than
standard Negative Binomial Model. We can also state that zero inflated poisson model is
above the standard poisson model and zero inflated negative binomial model is above the
negative binomial model. Because Zero Inflated Negative Binomial Model and Hurdle
Negative Binomial Model have the same AIC and log-likelihood value, we can say that
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these models perform best for our data set. Parameter estimates of all models are
represented below in Appendix1. Using parameter estimates in Appendix1, it is possible to
interpret the variables. Male drivers were found to be involved in crashes 11.35%(1 —
e%1976) according to the zero inflated poisson model, 11.9% (1 — e®*131) according to the
hurdle negative binomial model, 11.04% according to the zero inflated negative binomial
model less compared to female drivers. It is possible to excess the results for all
covariates. Here, we would like to take attention that these models has approximately
close AIC values and log-likelihood results. Looking at the covariates these models gives
the approximately close results. It is more reasonable to say for the decision maker, which
model is the best for the data depends on the data structure. If all of the zeros are excess
zeros then hurdle model is more appealing. On the other hand, if zero counts consist of
both true and excess zeros that makes zero inflated models are more appealing(Xie
et.al.,2013).

5. CONCLUSION

Modelling is fundamental to get a fair pricing in insurance. In that reason, analyzing the
distribution of the data set is crucial for the actuaries. Especially insurance data set has
more zeros than expected refers analysts to work with zero inflated models. In this paper,
poisson and negative binomial models which are traditional methods to analyze count
data and zero inflated poisson, zero inflated negative binomial, hurdle model with hurdle
negative binomial model are applied to automobile insurance data. There are four
independent variables which are insureds gender, marital status, age and vehicles age.
Plot analysis presents that the dataset contains very large proportion of zeros which refers
to overdispersion. Dispersion parameter is used to see if there is oversdispersion and
Vuong test is used to compare non-nested models. AIC and log-likelihood values is used to
compare models. We concluded that zero inflated poisson model is superior to the
standard poisson model and zero inflated negative binomial model is superior to the
negative binomial model. Since zero inflated negative binomial model and hurdle negative
binomial model have the same AIC and log-likelihood value, we can say that they perform
best for our data set. However, it is more reasonable to say for the decision maker, which
model is the best for the data is depend on the data structure. Male drivers were found to
be involved in crashes 11.35% according to the zero inflated poisson model, 11.9%
according to the hurdle negative binomial model, 11.04% according to the zero inflated
negative binomial model less compared to female drivers. It is possible to excess the
results for all covariates. As a future research we intend to extend the analysis with
longitudinal data to compare several zero models for insurance data.
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Appendix 1: Parameter estimates of models

’F:A(’;Seol" Sieniar:ifal " zp ZINB HURDLE NBHURDLE
Parameters
(Intercept) -1,2848 -1,2852 -0,7048 1,671 -0,7509 -1,2656
< 2e-16%** <2e-16%** <6,4e-10%** 2,1e-11%** 4 6e-10%** 4,60-07%+*
genderMALE 0,1112 0,1125 0,1076 01262 0,131 0,1249
0,0109* 0,0214* 0,2387 0,1050  0,2289 0,2477
aritlstatusMARRIED 0,0036 0,0415 -0,0780 20,1153 -0,0175 -0,0230
0,9491 0,9475 0,5296 0,3110 0,8842 0,8675
maritlstatusDIVORCED 0,1972 0,1996 0,2956 0,1845 0,3821 0,4121
0,0452* 0,0739 0,1354 0,3240 0,0448* 0,0703
maritistatuswIDOW 0,1378 0,1425 -0,1504 20,1727  -0,0636 -0,0817
0,3347 0,3726 0,6634 04920  0,8448 0,8235
vehicleage6-10 -0,1767 -0,1774 -0,3156 20,2143 -0,3655 -0,3874
0,0006*** 0,0018** 0,0066** 0,032* 0,0027** 0,0043**
vehicleage11-15 -0,3209 -0,3217 -0,9987 20,5339 -0,8408 -0,8896
0,0868 0,1146 2,3e-07*** 0,023* 0,1408 0,1440
vehicleage16-20 -1,0264 -1,0221 -1,6924 -1,2397  -5,6895 -8,3310
0,3049 0,3266 0,0913 02330  0,8686 0,9466
insrdsage36-50 -0,0759 -0,0776 0,0515 00861  0,0510 0,0501
0,1028 0,1392 0,6260 0,3490 0,6060 0,6609
insrdsage51-70 -0,2424 -0,2438 -0,0059 0,0080 -0,0387 -0,0428
6,4e-06*** 0,00005*** 0,9611 0,9480 0,7387 0,7482
insrdsage71-100 -0,3843 -0,3873 -0,2942 20,2365  -0,2020 -0,2233
0,0017** 0,0041%* 0,2842 0,2900  0,4773 0,4831
(Intercept) -0,2480 22,5090  -0,2603 -1,2603
0,2840 0,2300  <2,6e-16***  <2,6e-6***
genderMAN -0,0125 01670  0,1106 0,1106
0,9470 0,7600  0,0444* 0,0444*
maritlstatusMARRIED -0,1910 -1,1560  0,0075 0,0075
0,4660 0,0700  0,9163 0,9163
maritlstatusDIVORCED 0,1790 20,5040  0,1221 0,1221
0,6260 0,5200 0,3455 0,3455
maritlstatuswWIDOW -0,7050 -10,8460 0,1942 0,1942
0,4160 0,9500 0,2771 0,2771
vehicleage6-10 -0,3280 20,2760  -0,1286 -0,1286
0,2210 0,6600  0,041* 0,041*
vehicleage11-15 -12,10 -15,6060  -0,2246 -0,2246
0,9840 1,0000  0,3020 0,3020
vehicleage16-20 -21,10 -15,1410  -0,9111 -0,9111
1,0000 1,0000  0,3856 0,3856
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Appendix 1: Parameter estimates of models (continued)

insrdsage36-50 0,2990 1,7970 -0,1142 -0,1142

0,1970 0,2900 0,0551 0,0551

insrdsage51-70 0,5350 2,3140 -0,2960 -0,2960
0,034* 0,2100 1,2e-05*** 1,2e-05%**

insrdsage71-100 0,2020 1,6150 -0,4336 -0,4336
0,7410 0,4100 0,0036** 0,0036**

*Significant at the 5% level, ** Significant at the 1% level, ***Significant at the 0,1% level
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