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1. INTRODUCTION 
In science, nonlinear partial differential equations often 

represent wave events that are motivated by certain physical 
initial/boundary conditions [1]. In recent times, solitary 
waves, especially soliton waves, have become both 
experimental and theoretically very interesting and 
outstanding. A soliton is a very special type of solitary wave, 
which has a continuous form, can be placed in a region and 
interaction with another soliton, and can be separated 
unchanged without a change of phase [11]. In this paper we 
examine the RLW equation in the following form as 

𝑈𝑡 + 𝑈𝑥 + 𝜀𝑈𝑈𝑥 − 𝜇𝑈𝑥𝑥𝑡 = 0,                              (1) 

𝑈 → 0 when 𝑥 →  ±∞. Where 𝑡 is the time, 𝑥 is the 
position coordinate, 𝑈(𝑥, 𝑡) is the wave height (amplitude), 
and " and μ are the positive parameters. 

The RLW equation was first appeared when calculating the 
development of the ” undular bore” problem by Peregrine [2]. 
The RLW is a nonlinear dispersive wave equation which is a 
more conventional than the KdV equation in observing the 
wave phenomena. This equation is most commonly used in 
order to model physical phenomena such as pressure waves in 
liquid-gas bubble mixtures, longitudinal dispersive waves in 
elastic rods, ion-acoustic waves in plasma, thermally excited 
phonon packets in low temperature nonlinear crystals, shallow 
water waves and plasma waves [2,31]. 

Several researchers have solved the RLW equation using 
various methods and techniques. Among others, Rasoulizadeh 

et al. [3] developed a method for the numerical solution of the 
RLW equation by means of an implicit method based on the -
weighted and finite difference methods. Oruç et al. [4] 
obtained the numerical solutions of the RLW equation using 
Strang splitting approach combined with Chebyshev wavelets. 
Irk et al. [5] used quartic trigonometric B-spline finite element 
method to solve the RLW equation numerically. Yağmurlu 
and Karakaş in the papers [6] and [7] applied the trigonometric 
cubic B-spline collocation method to get numerical solution 
of the equal width equation and modified equal width wave 
equation. Kutluay et al. [8] used cubic hermite B-spline 
collocation method to solve modified equal width wave 
equation. Kutluay et al. [9] utilized a robust quantic hermite 
collocation method for the numerical solution of the one 
dimensional heat equation. for Dağ et al. [10] applied a 
collocation method based on the trigonometric cubic B-spline 
function to obtain numerical solutions of the RLW equation. 
Kutluay [40] and Esen [25] solved the equation using both 
finite difference and finite elements method. Mei and Chen 
[30] used explicit multistep method. Gardner et al. [29] solved 
the regularized long wave equation numerically by Galerkin 
method with quadratic B-spline finite elements. Dağ et al. [31] 
obtained numerical solution of the RLW equation using a 
splitting up technique and both quadratic and cubic B-splines. 
Saka and Dağ [32] developed a new algorithm based on the 
collocation method using splitting. Oruç et al. [38] utilized 
Haar wavelet method and Islam and et al. [41] presented a 
meshfree technique using the radial basis functions (RBFs) in 
order to obtain the numerical solutions of the equation. 
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Moreover; Dağ et al. in the papers [23] and [28] developed 
cubic B-spline collocation and quintic B-Spline Galerkin 
finite element methods for obtaining numerical solutions of 
the present equation. Besides, while Zaki [26] applied a 
combination of the splitting method and cubic B-spline finite 
elements, and Raslan [39] used cubic B-spline collocation 
method for approximate solutions of the equation. 

2. Formulation of Splitting Methods 
One way of dealing with complex problems is” divide and 

conquer”. In the context of evolution type equations, the 

operator splitting idea has been a very successful approach. 

The underlying idea behind such an approach is that all model 

evolution operators are formally written as the sum of the 

evolution operators for each term that is being modeled. In 

other words, when one splits the model into a series of sub-

equations, simpler and more practical algorithms for each sub-

equation occur. Then the applied numerical method is applied 

to each sub-problem and numerical schemes are obtained and 

these schemes are combined by operator splitting [13]. We are 

going to dwell on the situation in which we have the following 

the Cauchy problem 

𝑑𝑈(𝑡)

𝑑𝑡
= 𝐴𝑈(𝑡) + 𝐵𝑈(𝑡), 𝑡 ∈ [0, 𝑇], 𝑈(0) = 𝑈0.     (2) 

Where, an initial function U0 ∈ X is given, A and B are 
assumed to be a bounded linear operator in the Banach space 
𝑋 together with 𝐴, 𝐵 ∶  𝑋 →  𝑋. There is also a norm 
associated with the space 𝑋 denoted by ‖. ‖𝑋, and if both 𝐴 
and 𝐵 are matrixes, then it is called Euclidean norm [14]. 

2.1. Strang splitting algorithm 

In splitting methods, the given equation is generally 

divided into several parts and each part is solved separately, 

independently of the main equation, over [𝑡𝑛, 𝑡𝑛+1] time 

intervals. Such methods are generally called time splitting or 

fractional step methods [15]. Strang [12] has proposed a 

symmetrizing splitting scheme 

𝑑𝑈∗

𝑑𝑡
= 𝐴𝑈∗, 𝑈∗(0) = 𝑈0, 𝑜𝑛 [0,

∆𝑡

2
]                          

𝑑𝑈∗∗

𝑑𝑡
= 𝐵𝑈∗∗, 𝑈∗∗(0) = 𝑈∗ (

∆𝑡

2
) , 𝑜𝑛 [0, ∆𝑡]      (3) 

𝑑𝑈∗∗∗

𝑑𝑡
= 𝐴, 𝑈∗∗∗(0) = 𝑈∗∗(∆𝑡), 𝑜𝑛 [0,

∆𝑡

2
]                   

where the final values are obtained by 𝑈∗∗∗(∆𝑡/2). This 

scheme is called (𝐴 −  𝐵 −  𝐴) and the scheme (𝐵 −  𝐴 −
 𝐵) can be derived in a similar manner. This scheme has a 

local splitting error 

𝑙𝑒 = [𝑒𝐴
∆𝑡
2 𝑒𝐵∆𝑡𝑒𝐴

∆𝑡
2 − 𝑒(𝐴+𝐵)∆𝑡]                      (4) 

               = 𝑂(∆𝑡)                                                             (5) 

is a second-order scheme and is used in practice for many 
applications [20]. 

2.2. Construction of Ext4 and Ext6 algorithms 

In extrapolation techniques, a simple low-order method 
(basic method) is applied for different time steps t. Then, 
higher order methods are obtained by taking an appropriate 
combination of the results [21]. Now let’s explain how to 
obtain a higher order R method. To do this, let 𝑅(𝑡) be an 
approximation to 𝑅 with step length 𝑡 when 𝑡 →  0, 𝑅(𝑡)  →
 𝑅 and let’s assume 

𝑅(∆𝑡) = 𝑅 + 𝑎2∆𝑡
2 + 𝑎4∆𝑡

4 + 𝑎6∆𝑡
6 +⋯       (6) 

If the time step 𝑡 is divided into 𝑘 substeps then the basic 

method is applied k times [22, 16], i.e. 

(𝑅 (
∆𝑡

𝑘
))

𝑘

= 𝑅 (
∆𝑡

𝑘
) °𝑅 (

∆𝑡

𝑘
) °𝑅 (

∆𝑡

𝑘
)…  °𝑅 (

∆𝑡

𝑘
). 

In this study, the Strang method is used as the basic method to 

obtain 𝑬𝒙𝒕𝟒 and 𝑬𝒙𝒕𝟔 techniques. To obtain the 𝑬𝒙𝒕𝟒 

method, the expressions 𝑅(𝑡) and 𝑅 (
∆𝑡

2
) are used in (6) 

𝑅(∆𝑡) = 𝑅 + 𝑎2∆𝑡
2                                   (7) 

𝑅 (
∆𝑡

2
) = 𝑅 + 𝑎2

∆𝑡2

4
.                                (8) 

If 𝑎2 is eliminated in the equations (7) and (8) and necessary 

operations performed for 𝑅 

𝑅 =
4

3
(𝑅 (

∆𝑡

𝑘
))

2

−
1

3
𝑅(∆𝑡) + 𝑂(∆𝑡4)     (9) 

If the approximation (9) is applied to Strang’s algorithm 𝑆∆𝑡 =

𝑒𝐴
∆𝑡

2 𝑒𝐵∆𝑡𝑒𝐴
∆𝑡

2 , Ext4 algorithm is obtained as follows 

𝑬𝒙𝒕𝟒 =
4

3
(𝑆∆𝑡

2

)
2

−
1

3
𝑆∆𝑡                                                   

=
4

3
𝜑∆𝑡
4

[𝐴]
°𝜑∆𝑡

2

[𝐵]
°𝜑∆𝑡

2

[𝐴]
°𝜑∆𝑡

2

[𝐵]
°𝜑∆𝑡

4

[𝐴]
−
1

3

4

3
𝜑∆𝑡
2

[𝐴]
°𝜑∆𝑡

[𝐵]°𝜑∆𝑡
2

[𝐴]
, 

where 𝜑∆𝑡 is a numerical method. Similarly, the following 
equations are used to obtain the Ext6 method 

𝑅(∆𝑡) = 𝑅 + 𝑎2∆𝑡
2 + 𝑎4∆𝑡

4           (10) 

𝑅 (
∆𝑡

2
) = 𝑅 + 𝑎2

∆𝑡2

4
+ 𝑎4

∆𝑡4

4
     (11) 

𝑅 (
∆𝑡

3
) = 𝑅 + 𝑎2

∆𝑡2

9
+ 𝑎4

∆𝑡4

81
      (12) 

If the necessary operations are performed for 𝑅 after 𝑎2 and 

𝑎4 are eliminated in the equations (10), (11), (12) 

𝑅 =
81

40
𝑅(
∆𝑡

3
)3 −

16

15
𝑅 (
∆𝑡

2
)
2

+
1

24
𝑅(∆𝑡) + 𝑂(∆𝑡6).   (13) 

If the approximation (13) is applied to Strang’s algorithm 

𝑆∆𝑡 = 𝑒
𝐴
∆𝑡

2 𝑒𝐵∆𝑡𝑒𝐴
∆𝑡

2 , Ext6 algorithm is obtained as follows 

𝐸𝑥𝑡6 =
81

40
(𝑆∆𝑡

3

)
3

−
16

15
(𝑆∆𝑡

2

)
2

+
1

24
𝑆∆𝑡                             

=
81

40
𝜑∆𝑡
6

[𝐴]
°𝜑∆𝑡

3

[𝐵]
°𝜑∆𝑡

3

[𝐴]
°𝜑∆𝑡

3

[𝐵]
°𝜑∆𝑡

3

[𝐴]
°𝜑∆𝑡

3

[𝐵]
°𝜑∆𝑡

6

[𝐴]
                    

−
16

15
𝜑∆𝑡
4

[𝐴]
°𝜑∆𝑡

2

[𝐵]
°𝜑∆𝑡

2

[𝐴]
°𝜑∆𝑡

2

[𝐵]
°𝜑∆𝑡

4

[𝐴]
+
1

24
𝜑∆𝑡
2

[𝐴]
°𝜑∆𝑡

[𝐵]°𝜑∆𝑡
2

[𝐴]
. 

Since these methods contain negative coefficients, it is not 
known exactly they are stable for what kind of problems. 
However, it has been shown by Dia and Schatzman [16] that 
the Ext4 technique is stable with dimensional splitting for 
linear parabolic problems at finite time intervals. 

3. Method of Solution 

To examine the numerical behavior of the RLW equation 
(1), the solution domain is constrained on a closed interval 
[𝑎, 𝑏]. The homogenous boundary conditions 

22
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𝑈(𝑎, 𝑡) = 0, 𝑈(𝑏, 𝑡) = 0, 𝑡 ≥ 0                 (14) 

𝑈𝑥(𝑎, 𝑡) = 0, 𝑈𝑥(𝑏, 𝑡) = 0                                    

and the initial condition 

𝑈(𝑥, 0) = 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 

are taken as stated above, and 𝑓(𝑥) is a predefined function. 

Let us assume that the space solution domain is [𝑎, 𝑏] and a 

uniform discretization of this domain by the nodal points 𝑥𝑚, 

𝑚 =  0, 1, . . . , 𝑁, is given by 𝑎 =  𝑥0  <   𝑥1  < . . . <   𝑥𝑁  =
 𝑏 . Dividing the solution region into elements of equal length 

ensures that the calculated error norms are smaller. If we 

define the distance between two consecutive points as ℎ =
  𝑥𝑚+1 − 𝑥𝑚 and 𝑇𝑚(𝑥), 𝑚 =  −1(1)𝑁 +  1, then 

trigonometric cubic B-spline functions on the domain [𝑎, 𝑏] 
can be expressed in terms of nodal points xm as follows 

𝑇𝑚(𝑥) =
1

𝑟

{
 
 
 

 
 
 

𝑝3(𝑥𝑚−2),        𝑥 ∈ [𝑥𝑚−2, 𝑥𝑚−1]

𝑝(𝑥𝑚−2)(𝑝(𝑥𝑚−2)𝑞(𝑥𝑚) + 𝑞(𝑥𝑚+1)𝑝(𝑥𝑚−1))

+𝑞(𝑥𝑚+2)𝑝
2(𝑥𝑚−1), 𝑥 ∈ [𝑥𝑚−1, 𝑥𝑚]

𝑞(𝑥𝑚+2)(𝑝(𝑥𝑚−1)𝑞(𝑥𝑚+1) + 𝑞(𝑥𝑚+2)𝑝(𝑥𝑚))

+𝑝(𝑥𝑚−2)𝑞
2(𝑥𝑚+1), 𝑥 ∈ [𝑥𝑚 , 𝑥𝑚+1]

𝑞3(𝑥𝑚+2), 𝑥 ∈ [𝑥𝑚+1, 𝑥𝑚+2]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        (15)

 

as stated by [17, 18]. Where 𝑝(𝑥𝑚) = sin (
𝑥−𝑥𝑚

2
), 𝑞(𝑥𝑚) =

sin (
𝑥𝑚−𝑥

2
) and 𝑟 = 𝑠𝑖𝑛(ℎ/2 )𝑠𝑖𝑛(ℎ) 𝑠𝑖𝑛( 3ℎ/2 ). It is 

obvious that the set {𝑇−1(𝑥), 𝑇0(𝑥), . . . , 𝑇𝑁+1(𝑥)} constitutes a 

base on the domain [𝑎, 𝑏]. If we assume that the function 

𝑈(𝑥, 𝑡) is defined on the domain [a, b], then the function 

𝑈(𝑥, 𝑡) can be approximated as follows in terms of 

trigonometric cubic B-spline functions and time dependent 

parameters 𝛿𝑚(𝑡) as follows 

𝑈(𝑥, 𝑡) ≅ ∑ 𝛿𝑚(𝑡)𝑇𝑚(𝑥)

𝑁+1

𝑚=−1

.                          (16) 

Where time-dependent parameters 𝛿𝑚(𝑡) are going to be 
determined using the Eq. (1) and its auxiliary conditions. 
Since the Eq. (1) contains the terms 𝑈,𝑈′ and 𝑈′′, we need the 
values of 𝑈, its first and second order derivatives in terms of 
trigonometric cubic B-spline functions. Using the 
approximations (15) and (16), the nodal values of 𝑈,𝑈′ and 
𝑈′′ are obtained in terms of the time-dependent parameters 
m(t) as follows 

𝑈𝑚 = 𝑈(𝑥𝑚) = 𝛼1𝛿𝑚−1 + 𝛼2𝛿𝑚 + 𝛼1𝛿𝑚+1,              

𝑈′𝑚 = 𝑈′(𝑥𝑚) = 𝛽1𝛿𝑚+1 − 𝛽1𝛿𝑚−1,                     (17) 

𝑈′′𝑚 = 𝑈′′(𝑥𝑚) = 𝛾1𝛿𝑚−1 + 𝛾2𝛿𝑚 + 𝛾1𝛿𝑚+1,                

with the coefficients 

𝛼1 =
𝑠𝑖𝑛2 (

ℎ
2
)

sin(ℎ) sin (
3ℎ
2
)
, 𝛼2 =

2

1 + cos(2h)
,                   

𝛽1 = −
3

4 sin (
3ℎ
2
)
,  𝛾2 =

3𝑐𝑜𝑠2 (
ℎ
2
)

𝑠𝑖𝑛2 (
ℎ
2
) (2 + 4 cos(ℎ))

, 

𝛾1 =
3(1 + 3 cos(ℎ))

16𝑠𝑖𝑛2 (
ℎ
2
) (2 cos (

ℎ
2
) + cos (

3ℎ
2
))
.              

Where ′ and ′′ denote the first and second order derivatives 
with respect to the space variable 𝑥, respectively. 

  The time split RLW equation is taken as follows 

𝑈𝑡 − 𝜇𝑈𝑥𝑥𝑡 + 𝑈𝑥 = 0                           (18) 

𝑈𝑡 − 𝜇𝑈𝑥𝑥𝑡 + 𝜀𝑈𝑈𝑥 = 0.                      (19) 

If the values of 𝑈𝑚, 𝑈′𝑚 and 𝑈′′𝑚 at nodal points 𝑥𝑚 are used 

in (18) and (19) and basic necessary operations are performed, 

we obtain the following first order ordinary differential 

equation systems 

𝛼1�̇�𝑚−1 + 𝛼2�̇�𝑚 + 𝛼1�̇�𝑚+1 − 𝜇(𝛾1�̇�𝑚−1 + 𝛾2�̇�𝑚 + 𝛾1�̇�𝑚+1) 

+𝛽1(𝛿𝑚+1 − 𝛿𝑚−1) = 0,                                 (20) 

𝛼1�̇�𝑚−1 + 𝛼2�̇�𝑚 + 𝛼1�̇�𝑚+1 − 𝜇(𝛾1�̇�𝑚−1 + 𝛾2�̇�𝑚 + 𝛾1�̇�𝑚+1) 

+𝜀𝑧𝑚𝛽1(𝛿𝑚+1 − 𝛿𝑚−1) = 0,                          (21) 

where · denotes derivation with respect to t and the value of 
𝑧𝑚 is taken as follows for linearization process 

𝑧𝑚 = 𝛼1𝛿𝑚−1 + 𝛼2𝛿𝑚 + 𝛼1𝛿𝑚+1. 

Instead of the parameter 𝛿𝑚, 
𝛿𝑚
𝑛+1+𝛿𝑚

𝑛

2
 is written and instead of 

time-varying parameters �̇�𝑚, 
𝛿𝑚
𝑛+1−𝛿𝑚

𝑛

∆𝑡
 is written in Eqs. (20) 

and (21), the following equations 

𝑎1𝛿𝑚−1 + 𝑏1𝛿𝑚 + 𝑐1𝛿𝑚+1
= 𝑐1𝛿𝑚−1 + 𝑏1𝛿𝑚 + 𝑎1𝛿𝑚+1,              (22) 

𝑎2𝛿𝑚−1 + 𝑏2𝛿𝑚 + 𝑐2𝛿𝑚+1
= 𝑐2𝛿𝑚−1 + 𝑏2𝛿𝑚 + 𝑎2𝛿𝑚+1               (23) 

𝑎1 = 𝛼1 − 𝜇𝛾1 −
𝛽1∆𝑡

2
, 𝑏1 = 𝛼2 − 𝜇𝛾2,                         

𝑐1 = 𝛼1 − 𝜇𝛾1 +
𝛽1∆𝑡

2
, 𝑎2 = 𝛼1 − 𝜇𝛾1 −

𝜀𝑧𝑚𝛽1∆𝑡

2
, 

𝑏2 = 𝛼2 − 𝜇𝛾2, 𝑐2 = 𝛼1 − 𝜇𝛾1 +
𝜀𝑧𝑚𝛽1∆𝑡

2
                 

are obtained. The equations given in (22) and (23) consist of 

(𝑁 + 1) equations and (𝑁 +  3) unknown 𝑗 parameters. 

Using the boundary conditions 𝑈(𝑎, 𝑡)  =  0 and 𝑈(𝑏, 𝑡)  =
 0, we obtain the following equalities for parameters 𝛿−1 and 

𝛿𝑁+1 

𝛿−1 =
𝛼2
𝛼1
𝛿0 − 𝛿1, 𝛿𝑁+1 = −𝛿𝑁−1 −

𝛼2
𝛼1
𝛿𝑁.             (24) 

If the parameters 𝛿−1 and 𝛿𝑁+1 are eliminated from systems 
(22) and (23) using identities (24), (𝑁 + 1) × (𝑁 + 1) 
dimensional tridiagonal band matrix systems are obtained. A 
unique solution of these systems can be obtained using the 
Thomas algorithm. In order to solve these systems, it is 
necessary to use 𝛿0𝑚 initial parameters in (22) and (23) after 
the initial parameters 𝑈(𝑥, 0)  =  𝑓(𝑥) are obtained. If we call 
(22) and (23) systems 𝐴 and 𝐵 respectively, then the results 
will be obtained using the splitting scheme (𝐴 −  𝐵 −  𝐴) as 
stated in (3). 

3.1. Initial Condition 

The initial vector 𝛿0𝑚 will be formed using the initial 

condition 𝑈(𝑥, 0)  =  𝑓(𝑥) as follows 
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𝑈(𝑥𝑖 , 0) = 𝑈𝑁(𝑥𝑖 , 0), 𝑖 = 0(1)𝑁

𝑈𝑚 = 𝛼1𝛿
0
𝑚−1 + 𝛼2𝛿

0
𝑚 + 𝛼1𝛿

0
𝑚+1, 𝑚 = 0(1𝑁)

𝑈0 = 𝛼1𝛿
0
−1 + 𝛼2𝛿

0
0 + 𝛼1𝛿

0
1

𝑈1 = 𝛼1𝛿
0
0 + 𝛼2𝛿

0
1 + 𝛼1𝛿

0
2

⋮
𝑈𝑁 = 𝛼1𝛿

0
𝑁−1 + 𝛼2𝛿

0
𝑁 + 𝛼1𝛿

0
𝑁+1.

(25) 

This system consists of (𝑁 + 1) equations and (𝑁 + 3) 
unknown 𝛿0𝑚 parameters. The parameters 𝛿0−1 and 𝛿0𝑁+1 
are calculated from (25) using the boundary conditions 
𝑈′𝑁(𝑎, 0) = 0 and 𝑈′𝑁(𝑏, 0) = 0 

𝛽1𝛿
0
1 − 𝛽1𝛿

0
−1 = 0, 𝛽1𝛿

0
𝑁+1 − 𝛽1𝛿

0
𝑁−1 = 0. 

Now, newly obtained (𝑁 + 1) × (𝑁 + 1) dimensional 

solvable matrix is obtained for 𝛿0𝑚 parameters. 

[
 
 
 
 
𝛼2 2𝛼1 0

𝛼1 𝛼2 𝛼1
⋱
𝛼1 𝛼2 𝛼1

2𝛼1 𝛼2]
 
 
 
 

[
 
 
 
 
 
𝛿0
0

𝛿1
0

⋮
𝛿𝑁−1
0

𝛿𝑁
0 ]
 
 
 
 
 

=

[
 
 
 
 
𝑈0
𝑈1
⋮

𝑈𝑁−1
𝑈𝑁 ]

 
 
 
 

. 

3.1. Von Neumann Stability Analysis 

The (22) and (23) numerical schemes have been 

considered by the Fourier von Neumann [19] method. In this 

method 𝛿𝑚
𝑛 = 𝜉𝑛𝑒𝑖𝛽𝑚ℎ  is taken, where 𝑖 = √−1, 𝛽 is mode 

number, 𝜉 is amplification factor and ℎ is the space step in the 

method. In Eq. (1) in the term 𝑢𝑢𝑥, since we take 𝑢 = 𝑧𝑚 for 

linearization purpose, it will behave as a local constant. Let us 

assume that the amplification factors related to the schemes in 

(22) and (23) be 𝜌𝐴 and 𝜌𝐵, respectively. If we write 𝛿𝑚
𝑛 =

𝜉𝐴/2
𝑛 𝑒𝑖𝛽𝑚ℎ in Eq.(22), we obtain 

𝜌𝐴 (
𝜉𝑛+

1
2

𝜉𝑛
) =

𝑋 − 𝑖𝑌

𝑋 + 𝑖𝑌
, 

𝑋 = 𝑏1 + (𝑐1 + 𝑎1)𝑐𝑜𝑠𝛽ℎ, 𝑌 = (𝑐1 − 𝑎1)𝑖𝑠𝑖𝑛𝛽ℎ. 

Thus, since |𝜌𝐴 (
𝜉
𝑛+

1
2

𝜉𝑛
)| ≤ 1 is valid, the linearized scheme is 

unconditionally stable. In a similar way, if we take 𝛿𝑚
𝑛 =

𝜉𝐵
𝑛𝑒𝑖𝛽𝑚ℎ in Eq. (23), we obtain |𝜌𝐵 (

𝜉𝑛+1

𝜉𝑛
)| ≤ 1. Since the 

scheme (3) is as follows 

𝜌𝑆(𝜉) = 𝜌𝐴
𝑛+1/2

𝜌𝐵
𝑛+1𝜌𝐴

𝑛+1/2
, 

|𝜌𝑆(𝜉)| ≤ |𝜌𝐴 (
𝜉𝑛+

1
2

𝜉𝑛
)| |𝜌𝐵 (

𝜉𝑛+1

𝜉𝑛
)| |𝜌𝐴 (

𝜉𝑛+
1
2

𝜉𝑛
)| ≤ 1 

the solution for Eq. (1) obtained using Strang splitting scheme 
is unconditionally stable. 

4. Numerical Examples and Their Results 

We have considered two test problems to observe the 

effectiveness of the method. The solution of each problem 

with cubic B-spline collocation method gives (𝑁 + 1) ×
 (𝑁 +  1) tridiagonal band matrix systems which can be 

easily and effectively solved by Thomas algorithm. In order 

to see the difference between numerical solution and analytic 

solution, we have used the error norms defined as to measure 

the difference and thus to see how well the wave position and 

amplitude estimate of the method are 

𝐿2 = √ℎ∑[𝑈𝑗
𝑒𝑥𝑎𝑐𝑡 − 𝑈𝑗]

2
𝑁

𝑗=1

, 𝐿∞ = max
𝑗
|𝑈𝑗

𝑒𝑥𝑎𝑐𝑡 − 𝑈𝑗|. 

The RLW equation given in (1) satisfies three invariants 

known as mass, momentum and energy given as follows 

𝐼1 = ∫ 𝑈𝑑𝑥 ≈ ℎ∑𝑈𝑗
𝑛

𝑁

𝑗=1

+∞

−∞

,                                                         

𝐼2 = ∫ [𝑈2 + 𝜇(𝑈𝑥)
2]𝑑𝑥 ≈ ℎ∑[(𝑈𝑗

𝑛)
2
+ 𝜇((𝑈𝑥)𝑗

𝑛)
2
]

𝑁

𝑗=1

+∞

−∞

, 

𝐼3 = ∫ [𝑈3 + 3𝑈2]𝑑𝑥 ≈ ℎ∑[(𝑈𝑗
𝑛)

3
+ 3(𝑈𝑗

𝑛)
2
]

𝑁

𝑗=1

+∞

−∞

.      (26) 

4.1. Single Solitary Movement 

Analytical solution for single soliton wave solution of 
RLW equation is 

𝑈(𝑥, 𝑡) = 3𝑐 sec ℎ2[𝑘(𝑥 − 𝑥0 − 𝑣𝑡)] 

Where 𝑘 =
1

2
(

𝜀𝑐

𝜇(1+𝜀𝑐)
), 𝑣 = 1 + 𝜀𝑐 is wave velocity and 3𝑐 is 

wave amplitude. The following initial 

𝑈(𝑥, 0) = 3𝑐 sec ℎ2[𝑘(𝑥 − 𝑥0)] 

and the boundary conditions 

𝑈(𝑎, 𝑡) = 𝑈(𝑏, 𝑡) = 0 

are used at the boundaries. Analytic values of the invariants 

for this problem are 

𝐼1 =
6𝑐

𝑘
, 𝐼1 =

12𝑐2

𝑘
+
48𝑘𝑐2𝜇

5
, 𝐼3 =

36𝑐2

𝑘
(1 +

4𝑐

5
)     (27) 

given by Zaki [26]. In order to be able to make a comparison 
with previous studies, all calculations were taken as 𝜀 =
1, 𝜇 = 1, 𝑥0 = 0 and ∆𝑡 = 0.1. In Table 1, the values of the 
error norms 𝐿2, 𝐿∞ and the invariant values calculated with 
the 𝑺∆𝒕, 𝑬𝒙𝒕𝟒 and 𝑬𝒙𝒕𝟔 techniques are given at different 
times in the region −40 ≤  𝑥 ≤  60. As it is clearly seen 
from Table 1, the invariants remain almost the same as time 
progresses. Moreover, the error norms 𝐿2, 𝐿∞ calculated by 
𝑬𝒙𝒕𝟒 and 𝑬𝒙𝒕𝟔 are smaller than those with 𝑺∆𝒕. In Table 2, 
several comparisons have been made with some of those in 
the literature at time 𝑡 =  20 for the values of 𝑐 =  0.03, ℎ =
 0.1, 0.125. As can be clearly seen from Table 2, the results 
obtained with 𝑺∆𝒕, 𝑬𝒙𝒕𝟒 and 𝑬𝒙𝒕𝟔 techniques are in good 
harmony with other results found in the literature. Figure 1 
and 2 show 2 and 3 dimensional behavior of the numerical 
solution and the exact solution. As can be clearly seen from 
Figure 1 and 2, 𝑺∆𝒕, 𝑬𝒙𝒕𝟒 and 𝑬𝒙𝒕𝟔 techniques preserve the 
physical structure of the problem quite well. 
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Table 1: A comparison of the invariants and error norms calculated at various times for values of ℎ =  0.1, 0.125, ∆𝑡 =  0.1, 𝑐 =  0.1, 𝜀 =  µ =  1 

in the region −40 ≤  𝑥 ≤  60 for single solitary wave. 
3 

h Time Method I1 I2 I3 L2 × 10 
4 

L∞ × 10 

 t = 0 S∆t 3.979927 0.810462 2.579007 0.00000 0.00000 

  Ext4 3.979927 0.810462 2.579007 0.00000 0.00000 

  Ext6 3.979927 0.810462 2.579007 0.00000 0.00000 

 t = 4 S∆t 3.979953 0.810462 2.579007 0.29086 0.79795 

  Ext4 3.979953 0.810463 2.579008 0.28673 0.78652 

  Ext6 3.979999 0.810480 2.579066 0.28705 0.76386 

 t = 8 S∆t 3.979971 0.810462 2.579007 0.58210 1.62771 

  Ext4 3.979971 0.810463 2.579008 0.57383 1.60407 

0.125  Ext6 3.980062 0.810498 2.579124 0.57354 1.55669 

 t = 12 S∆t 3.979984 0.810462 2.579007 0.87407 2.47927 

  Ext4 3.979984 0.810463 2.579008 0.86164 2.44339 

  Ext6 3.980121 0.810516 2.579183 0.85984 2.36902 

 t = 16 S∆t 3.979986 0.810462 2.579007 1.16709 3.34710 

  Ext4 3.979986 0.810463 2.579008 1.15046 3.29862 

  Ext6 3.980169 0.810533 2.579241 1.14629 3.19580 

 t = 20 S∆t 3.979962 0.810463 2.579007 1.46140 4.22716 

  Ext4 3.979962 0.810463 2.579008 1.44054 4.16731 

  Ext6 3.980190 0.810551 2.579299 1.43318 4.03364 

 t = 4 S∆t 3.979954 0.810462 2.579007 0.18742 0.51431 

  Ext4 3.979954 0.810463 2.579008 0.18665 0.51186 

  Ext6 3.979954 0.810463 2.579008 0.18397 0.50423 

 t = 8 S∆t 3.979973 0.810462 2.579007 0.37508 1.04901 

0.1  Ext4 3.979973 0.810463 2.579008 0.37353 1.04404 

  Ext6 3.979973 0.810463 2.579008 0.36816 1.02848 

 t = 12 S∆t 3.979988 0.810462 2.579007 0.56319 1.59752 

  Ext4 3.979988 0.810463 2.579008 0.56085 1.59032 

  Ext6 3.979988 0.810463 2.579008 0.55278 1.56656 

 t = 16 S∆t 3.979993 0.810462 2.579007 0.75197 2.15660 

  Ext4 3.979993 0.810463 2.579008 0.74883 2.14697 

  Ext6 3.979993 0.810463 2.579008 0.73803 2.11515 

 t = 20 S∆t 3.979970 0.810462 2.579007 0.94157 2.72364 

  Ext4 3.979970 0.810463 2.579008 0.93764 2.71180 

  Ext6 3.979970 0.810463 2.579008 0.92410 2.67198 

 
 

Table 2: A comparison of the invariants and error norms calculated at 𝑡 =  20 for values of ℎ =  0.1, 0.125, ∆𝑡 =  0.1, 𝑐 =  0.03, 𝜀 =  µ =

 1 in the region −40 ≤  𝑥 ≤  60 for single solitary wave. 

h Method I1 I2 
3 3 

I3 L2 × 10 L∞ × 10 

 S∆t 2.109485 0.12730 0.388807 0.67947641 0.248333660 

 Ext4 2.109485 0.127303 0.388807 0.67959141 0.248317182 

 Ext6 2.109480 0.127302 0.388805 0.67885613 0.248300644 

 [24](SBCM1) 2.10904 0.12730 0.38881 0.556 0.419 

0.1 [24](SBCM2) 2.10904 0.12730 0.38881 0.556 0.419 

 [29] 2.1050 0.12730 0.38880 0.563 0.432 

 [32] 2.10948 0.12730 0.38880 0.651 0.432 

 [26] 2.10760 0.127302 0.38879 0.41652 0.23197 

 S∆t 2.109003 0.127302 0.388806 0.64278799 2.19097274 

 Ext4 2.109003 0.127302 0.388806 0.64057300 2.19069041 

 Ext6 2.108997 0.127302 0.388804 0.64176027 2.19050366 

 [24](SBCM1) 2.10849 0.12730 0.38881 0.444 0.419 

0.125 [24](SBCM2) 2.10849 0.12730 0.38881 0.444 0.419 

 [31] 2.10471 0.12730 0.38880 0.538 0.198 

 [32] 2.10902 0.12731 0.38881 0.547 0.432 

 [26] 2.10741 0.12723 0.38856 0.242 0.125 
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Figure 1.  Physical behavior of the single solitary wave for c = 0.1. 

 
Figure 2.  Physical behavior of the single solitary wave for c = 0.03. 

 
 

                         Table 3: The invariants of the interaction problem and comparison with those in Ref. [40, 39] 

 

method t 0 4 8 16 20 25 

 I1 37.91652 37.91702 37.91732 37.91764 37.91761 37.91769 

S∆t I2 120.5228 120.5244 120.5081 120.4223 120.5126 120.5273 

 I3 744.0812 744.0866 744.0760 743.9454 744.0848 744.0999 

 I1 37.91648 37.91697 37.91721 37.91740 37.91744 37.91747 

Ext4 I2 120.5234 120.5258 120.5117 120.4292 120.5298 120.5551 

 I3 744.0813 744.0921 744.1171 744.1573 744.2281 744.3226 

 I1 37.91648 37.91719 37.91763 37.91800 37.91821 37.91851 

Ext6 I2 120.5234 120.5258 120.5101 120.4258 120.5159 120.5301 

 I3 744.0813 744.0920 744.1042 744.1249 744.1126 744.1141 

 I1 37.91648 37.91697 37.91719 37.91740 37.91744 37.91745 

[40] I2 120.3515 120.3584 120.3570 120.3886 120.3599 120.3595 

 I3 744.0814 744.0110 743.8679 742.4889 743.8638 744.0085 

 I1 37.91652 37.91170 37.85975 37.52916 37.64730 38.05010 

[39] I2 120.5228 121.1602 119.7317 119.4185 119.8041 119.8355 

  I3     744.0815     736.9443     728.5173     725.8399     727.1948     727.4392  

 

 
4.2. Interaction of Two Solitary Waves  

An interaction problem is that the boundary condition is 

taken as 𝑈 →  0 when 𝑥 →  ±∞ and the initial condition is 

taken as follows 

𝑈(𝑥, 0) = ∑3𝐴𝑗

2

𝑗=1

sec ℎ2[𝑘𝑗(𝑥 − 𝑥𝑗)]
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where 𝐴𝑗 =
4𝑘𝑗

2

1−4𝑘𝑗
2 , 𝑗 = 1,2. In order to observe this interaction 

problem, we worked within the region 0 ≤  𝑥 ≤  120 and 

with the parameters 𝑥1 = 15, 𝑥2 = 35, 𝑘 = 0.4, 𝑘2 = 0.3, 𝜀 =
1, 𝜇 = 1, ℎ = 0.3 and ∆𝑡 = 0.1. To observe the problem of the 

interaction of two solitary waves, the wave with the larger 

amplitude is placed at 𝑥1 = 15 and the smaller one at 𝑥2 =
35. Since the speed of the wave with the larger amplitude is 

also higher, it is observed that it catches the smaller wave and 

leaves it behind as time progresses. After the

interaction, the small waves amplitude is calculated as 1.6869 
at 𝑡 =  25, 𝑥 =  70.2 and the large waves amplitude is 
calculated as 5, 3456 at 𝑥 =  87. In Figure 3, the interaction 
and separation of two solitary waves is demonstrated using the 
numerical results calculated with the 𝑬𝒙𝒕𝟔 technique. As can 

be seen from Table 3, the invariants are calculated with 𝑺∆𝒕, 
𝑬𝒙𝒕𝟒 and 𝑬𝒙𝒕𝟔 techniques remain almost constant 
throughout the calculations and the results are in good 
agreement with those in Refs. [40, 39].

 

 
Figure 3. Physical behavior of the interaction of two solitary waves. 

5. Conclusions 
 

In this study, the trigonometric cubic B-spline collocation 
method is used with some splitting techniques for the 
numerical solutions of the regularized long wave equation. 
𝑬𝒙𝒕𝟒 and 𝑬𝒙𝒕𝟔 techniques have been constructed using the 
Strang splitting algorithm. The results obtained with all three 
techniques have compared with each other and with some 
studies in the literature. it has been seen that the numerical 

results calculated with 𝑺∆𝒕, 𝑬𝒙𝒕𝟒 and 𝑬𝒙𝒕𝟔 techniques 
preserve the physical structure of the problems and the 
calculated error norms 𝐿2, 𝐿∞ are small enough. As a result, it 
can be said that 𝑺∆𝒕, 𝑬𝒙𝒕𝟒 and 𝑬𝒙𝒕𝟔 techniques are effective 
techniques to improve the numerical results of partial 
differential equations
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