

Enhancing Industrial Robot Arms Data Security with a Hybrid Encryption Approach

Mustafa Emre Erbil1 , Merdan Özkahraman1* , Hilmi Cenk Bayrakçı1

1 Isparta University of Applied Sciences, Faculty of Technology, Department of Mechatronics Engineering, Isparta,

Türkiye, mail@mustafaemreerbil.com, merdanozkahraman@isparta.edu.tr, cenkbayrakci@isparta.edu.tr
*Corresponding Author

ARTICLE INFO ABSTRACT

Keywords:

Industrial robot arms

Hybrid encryption

Cryptography

Data security

Article History:
Received: 21.02.2024

Accepted: 14.06.2024

Online Available: 01.08.2024

In the context of the widespread application of robotics technology across numerous

industrial sectors, the security of data communication in industrial robot arms

emerges as a paramount concern. These robotic arms are instrumental in enhancing

productivity and safety in a variety of fields, including but not limited to

transportation, agriculture, construction, and mining, by automating tasks and

reducing human exposure to hazardous conditions. This paper proposes a novel

hybrid encryption strategy to fortify the data security of these industrial robot arms,

particularly focusing on preventing data breaches during both wired and wireless

communications. The suggested encryption framework combines the strengths of

Elliptic Curve Cryptography (ECC) for its efficient asymmetric encryption

capabilities, ChaCha20 for its rapid and low-energy symmetric encryption, and

Poly1305 for ensuring data integrity through its message authentication code (MAC)

algorithm. By leveraging these technologies, the paper outlines the development and

application of a secure communication protocol, implemented using Python, that

guarantees the confidentiality and integrity of data shared among robot arms and

between these arms and their control systems. Additionally, the research conducts a

comparative analysis between the ECC-based method and the RSA encryption

standard, highlighting the efficiency and effectiveness of the proposed hybrid

approach through various tests on different data types and sizes. The findings

illustrate a marked improvement in safeguarding against potential data leaks, thereby

significantly contributing to the enhancement of industrial robot arms' data security.

This study not only addresses the pressing need for robust data protection

mechanisms in the face of evolving cyber threats but also sets a benchmark for future

research in the field of industrial robotics security.

1. Introduction

Under the leadership of technological

innovation, the role of robots, especially

industrial robot arms, in modern society has been

steadily increasing, particularly in areas such as

manufacturing and assembly. One of the key

reasons for the preference of robots is their

ability to move quickly and precisely [1].

Industrial robot arms are designed to automate

processes, save labor costs, reduce risky working

conditions, and provide support in situations

where human labor is inadequate. These robot

arms find widespread applications, ranging from

factory automation to surgical operations, from

the agricultural sector to military applications,

and they have been highly successful in

increasing the efficiency of business processes

while reducing costs. However, the wireless or

wired communication capabilities of industrial

robot arms pose serious challenges in terms of

data security. Security vulnerabilities in

communication can potentially lead to

unauthorized access to sensitive industrial data,

necessitating significant measures to be taken to

ensure the communication security of industrial

robot arms.

Research Article

Sakarya University Journal of Science

ISSN : 2147-835X

Publisher : Sakarya University
Vol. 28, No. 4, 756-773, 2024

DOI: https://doi.org/10.16984/saufenbilder.1440949

Cite as: M. E. Erbil, M. Özkahraman, H. C. Bayrakçı (2024). Enhancing Industrial Robot Arms Data Security with a Hybrid Encryption Approach, Sakarya University

Journal of Science, 28(4), 756-773. https://doi.org/10.16984/saufenbilder.1440949

 This is an open access paper distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International License.

https://orcid.org/0009-0003-9394-8588
https://orcid.org/0000-0002-3501-6497
https://orcid.org/0000-0001-5064-7310

Mustafa Emre Erbil, Merdan Özkahraman, Hilmi Cenk Bayrakçı

757

The data security of industrial robot arms has

become critical with the increasing automation

and system complexity. However, most previous

studies have focused on the security of

automation systems [2] and robot operating

systems [3], leaving a gap in the area of data

security for robot arms. With the aim of

addressing this gap, the objective of this study is

to propose a hybrid encryption method based on

ECC (Elliptic Curve Cryptography), ChaCha20,

and Poly1305 to ensure data security during the

communication of industrial robot arms.

This hybrid method combines symmetric

encryption with a message authentication code

algorithm and combines this combination with

asymmetric encryption to provide an optimal

solution in terms of both security and

communication speed. ECC is known for its

strong security features while offering

advantages in terms of processor intensity and

computation time. On the other hand, symmetric

encryption methods provide fast communication

but may face challenges such as key

management. In this study, the ChaCha20-

Poly1305 combination created with the security

advantages of ECC and its fast, data-integrity-

ensuring communication capacity will be used to

securely encrypt communication between

industrial robot arms and control systems.

Furthermore, a comparison will be made between

ECC and the RSA (Rivest-Shamir-Adleman)

asymmetric encryption method, elucidating the

advantages of ECC. The ECC-ChaCha20-

Poly1305 hybrid encryption method developed

using the cryptography, Crypto.Cipher, and

Crypto.Random libraries within the Python

programming language aims to prevent potential

data leaks during communication and to protect

the confidentiality and integrity of transmitted

data. The results obtained through this

methodology will represent a significant step in

ensuring data security for industrial robot arms.

Industrial robot arms have become an

indispensable part of modern production

processes. These robot arms, complex devices

created by the combination of mechanical and

control systems, can automate various tasks and

enhance the efficiency of the production process.

They can replace human labor in complex,

repetitive, or hazardous tasks [4]. Equipped with

advanced control systems and precision sensors,

industrial robot arms can be programmed to

learn, execute, and optimize the movements and

processes required to complete specific tasks [5].

Used in various industrial sectors such as

automotive, electronics, food and beverage,

pharmaceuticals, these robot arms complete

operations quickly and consistently, increasing

overall production efficiency. Additionally, the

use of robot arms in hazardous or challenging

work conditions enhances workplace safety,

reducing work accidents and injuries [6].

The application areas of industrial robot arms are

extensive and diverse. Tasks such as material

handling, assembly, welding, paint spraying,

packaging, and quality control can be automated

with the assistance of robot arms. The use of this

technology accelerates the workflow, increases

efficiency and safety, reduces production costs,

and enhances product quality [7]. Robot arms

enable businesses to produce faster and more

effectively while safeguarding worker health.

Robot arms equipped with various sensors and

artificial intelligence technology can perceive

their surroundings and move independently,

adapt to various applications, and successfully

complete complex tasks [8].

With advancing technology, the capabilities of

industrial robot arms are increasing, making it

easier to complete more complex and precise

operations with their assistance. This facilitates

the automation of the production process and

reduces labor costs. The use of robot arms

enhances production process flexibility, enabling

businesses to respond more quickly and

effectively to market demands [9]. Furthermore,

robot arms efficiently complete tasks, leading to

energy savings and waste reduction, contributing

to environmental sustainability [10].

2. State of the Art

Encryption is a method employed for ensuring

the secure protection of information and data

security. This method transforms information

into a format that can only be accessed or

understood by authorized individuals. This

transformation process is carried out using one or

more private keys, resulting in the conversion of

Sakarya University Journal of Science, 28(4) 2024, 756-773

758

plain text, which is the understandable form of

information, into unreadable encrypted text [11].

Encryption technology holds vital importance,

particularly in the realms of information security

and data privacy. Encryption methods are

generally categorized into two main categories:

asymmetric encryption and symmetric

encryption. Both of these methods play a critical

role in safeguarding data.

Wireless and wired communication refer to

communication conducted over networks that are

commonly used today, encompassing mobile

devices, sensor networks, Internet of Things

(IoT) devices, and broadband connections,

among others. Both of these communication

types face a range of security challenges.

Wireless communication, in particular, becomes

more vulnerable to attacks due to the

transmission of data in a physically unprotected

environment, emphasizing the significance of

data security and privacy [12].

Encryption methods are widely employed in both

communication systems to ensure data security.

Encryption protects data against unauthorized

access by transforming it from a comprehensible

state into an encrypted form. Encryption methods

used in wireless and wired communication

systems are designed to meet security

requirements and ensure data integrity,

confidentiality, and identity authentication.

Hybrid encryption is a security strategy

commonly preferred in both systems. In this

method, asymmetric encryption, symmetric

encryption, and message authentication code

algorithms, such as ECC, ChaCha20, and

Poly1305, are used together to combine the

advantages of each algorithm, resulting in a

stronger security solution [13].

Asymmetric encryption (ECC) is used for

operations like key exchange and identity

verification, symmetric encryption (ChaCha20)

is used for data encryption and decryption, and

the message authentication code algorithm

(Poly1305) is used to enhance symmetric

encryption [14]. In this way, the hybrid

encryption approach provides a secure key

exchange while offering a fast and efficient

solution for data encryption. Additionally, this

method examines and elucidates the differences

between ECC and RSA asymmetric encryption

methods, which have been frequently compared

in recent times, to explain why ECC encryption

method is the preferred choice.

The use of hybrid encryption in both wireless and

wired communication systems offers significant

advantages in terms of data security. Asymmetric

encryption algorithms reduce the risk of

unauthorized access during data transfer by

providing a secure key exchange.

Simultaneously, symmetric encryption

algorithms offer rapid data encryption and

decryption, facilitating high-performance data

transmission. Therefore, the hybrid encryption

approach strikes a balance between security and

performance in wireless and wired

communication systems [15].

2.1.Asymmetric encryption

Asymmetric encryption, also known as public-

key cryptography, is a method that enables

secure data transfer using two keys. These two

keys form a pair, one being public and the other

private. The public key is shared openly with

everyone, while the private key is known only to

the recipient of the message. Data is encrypted

using the public key and can only be decrypted

using the matching private key. This ensures

secure data transmission but is computationally

more expensive. Asymmetric encryption is

widely used today in many security protocols and

applications, particularly due to its ability to

provide secure data transmission [16].

Asymmetric encryption relies on the complex

structure of mathematics, and its security is based

on the difficulty of solving specific mathematical

problems. It is a combination of mathematical

concepts that form the foundation of encryption,

allowing its use in various applications [17].

Asymmetric encryption is based on the following

mathematical principles:

• One-way Functions; These are

mathematical functions that can be easily

calculated in one direction but are

difficult to reverse. For example,

multiplying two large prime numbers is

easy, but factoring the product back into

its prime factors is challenging.

Mustafa Emre Erbil, Merdan Özkahraman, Hilmi Cenk Bayrakçı

759

• Modular Arithmetic; This involves

processing numbers within a limited

system defined by a modulus value.

Modular arithmetic is commonly used in

encryption operations because some

operations are difficult to reverse.

• Distributed Systems; Asymmetric

encryption allows both keys to operate

independently. The public key is

accessible to everyone, while the private

key is known only to authorized users.

These principles enable the application of

asymmetric encryption in areas such as data

security, digital signatures, and secure electronic

transactions [18]. Figure 1 illustrates the

asymmetric encryption scheme.

2.1.1. RSA (Rivest-Shamir-Adleman)

RSA, an asymmetric encryption algorithm

proposed by Ron Rivest, Adi Shamir, and

Leonard Adleman in 1977, employs two keys: a

private key and a public key. The public key is

used for data encryption, while the private key is

utilized for data decryption. RSA finds common

application in digital signatures and key

exchange protocols [19]. RSA encryption is

grounded in the principle of one-way functions in

asymmetric cryptography. Its security hinges on

the complexity of factoring large prime numbers.

The RSA encryption and decryption process

consists of key generation, encryption, and

decryption steps [20]. In the key generation

phase, two large prime numbers (p) and (q) are

initially selected as a fundamental security

measure. This selection is at the core of the

algorithm's security. The product of these prime

numbers (n) defines the modulus employed in

encryption and decryption operations, as

expressed in Equation 1.

n = p x q (1)

Euler's totient function is calculated, as depicted

in Equation 2, and is an integral part of security

based on the difficulty of factoring prime

numbers.

φ(n) = (p-1) x (q-1) (2)

The public key (e) is typically chosen as a small,

commonly used prime number such as 65537,

and is employed for encryption. The private key

(d), calculated as specified in Equation 3, ensures

the secure decryption of data.

e x d ≡ 1 (mod φ(n)) (3)

Figure 1. Asymmetric encryption scheme.

Sakarya University Journal of Science, 28(4) 2024, 756-773

760

The encryption process involves encrypting the

message (M) using the public key (e, n),

expressed in Equation 4. This process ensures

data protection and security against unauthorized

access.

C = Me (mod n) (4)

The decryption process, on the other hand,

decrypts the encrypted message (C) using the

private key (d, n), as indicated in Equation 5. This

enables only authorized recipients to access the

original content of the message.

M = Cd (mod n) (5)

These processes of RSA establish a robust

security foundation based on the complexity of

factoring large numbers, making it one of the

fundamental security tools in the digital world.

2.1.2. ECC (Elliptic Curve Cryptography)

Elliptic Curve Cryptography (ECC) is an

advanced asymmetric encryption technology

commonly employed in digital signature

generation and encrypted data exchange. This

method operates using two keys: a private key,

known only to the individual, and a public key,

openly shared with everyone.

While the public key is influential in data

encryption, the corresponding private key is

solely used during the decryption process. ECC's

robustness relies on the mathematical operations

involving elliptic curves, which are considered

one-way functions. This characteristic allows for

superior security with shorter key lengths. ECC's

essence lies in the ease of performing these

mathematical operations while making it

considerably challenging to calculate their

inverses, especially scalar multiplication on

elliptic curves.

Thanks to these features, ECC ensures secure key

distribution and data integrity, rendering it a

popular choice in wireless communication and

smart device technologies. ECC's unique

advantages include its energy efficiency and the

ability to provide high-level security and

performance even in devices with limited

computational capacity. The mathematical

complexity of operations defined on elliptic

curves produces flexible secure solutions that

meet modern encryption requirements [21]. The

ECC encryption and decryption process consists

of key generation, encryption, and decryption

steps [22]. In the key generation phase, an

elliptic curve and a starting point (G) are initially

selected. Then, a random number (k) is chosen as

the private key. Finally, the public key is

calculated as the product of (k) and (G), as shown

in Equation 6.

P = k x G (6)

During the encryption phase, the message (M) is

encrypted using the recipient's public key (P) and

a randomly chosen number (r). An interim point

is calculated as demonstrated in Equation 7.

R = r x G (7)

Another point is determined using the recipient's

public key, as depicted in Equation 8.

S = r x P (8)

The message (M) is encrypted as a function of

point (S). In the decryption phase, the encrypted

message (C) is decrypted using the private key

(k). A multiplication of the private key (k) and

the point (R) received from the sender is

computed, as illustrated in Equation 9.

T = k x R (9)

The multiplication given in Equation 9 is

equivalent to the point (S) created during

encryption. Message (M) is then decoded using

(T). Both systems are founded on mathematical

complexities: factoring large prime numbers in

RSA and finding the inverse of scalar

multiplication on elliptic curves in ECC. These

attributes make both systems powerful tools in

modern cryptography.

From a security and efficiency perspective, ECC

is particularly suitable for devices with

constrained energy consumption and

computational capacity. Hence, ECC is a

preferred method in blockchain technologies,

smart contracts, and numerous advanced

cryptographic applications.

Mustafa Emre Erbil, Merdan Özkahraman, Hilmi Cenk Bayrakçı

761

2.2. Symmetric encryption

Symmetric encryption, also known as symmetric

cryptography, is a encryption method where both

encryption and decryption processes are

performed using the same key. This method

requires less computational power compared to

asymmetric cryptography, making it faster.

However, the weakness of symmetric encryption

lies in the necessity of securely sharing the key

between two parties. If the key falls into the

hands of malicious individuals, the encrypted

data can be easily decrypted. Symmetric

encryption is particularly advantageous when

there is a need to encrypt a large amount of data

quickly [23]. Figure 2 illustrates the Symmetric

Encryption Scheme.

The fundamental principles of symmetric

encryption are as follows:

• Key Protection: The security of

encryption relies on the careful protection

of the key by both the sender and the

recipient. The compromise of the key

under any circumstances can jeopardize

the security of the entire encryption

system.

• Processing Speed and Efficiency:

Symmetric encryption offers a fast and

efficient solution for encryption and

decryption processes due to the use of the

same key for both operations. This

feature makes it ideal for scenarios that

require the processing of large volumes

of data.

• Operation on Data Blocks: These systems

typically divide data into fixed-size

blocks and encrypt each block separately.

This block-based approach ensures the

organized and secure processing of data

[24].

Thanks to these fundamental principles,

symmetric encryption has become an effective

tool in various fields, especially in internet

security and network encryption. This method

offers speed and efficiency while also requiring

the secure management of keys, making it a

domain that demands technical expertise.

In the field of data protection, symmetric

encryption plays a fundamental role,

Figure 2. Symmetric encryption scheme

Sakarya University Journal of Science, 28(4) 2024, 756-773

762

encompassing a variety of algorithms. Each

algorithm offers unique characteristics and

benefits, making them suitable for different

requirements. For instance, the Advanced

Encryption Standard (AES) is renowned for its

wide acceptance as a security standard and its

robust protection features.

Most symmetric encryption methods have

emerged as alternatives to AES. Blowfish is ideal

for small-scale projects due to its ease of

adaptation. Twofish is considered a strong

competitor to AES due to its flexibility in key

management. RC6, with its unique structure, is

also a strong contender against AES. Serpent,

like Twofish and RC6, is another rival to AES,

known for its high security performance.

Camellia, as a Japan-based encryption standard,

offers high security and speed. Salsa20 is known

for its speed and efficiency, while ChaCha20, as

an improved version of Salsa20, provides

superior security and speed features [25-27]. The

comparison of encryption methods in terms of

performance and security has been thoroughly

investigated in a study by Indla et al. [28]. Table

1 provides a Comparison of Symmetric

Encryption Methods. The table presented in the

study compares various algorithms based on key

length, block size, processing speed, and security

levels. By examining only the test results of

symmetric encryption methods, the table clearly

shows the advantages and disadvantages of these

methods relative to each other.

These comparisons form an important guide in

the selection of symmetric encryption methods.

Selecting the appropriate encryption method

according to different application requirements

and security needs is of critical importance.

This table provides a comprehensive comparison

of various symmetric encryption methods,

highlighting key aspects such as security level,

performance speed, key length options, block

size, implementation complexity, and

availability status. The table serves as an

invaluable resource for understanding the

differences and suitability of each encryption

method for specific applications. It distinctly

outlines how each algorithm, from widely used

ones like AES to more niche options like

Blowfish and Twofish, varies in terms of

efficiency, security robustness, and practical

deployment considerations, thereby aiding in the

informed selection of encryption techniques for

diverse security needs.

ChaCha20 is an advanced symmetric key

encryption algorithm that encrypts data using a

series of cyclic operations. Designed by Daniel J.

Bernstein, this algorithm offers both high speed

and security [29]. One of the key advantages of

ChaCha20 is its strong security while being able

to operate efficiently even on low-cost hardware.

These features make it an ideal solution for

systems that prioritize security and have limited

processing power, such as industrial robotic

arms.

Table 1. Comparison of Symmetric Encryption Methods [28]

Algorithm

Security

Performance

Key Length

Block Size

Implementati

on Complexity

Availability

AES High Fast 128, 192, or

256 bits

128 bits Low Widely

Available

Blowfish Medium Fast 32 to 448 bits 64 bits Low Widely

Available

Twofish High Fast 128 to 256

bits

128 bits Moderate Limited

RC6 High Fast 128, 192, or

256 bits

128 bits Moderate Limited

Serpent High Moderate 128 to 256

bits

128 bits High Limited

Camellia High Fast 128, 192, or

256 bits

128 bits Moderate Limited

Salsa20 High Fast 128 or 256

bits

64 or 128 bits Low Limited

ChaCha20 High Fast 256 bits 64 or 128 bits Low Limited

Mustafa Emre Erbil, Merdan Özkahraman, Hilmi Cenk Bayrakçı

763

Additionally, it seamlessly integrates with MAC

algorithms. Therefore, it was chosen as the

symmetric encryption algorithm for the project.

ChaCha20 relies on complex cyclic operations

and sequence generation. The fundamental steps

of this algorithm include key and nonce

initialization, creating an initial state matrix, the

cyclic operation process, and encryption and

decryption. The steps of ChaCha20 can be

outlined as follows:

• Key: A 256-bit key (K) is used.

• Nonce and Block Counter: A 64-bit

nonce and a block counter are used for

security.

• ChaCha20 operates on a 512-bit state

matrix.

• The initial state consists of a "magic

constant" (σ), the key (K), block counter,

and nonce.

• The state matrix is processed for a

specified number of rounds.

• Each round involves addition, XOR

operations, and bit shifting; Addition is

performed mod 232, XOR operation

involves bitwise XOR of two words, and

bit shifting plays a crucial role in data

encryption.

• Encryption is achieved by adding and

XORing the processed state matrix with

the original state matrix.

• Decryption is performed in the reverse

manner of encryption.

These mathematical characteristics and its

relationship with MAC algorithms make

ChaCha20 a secure and efficient encryption

option. Additionally, its low hardware

requirements and high parallelizability allow for

effective implementation across various

platforms [30].

Message Authentication Code (MAC)

algorithms play a critical role in ensuring data

integrity and authentication. These algorithms

are used to verify that a message has reached its

destination without being altered or subject to

unauthorized interference. The primary function

of MAC algorithms is to produce a fixed-size

output using a message and a secret key. This

output serves as a digest of the message and is

used to verify the integrity of the message. The

security of MAC algorithms relies on the secrecy

of the secret key and the cryptographic strength

of the algorithm [31, 32]. The characteristics of

MAC algorithms are as follows:

• Integrity and Identity Verification: MAC

algorithms guarantee both the integrity of

the message and the authenticity of its

source. This helps detect possible

alterations or unauthorized interventions

during data transmission.

• Secret Key Usage: MAC algorithms

produce a digest of the message using a

secret key, allowing both the sender and

receiver to verify it.

• Collision Resistance: An effective MAC

algorithm makes it difficult to find two

different messages that produce the same

MAC value. This feature enhances the

algorithm's reliability.

• Application Variety: MAC algorithms

are used across a wide range of

applications, from financial transactions

to network security.

Popular MAC algorithms include HMAC,

CMAC, and Poly1305. These algorithms can

serve various requirements and security levels.

These fundamental characteristics of MAC

algorithms play a crucial role in data security and

authentication processes, making their usage an

essential part of preserving data integrity and

ensuring secure communication in the digital

world.

Poly1305 is a MAC (Message Authentication

Code) algorithm designed to ensure the integrity

and authenticity of messages in secure

communications. Developed by Daniel J.

Bernstein, this algorithm sets high standards for

both speed and security [33]. Poly1305 is

particularly used in encrypted data transmission

and works in conjunction with encryption

algorithms such as ChaCha20 to secure data

integrity [34, 35]. The fundamentals of Poly1305

are as follows:

• Key Generation and Usage: Poly1305

uses a 256-bit key, consisting of two

parts: a 128-bit key and a 128-bit nonce.

The key is used in the calculation of the

Sakarya University Journal of Science, 28(4) 2024, 756-773

764

MAC value, while the nonce must be

unique for each message.

• MAC Value Computation: Poly1305

computes the MAC value for a given

message. This process is repeated for

each block of the message, and the results

are combined. Polynomial multiplication

is performed on each block using

arithmetic mod (2130-5). This forms the

basis of Poly1305's security.

• Verification Process: The recipient

calculates the MAC value for the

received message using the same key and

nonce. If the calculated MAC value

matches the transmitted MAC value, the

integrity and authenticity of the message

are verified.

Poly1305 is a strong MAC algorithm in terms of

security. Proper use of the key and nonce

provides a high level of security. Poly1305 is

designed to operate quickly on modern

processors, making it particularly suitable for

real-time applications. It finds a wide range of

applications for preserving data integrity,

especially in encrypted communications and

network security. These features make Poly1305

a popular choice in modern cryptography

applications. The mathematical foundations and

practicality of the algorithm provide an effective

and reliable data authentication solution.

2.3. Hybrid encryption

Hybrid encryption combines asymmetric and

symmetric encryption techniques to create a

robust security protocol. This method blends the

advantages of symmetric and asymmetric

encryption methods to provide a comprehensive

security solution.

The ChaCha20-Poly1305 Combination is a

merger of two powerful cryptographic

algorithms designed by Daniel J. Bernstein. This

combination is used as a vital element of data

security in hybrid encryption systems. While

ChaCha20 is an efficient symmetric encryption

algorithm, Poly1305 serves as a reliable Message

Authentication Code (MAC) algorithm. The

combination of these two algorithms offers an

effective solution for both encryption and data

integrity security [36-38]. The fundamentals of

the ChaCha20-Poly1305 Combination are as

follows:

• Enhanced Security and Performance:

ChaCha20 offers high standards of speed

and security, especially functioning

effectively on low-cost hardware.

Poly1305 ensures message integrity and

authenticity by using a unique nonce for

each message.

• Advantages of the Combination: This

combination brings together ChaCha20's

fast encryption capabilities and

Poly1305's robust data verification

mechanisms. Both encryption and MAC

operations are performed using the same

key set, simplifying the process and

enhancing security.

• Application Areas: ChaCha20-Poly1305

is often preferred in applications

requiring encrypted communication,

network security, and data integrity. It

provides high-level security and

performance, particularly in devices with

limited energy consumption and

processing capacity.

ChaCha20 encrypts data, while Poly1305

calculates the MAC value over the encrypted

data. ChaCha20 relies on XOR operations and bit

shifts, whereas Poly1305 provides security

through arithmetic mod (2130-5). This hybrid

system stands out in the field of modern

cryptography, particularly as a product of

Bernstein's work. The efficiency of ChaCha20-

Poly1305 offers a powerful and flexible solution

that meets complex encryption requirements.

ChaCha20-Poly1305-ECC Encryption Method is

an advanced hybrid encryption technique that

combines three powerful technologies of modern

cryptography. This combination integrates the

ChaCha20 and Poly1305 algorithms developed

by Daniel J. Bernstein with Elliptic Curve

Cryptography (ECC) [39-42]. This triple

combination offers an excellent balance in data

security: the fast and efficient encryption of

ChaCha20, the robust message authentication of

Poly1305, and the superior security and

efficiency features of ECC. ECC, especially with

short key lengths, provides high-security levels.

Mathematical operations on elliptic curves

Mustafa Emre Erbil, Merdan Özkahraman, Hilmi Cenk Bayrakçı

765

enhance encryption security. While ChaCha20

effectively encrypts data, Poly1305 is used to

ensure the integrity and authenticity of this

encrypted data. ChaCha20 stands out with low

hardware requirements and high parallelizability.

ECC is advantageous, particularly in fields like

blockchain technologies and smart contracts.

This hybrid system combines the strengths of

each algorithm to provide a comprehensive

security solution, offering an integrated approach

in data encryption, authentication, and key

management processes. The Encryption and

Decryption Processes of ChaCha20-Poly1305-

ECC Combination are as follows:

• ECC is used to establish a secure key

exchange. During encryption and

decryption operations, elliptic curve-

based mathematical operations are used

to securely create a shared common key

between parties. This common key then

serves as the basis for symmetric

encryption.

• ChaCha20 is a symmetric encryption

algorithm. The common key generated

with ECC is used by the ChaCha20

algorithm for encrypting or decrypting

data. ChaCha20 is designed to efficiently

and securely encrypt data.

• Poly1305 is a Message Authentication

Code (MAC) algorithm used in

conjunction with ChaCha20 to verify the

integrity and authenticity of encrypted

data. Poly1305 produces a tag appended

to the encrypted data, allowing for the

verification of whether the data has been

manipulated during decryption.

3. Material and Method

This study focuses on the comparison of

asymmetric encryption methods as applications,

because asymmetric encryption, which uses two

different keys (a public and a private one),

enhances security and data integrity in the

transmission of sensitive data. Unlike symmetric

encryption methods, asymmetric encryption has

a structure that does not require the same key to

be present at both ends of the communication

[43]. Therefore, examining the advantages of

asymmetric encryption for systems containing

sensitive data, such as industrial robotic arms, is

the main purpose of this study.

To compare asymmetric encryption methods, the

RSA encryption method has been chosen. The

proposed hybrid encryption algorithm has been

compared with the same encryption method's

algorithm that uses RSA instead of ECC. The

reason for choosing RSA as the asymmetric

encryption method to be compared is that RSA is

a long-established, reliable asymmetric

encryption method in the field of cryptography

[44]. The RSA Algorithm is known for its

security comparable to the ECC encryption

method. Additionally, RSA stands out with its

key generation process based on complex

mathematical calculations and the use of large

numbers. In contrast, ECC offers high security

with shorter key sizes, making it more efficient

in terms of energy and processing power. This

comparison is critical in evaluating the

performance of the proposed hybrid encryption

method [45].

The use of .bin files in the comparison of the

proposed hybrid encryption algorithm and the

algorithm with RSA instead of ECC is due to the

fact that such files typically contain large,

unstructured data. This allows for testing the

effectiveness of encryption algorithms on large

and unstructured data sets.

The sizes of 100 MB, 500 MB, and 1 GB

represent a broad range of data sizes and are

important in assessing how encryption

algorithms perform across various data

magnitudes. These sizes are used to compare the

processing times and efficiencies of the

algorithms on large and small data sets. This

choice is a standardization approach to

understand the overall performance and

scalability of the algorithms. Particularly, large

file sizes (like 1 GB) more clearly reveal the

processing times and efficiencies of the

algorithms on large data sets, an important factor

in understanding how the algorithms perform in

real-world scenarios.

Testing the proposed hybrid encryption

algorithm on different file types (MP4, PDF,

TXT) with varying sizes such as 50, 100, and 200

MB allows for a detailed examination of how

Sakarya University Journal of Science, 28(4) 2024, 756-773

766

encryption methods perform relative to changing

data sizes. The use of 50 MB is due to it being

one of the standard sizes frequently used in

encryption algorithm performance tests. For

example, a study has compared the encryption

and decryption times of symmetric encryption

algorithms for files of 3 MB and 50 MB [46]. The

reason for using 100 to 200 MB is to evaluate the

scalability of the algorithms and their

performance under larger data loads, while not

deviating too far from the 50 MB size.

3.1. ChaCha20-Poly1305-ECC algorithm

In this hybrid encryption algorithm developed

using the Python language, the following

libraries, modules, and packages have been used:

• "cryptography.hazmat.primitives.asymm

etric.ec"

• "cryptography.hazmat.primitives.serializ

ation"

• "cryptography.hazmat.primitives.kdf.hk

df"

• "Crypto.Cipher.ChaCha20_Poly1305"

• "Crypto.Random"

A private key is generated using ECC (Elliptic

Curve Cryptography) in this hybrid encryption

algorithm. This process, which is a form of

asymmetric encryption, results in both a private

key and a public key. The generated private key

is exported in PEM format and saved to a file.

This key possesses the authority to decrypt data

and should be securely stored. During the testing

phase, the data at the specified path is read,

representing the original data to be encrypted. A

shared key for the ChaCha20-Poly1305

symmetric encryption algorithm is derived from

the common key generated using ECC with

ECDH (Elliptic Curve Diffie-Hellman) and

HKDF (HMAC-based Key Derivation

Function). A ChaCha20-Poly1305 encryption

object is created, and the data is encrypted using

the encrypt_and_digest method. This process

results in encrypted data and a tag (MAC). The

encrypted data, nonce, and tag are written to a file

named "encrypted_data.bin." This file is used to

store and securely transmit the encrypted data.

Decryption is performed in the reverse order of

the encryption process. Firstly, the private key is

read from the file. The encrypted data is read

from the file, and the encryption applied by

ChaCha20-Poly1305 is deciphered using the key.

If the deciphered data matches the generated tag,

the integrity of the data is verified, and the

decrypted data is presented to the user. This

process ensures the secure transfer of data and

restricts access to authorized individuals. The

hybrid encryption method combines various

encryption techniques to safeguard the security

and privacy of data. The flowchart for this

method is provided in Figure 3.

Figure 3. ChaCha20-Poly1305-ECC Encryption-

Decryption Flowchart

3.2. ChaCha20-Poly1305-RSA algorithm

In this hybrid encryption algorithm developed

using the Python language, the PyCryptodome

library is utilized, including the following

modules:

• "Crypto.PublicKey.RSA"

• "Crypto.Cipher.PKCS1_OAEP"

• "Crypto.Cipher.ChaCha20_Poly1305"

• "Crypto.Random"

Mustafa Emre Erbil, Merdan Özkahraman, Hilmi Cenk Bayrakçı

767

To begin, a 2048-bit RSA key pair is generated.

This is achieved using the RSA algorithm, which

is an asymmetric encryption method, resulting in

both a private key and a public key. The

generated private key is exported in PEM format

and saved to a file. This key possesses the

authority to decrypt data and must be securely

stored. To read the data to be tested, a file at the

specified path is accessed. This data represents

the original data to be encrypted. A key and

nonce are generated for the ChaCha20-Poly1305

symmetric encryption algorithm. These key and

nonce values are used for encrypting the data.

Subsequently, a ChaCha20-Poly1305 encryption

object is created, and the data is encrypted. This

process results in encrypted data and a tag

(MAC). An RSA encryption object is then

created, and the ChaCha20 key is encrypted with

it. This step ensures that only the owner of the

private key can decrypt the data. The encrypted

ChaCha20 key, nonce, encrypted data, and tag

are written to a file. This file is used for storing

the encrypted data and securely transmitting it.

Decryption is performed in the reverse order of

the encryption process. Firstly, the private key is

read from the file and loaded using RSA. The

encrypted data is then read from the file, and the

key is decrypted using RSA. Subsequently, this

decrypted key is used to decrypt the data with

ChaCha20-Poly1305. If the decrypted data

matches the generated tag, the data's integrity is

verified, and the decrypted data is presented to

the user. This process ensures the secure transfer

of data and restricts access to authorized

individuals. The hybrid encryption method

combines various encryption techniques to

safeguard the security and privacy of data.

4. Results

Robotic systems have the capability to

communicate with various data sources such as

sensor readings, command instructions, visual

media, and mapping data. When performing

actions utilizing these capabilities, the

algorithm's execution speed plays a crucial role.

Data that originates from a source may

experience delays if it is encrypted and then

decrypted before reaching its destination, instead

of directly reaching the target. Therefore, the

ChaCha20 symmetric encryption method has

been employed for this purpose. In conjunction

with ChaCha20, Poly1305 is used to ensure data

integrity.

Asymmetric encryption algorithms tend to

operate slightly slower than symmetric

encryption algorithms. Hence, when choosing

among asymmetric encryption methods,

regardless of the degree of difference, it is

essential to select the algorithm that operates

more efficiently. In this test, the combination of

ChaCha20-Poly1305 is compared with ECC,

which is recommended for use, and RSA, one of

the most commonly used asymmetric encryption

methods. The test involves encrypting and then

decrypting data in .bin format with sizes of

approximately 100 MB, 500 MB, and 1 GB,

using the ChaCha20-Poly1305 combination with

RSA and ECC methods. The timing test was

conducted using the "time" library built-in

Python. The test results for the ChaCha20-

Poly1305-ECC and ChaCha20-Poly1305-RSA

algorithms are presented in Table 2.

Table 2. The test results for the ChaCha20-

Poly1305-ECC and ChaCha20-Poly1305-RSA

algorithms
Algorithm Processing

Time for

100 MB (s)

Processing

Time for

500 MB (s)

Processing

Time for 1

GB (s)

ChaCha20-

Poly1305-

ECC

0.89412 3.36814 6.49236

ChaCha20-

Poly1305-

RSA

1.63905 4.09316 8.13015

According to the results presented in Table 2, it

is observed that the ChaCha20-Poly1305-ECC

algorithm encrypts and decrypts data faster than

the ChaCha20-Poly1305-RSA algorithm. In

summary, it has been observed that the ECC

asymmetric encryption method operates faster

than the RSA asymmetric encryption method.

It is well-known that robotic systems have

numerous functions such as communicating with

sensor data, command instructions, camera

feeds, and mapping data. While performing these

functions, communication with different types of

data is quite common. For example, data

obtained from a camera is of a different type

compared to data acquired from a distance

sensor. Is the encryption and decryption speed, as

well as memory usage, the same for data of

Sakarya University Journal of Science, 28(4) 2024, 756-773

768

different types but the same size, when using the

ChaCha20-Poly1305-ECC algorithm? To

answer this question, files with sizes

approximately 50 MB, 100 MB, and 200 MB, in

PDF, MP4, and TXT formats, were tested using

the ChaCha20-Poly1305-ECC algorithm. Data

of the same size but different types were

compared in terms of memory usage and

processing time. The built-in "time" library of

Python was used for measuring the algorithm's

processing time, while the "memory_profiler"

library was utilized for memory usage. The

obtained results are presented in Table 3.

Table 3. Performance Metrics by File Type and

Data Size

Data

Size

(MB)

File

Type

Memory

Usage (MB)

Processing

Time

(Seconds)

50 MB

PDF 4.03125 0.62131

MP4 4.109375 0.60822

TXT 4.03515625 0.5942

100 MB

PDF 3.98046875 1.17811

MP4 4.0234375 0.97805

TXT 4.0078125 1.02113

200 MB

PDF 3.90625 1.50388

MP4 3.953125 1.5814

TXT 4.00390625 1.57084

Table 3 provides a detailed analysis of

performance metrics across various file types and

data sizes. This analysis primarily focuses on two

key parameters: memory usage (in MB) and

processing time (in seconds). These parameters

have been examined for three different file types

(PDF, MP4, TXT) and different data sizes (50

MB, 100 MB, 200MB.).

From an initial observation, it appears that the

memory usage remains relatively stable across

different file types and sizes, indicating a

consistent memory footprint regardless of file

type or data size. However, there are slight

variations in memory usage, which could be

attributed to the inherent differences in the data

structure and compression algorithms used by

each file type. Processing time, another critical

metric, shows a variation that correlates with the

data size and file type. It suggests that as the data

size increases, the processing time also increases,

which is expected. The processing time is a

crucial factor in scenarios where time efficiency

is a priority, such as real-time data processing or

large-scale data analysis. This table provides

valuable insights, particularly for applications

where memory efficiency and processing speed

are crucial. It allows one to anticipate the system

resources required and processing time for

handling different file types and sizes, which is

vital for optimizing performance in data-

intensive applications. Analyzing such data helps

in making informed decisions about resource

allocation, system design, and choice of file types

based on the specific requirements of an

application. These results are depicted in the

graph found in Figure 4.

Figure 4. Comparative Analysis of Memory Usage

and Processing Time Across Different File Types

and Data Sizes

The graph presents a dual-axis bar chart

comparing memory usage (in megabytes) and

processing time (in seconds) for three different

file types—PDF, MP4, and TXT—across three

data sizes: 50 MB, 100 MB, and 200 MB. The

left vertical axis corresponds to the processing

time, while the right vertical axis presumably

represents memory usage, although the right axis

is not labeled in the image provided.

Observations indicate that for all three file types,

as the data size increases, the processing time

escalates as well. This trend is consistent with

computational theory, where larger data volumes

typically require longer processing durations.

However, memory usage does not exhibit a

proportional increase with data size; instead, it

remains relatively constant or varies slightly.

This could suggest an efficient memory

management system where the memory footprint

does not significantly increase with larger data

sizes. The PDF and MP4 files display similar

behaviors in terms of processing time, with only

minor differences, which might be attributed to

the complexity of data contained within each file

Mustafa Emre Erbil, Merdan Özkahraman, Hilmi Cenk Bayrakçı

769

type. TXT files, by contrast, have a markedly

lower processing time across all data sizes,

reflecting their simpler structure and the less

intensive processing required. In conclusion, the

data conveyed in the graph supports the premise

that while processing time is susceptible to

changes in data volume, memory usage does not

necessarily correlate directly with data size. This

implies an optimized use of memory resources,

which is particularly advantageous for systems

with limited memory capacity. Additionally, the

distinct difference in processing times between

the file types underscores the importance of

considering file structure and complexity when

designing and optimizing data processing

systems.

5. Conclusion

To improve the clarity and fluency of the paper,

attention has been paid to clarify the distinction

between encryption technologies and

applications of industrial robot arms. By

detailing the main features of encryption

technologies and their integration into industrial

applications, a comprehensive understanding of

the transformation of theoretical concepts into

practical applications is presented. This

transition through sub-headings is intended to

strengthen the overall coherence of the article

and transform it into a more user-friendly and

application-oriented resource.

The article uses material such as diagrams and

example scenarios to clarify concepts and relate

technical information to practical applications.

The quality of images and tables has been

improved and explanatory comments have been

added so that readers can clearly see the topics.

Care has been taken with grammar and

punctuation, and consistency in technical terms

has been ensured. Sentences have been shortened

to improve clarity and a glossary of technical

jargon has been included. Each term and concept

is explained the first time it is used, and

transitions between topics are made clear. These

steps have improved the overall

comprehensibility of the article. The detailed

research systematically evaluated the

effectiveness of a novel hybrid encryption

method designed to enhance data security for

industrial robot arms.

The method synergistically leverages the

strengths of Elliptic Curve Cryptography (ECC)

for asymmetric encryption capabilities,

ChaCha20 for fast symmetric encryption, and

Poly1305 for reliable message authentication to

establish a robust security posture against data

attacks during both wired and wireless

communications. In this work, the importance of

cybersecurity approaches, assets, and

applications for protection is discussed [47, 48].

The encryption protocol developed for industrial

robot arms is supported by detailed analysis and

testing to offer robustness against potential

security threats. Simulations and penetration

tests validate the effectiveness of the protocol

and its solutions to industry challenges. By

highlighting the security advantages of the

algorithm and its effectiveness in application

scenarios, this study illuminates how to integrate

encryption methods in industrial applications.

The study also analyzes how encryption methods

scale on industrial robot arms by testing

performance on data types such as .bin files,

providing valuable results, especially with file

sizes ranging from 100 MB to 1 GB. This

information demonstrates the practical

applicability of encryption methodologies by

comparing between large and small datasets.

Related works in the literature [49] highlight the

performance and flexibility advantages of

algorithms such as AES and BlowFish and

provide a reference for determining the security

potential of encryption methods. The selected

algorithms fit the specific requirements of the

project, with unique advantages such as ECC's

high-security small keys, ChaCha20's balance of

performance and security, and Poly1305's fast

message authentication. These choices are based

on an extensive analysis of the existing literature,

including comparisons of these algorithms within

and against each other, with critical factors such

as data integrity and security.Empirical analysis

shows that the ECC componentsignificantly

enhances the level of security, while ChaCha20

and Poly1305 contribute to high-speed data

processing, providing not only secure

communication channels but also minimal

latency in data transfer operations.These findings

underline the potential of the ECC-ChaCha20-

Sakarya University Journal of Science, 28(4) 2024, 756-773

770

Poly1305 combination as a superior encryption

strategy, especially for industrial applications

where speed and security are crucial.

Furthermore, this paper evaluates the effects of

encryption methods on performance metrics such

as real-time processing time and memory

utilization of industrial robotic arms and

examines the effects of ECC on system

performance compared to RSA [50].

This investigation contributes to the broader

cryptographic community by providing a

comparative analysis with existing methods,

highlighting improved performance metrics in

terms of both encryption speed and resource

efficiency. In order to understand the place of the

encryption method proposed in the paper in the

current technological landscape, in addition to

comparisons between common methods such as

ECC and RSA, a wide range of symmetric

encryption algorithms are also examined. In this

context, a detailed analysis of the advantages and

application scenarios of algorithms such as

Advanced Encryption Standard (AES),

Blowfish, Twofish, RC6, Serpent, Camellia, and

many more is presented [51].

The insights gained from this research can serve

as a cornerstone for future innovations in the

field of encryption, especially in industrial

automation and robotics, where data security is

becoming increasingly critical. In summary, this

research not only demonstrates that the hybrid

method is a viable security solution, but also

paves the way for its adoption in complex

industrial ecosystems by providing a detailed

academic and practical framework for

implementation and evaluation.

Article Information Form

Funding

The author (s) has no received any financial

support for the research, authorship or

publication of this study.

Authors' Contribution

Conceptualization, M.Ö. and H.C.B.;

methodology, H.C.B.; software, M.E.E.;

validation, M.Ö., H.C.B. and M.E.E.;

investigation, M.E.E.; data curation, M.Ö.;

writing—original draft preparation, M.E.E.;

writing—review and editing, M.Ö. and H.C.B.;

visualization, M.Ö. All authors have read and

agreed to the published version of the

manuscript.

The Declaration of Conflict of Interest/

Common Interest

No conflict of interest or common interest has

been declared by the authors.

The Declaration of Ethics Committee Approval

This study does not require ethics committee

permission or any special permission.

The Declaration of Research and Publication

Ethics

The authors of the paper declare that they comply

with the scientific, ethical and quotation rules of

SAUJS in all processes of the paper and that they

do not make any falsification on the data

collected. In addition, they declare that Sakarya

University Journal of Science and its editorial

board have no responsibility for any ethical

violations that may be encountered, and that this

study has not been evaluated in any academic

publication environment other than Sakarya

University Journal of Science.

Copyright Statement

Authors own the copyright of their work

published in the journal and their work is

published under the CC BY-NC 4.0 license.

References

[1] M. C. Cengiz, B. Kaftanoğlu, "Endüstriyel

Bir Robot İçin İnsan Makina Arayüz

Programının Geliştirilmesi," Makina

Tasarım ve İmalat Dergisi, cilt. 6, no. 2, ss.

99-107, 2004.

[2] M. E. Erbil, A. A. Süzen ve H. C. Bayrakçı,

"Otonom mobil robotların güvenli veri

iletimi için hibrit şifreleme yaklaşımı,"

UTBD, cilt 15, no. 2, s. 64-72, 2023.

[3] B. Dieber, B. Breiling, S. Taurer, S.

Kacianka, S. Rass ve P. Schartner,

"Security for the Robot Operating System,"

Robotics and Autonomous Systems, cilt

98, s. 192-203, 2017.

Mustafa Emre Erbil, Merdan Özkahraman, Hilmi Cenk Bayrakçı

771

[4] M. P. Groover, “Automation, Production

Systems, and Computer-Integrated

Manufacturing”, Prentice Hall, 2008.

[5] J. J. Craig, “Introduction to Robotics:

Mechanics and Control”, Pearson/Prentice

Hall, 2005.

[6] G. J. Olling, R. E. Merritt, Eds., “The

Factory Automation Handbook: History”,

Trends, and Forecasts, CRC Press, 1993.

[7] J. N. Pires, J. R. Azinheira, Eds., “Progress

in Robotics”, Springer, 2008.

[8] B. Siciliano, O. Khatib, Eds., “Springer

Handbook of Robotics”, Springer, 2008.

[9] S. Kalpakjian, S. R. Schmid,

“Manufacturing Engineering and

Technology”, Pearson Prentice Hall, 2006.

[10] J. Elkington, “Cannibals with Forks: The

Triple Bottom Line of 21st Century

Business”, Capstone, 1997.

[11] A. J. Menezes, P. C. van Oorschot, S. A.

Vanstone, “Handbook of Applied

Cryptography”, CRC Press, 1996.

[12] W. Ding, L. Yan, R. H. Deng, "A survey on

hybrid encryption schemes in vehicular ad-

hoc networks," IEEE Transactions on

Intelligent Transportation Systems, 18, no.

3, ss. 655-667, 2017.

[13] B. Libert, M. Yung, "Efficient identity-

based encryption without random oracles

and its application to asymmetric

searchable encryption," Annual

International Cryptology Conference, ss.

600-619, Springer, Berlin, Heidelberg,

2009.

[14] H. Wang, B. Qin, Q. Wu, J. Domingo-

Ferrer, L. Zhang, "Privacy-preserving

hybrid cloud with a homomorphic

encryption," IEEE Transactions on Cloud

Computing, 9, no. 3, ss. 1014-1026, 2019.

[15] X. Wu, G. Revadigar, "A secure and

efficient hybrid encryption scheme for

securing RFID tag communications,"

Journal of Network and Computer

Applications, cilt. 42, ss. 109-116, 2014.

[16] A. S. Tanenbaum, M. Van Steen,

“Distributed Systems: Principles and

Paradigms”, Prentice-Hall, 2002.

[17] N. Koblitz, “A Course in Number Theory

and Cryptography”, 2. edition, Springer-

Verlag, 1994.

[18] A. J. Menezes, P. C. van Oorschot, S. A.

Vanstone, “Handbook of Applied

Cryptography”, CRC Press, 1996.

[19] R. Rivest, A. Shamir, L. Adleman, "A

method for obtaining digital signatures and

public-key cryptosystems,"

Communications of the ACM, 21, no. 2, ss.

120-126, 1977.

[20] D. R. Stinson, “Cryptography: Theory and

Practice”, 3, CRC Press, 2005.

[21] A. J. Menezes, P. C. Van Oorschot, S. A.

Vanstone, “Handbook of Applied

Cryptography”, CRC Press, 2001.

[22] D. R. Stinson, “Cryptography: Theory and

Practice”, 3, CRC Press, 2005.

[23] W. Stallings, “Cryptography and Network

Security: Principles and Practice”, Pearson

Education, 2016.

[24] J. Katz, Y. Lindell, “Introduction to

Modern Cryptography”, 3, CRC Press,

2020.

[25] B. Schneier, “Applied Cryptography:

Protocols, Algorithms, and Source Code in

C”, John Wiley & Sons, 1996.

[26] D. J. Bernstein, "ChaCha, a variant of

Salsa20," 2008.

[27] National Institute of Standards and

Technology (NIST), "Advanced

Encryption Standard (AES)," FIPS PUB

197, 2001.

Sakarya University Journal of Science, 28(4) 2024, 756-773

772

[28] S. Indla, A. Donald, A. T. Aditya, T. A.

Srinivas, G. Thippanna, "Locking Down

Big Data: A Comprehensive Survey of

Data Encryption Methods," International

Journal of Advanced Research in Science,

Communication and Technology, 10,

48175, 2023.

[29] D. J. Bernstein, "ChaCha, a variant of

Salsa20," 2008.

[30] D. J. Bernstein, "ChaCha, a variant of

Salsa20," Workshop Record of SASC, sayı

4, 2008.

[31] A. J. Menezes, P. C. Van Oorschot, S. A.

Vanstone, “Handbook of Applied

Cryptography”, CRC Press, 1996.

[32] M. Bellare, R. Canetti ve H. Krawczyk,

"Keying Hash Functions for Message

Authentication," Advances in Cryptology,

CRYPTO '96.

[33] D. J. Bernstein, "The Poly1305-AES

message-authentication code," Fast

Software Encryption, ss. 32-49, 2005.

[34] D. J. Bernstein, "The Poly1305-AES

message-authentication code," 2005.

[35] National Institute of Standards and

Technology (NIST), "Advanced

Encryption Standard (AES)," FIPS PUB

197, 2001.

[36] D. J. Bernstein, "The Poly1305-AES

message-authentication code," 2005.

[37] D. J. Bernstein, "ChaCha, a variant of

Salsa20," 2008.

[38] National Institute of Standards and

Technology (NIST), "Advanced

Encryption Standard (AES)," FIPS PUB

197, 2001.

[39] D. J. Bernstein, "The Poly1305-AES

message-authentication code," 2005.

[40] D. J. Bernstein, "ChaCha, a variant of

Salsa20," 2008.

[41] A. J. Menezes, P. C. Van Oorschot, S. A.

Vanstone, “Handbook of Applied

Cryptography”, CRC Press, 2001.

[42] D. R. Stinson, “Cryptography: Theory and

Practice”, 3, CRC Press, 2005.

[43] S. Padhiar, "A Comparative Study on

Symmetric and Asymmetric Key

Encryption Techniques," in 2021.

[44] S. Asjad, “The RSA Algorithm,” 2019.

[45] M. Gobi, S. R. Sridevi, R. Rahini, "A

Comparative Study on the Performance

and the Security of RSA and ECC

Algorithm," 2020.

[46] A. Boicea, C.-O. Truică, F. Rădulescu, D.-

C. Popeangă, I.-M. Radulescu ve C.

Costea, "Cryptographic Algorithms

Benchmarking: A Case Study," 2019.

[47] M. Abutaha, B. Atawneh, L. Hammouri ve

diğerleri, "Secure lightweight

cryptosystem for IoT and pervasive

computing," Sci Rep, cilt 12, no. 19649,

2022.

[48] Ayman Alissa, Duarte Bacelar Begonha,

Jim Boehm, Duarte Braga, Joana Candina,

Hugo Espírito Santo, Wolf Richter ve

Benjamim Vieira, "How to enhance the

cybersecurity of operational technology

environments," McKinsey & Company, 23

Mart 2023.

[49] M. Alenezi, H. Alabdulrazzaq ve N.

Mohammad, "Symmetric Encryption

Algorithms: Review and Evaluation

study," International Journal of

Communication Networks and Information

Security, cilt 12, s. 256, 2020.

[50] Ayman Alissa, Duarte Bacelar Begonha,

Jim Boehm, Duarte Braga, Joana Candina,

Hugo Espírito Santo, Wolf Richter ve

Benjamim Vieira, "How to enhance the

cybersecurity of operational technology

environments," McKinsey & Company, 23

Mart 2023.

Mustafa Emre Erbil, Merdan Özkahraman, Hilmi Cenk Bayrakçı

773

[51] P. Patil, P. Narayankar, D.G. Narayan ve

M. S. Meena, "A Comprehensive

Evaluation of Cryptographic Algorithms:

DES, 3DES, AES, RSA and Blowfish,"

Procedia Computer Science, cilt 78, s. 617-

624, 2016.

