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Abstract  
Original scientific paper 

Research on image compression spans various fields, focusing on achieving efficient compression while preserving a specific image 

quality. Satellite images captured by observation satellites possess unique characteristics distinct from other images. Analyzing these 

specific qualities is decisive, leading to the proposal of tailored compression methods and transforms suitable for satellite image 

characteristics. This study comprehensively assesses the performance of six well-known compression methods in the literature, utilizing 

wavelet transform and metrics such as bits per pixel (BPP), compression ratio (CR), Peak Signal-to-Noise Ratio (PSNR), calculation time 

(CT), and Mean Squared Error (MSE). The compressed satellite images, generated through six methods and the Coif3 wavelet, are 

systematically compared and evaluated using performance metrics. The average values obtained for all six methods are 96.37%, 47.10 dB, 

and 7.92 seconds for CR, PSNR, and CT receptively, while WDR exhibits CR at 96.36%, PSNR at 48.84 dB, and CT at 6.58 seconds. The 

findings indicate that the Wavelet Difference Reduction (WDR) compression method utilizing the Coif3 wavelet outperforms others when 

considering all parameters together. We suggest that operators and manufacturers choose wavelet transform and WDR compression 

methods for effective compression of observation satellite images to achieve optimal results. 

 

Keywords:Image compression, satellite image, suitable compression methods, wavelet transform.  

 

 
DALGACIK DÖNÜŞÜMÜ İLE UYDU GÖRÜNTÜSÜ SIKIŞTIRMA METOTLARI VE 
PERFORMANS DEĞERLENDİRMESİ 
 
Özet 

Orijinal bilimsel makale  

Görüntü sıkıştırma üzerine birçok alanda araştırma yapılmakta ve hedef belirli bir görüntü kalitesini korurken iyi bir sıkıştırma oranı elde 

etmektir. Gözlem uyduları tarafından çekilen uydu görüntüleri, diğer görüntülerden farklı özelliklere sahiptir. Bu özelliklerin analizi ile bu 

alana özgü dönüşüm ve sıkıştırma teknikleri geliştirilebilir. Bu çalışmada uydu görüntüsü sıkıştırılmış, dalgacık dönüşümü ve literatürde 

çok bilinen altı sıkıştırma yönteminin performansı; piksel başına bit (PBB), sıkıştırma oranı (SO), tepe sinyal gürültü oranı (TSGO), 

hesaplama süresi (HS) ve ortalama kare hata (OKH) gibi ölçütler kullanarak kapsamlı bir şekilde değerlendirilmiştir. Coif3 dalgacık 

dönüşümü ve bu altı sıkıştırma metodu kullanılarak elde edilen sıkıştırılmış uydu görüntüsü sistematik olarak karşılaştırılırmış ve 

değerlendirilmiştir. Altı yöntemin ortalama değerleri SO için %96.37, TSGO için %47.10 db ve HS için7.92 saniye iken, WDR metodunda 

SO, %96.36, TSGO %48.34 db ve HS 6.58 saniye olarak elde edilmiştir. Bulgular, Coif3 dalgacık dönüşümü kullanan WDR sıkıştırma 

yönteminin, tüm performans parametreleri dikkate alındığında diğer yöntemleri geride bıraktığını göstermektedir.  Bu çalışma sonuçlarına 

göre uydu operatörleri ve işletmecilerine gözlem uydusu görüntüsü sıkıştırma işleminde başarılı sonuçlarından dolayıdalgacık dönüşümü 

ve WDR metodunu öneriyoruz. 

 

Anahtar Kelimeler: Dalgacık dönüşümü, görüntü sıkıştırma, uydu görüntüsü, uygun sıkıştırma metotları. 

 

 

1 Introduction  
 

Image compression is decisive in digital data 

processing and transmission, especially in scientific and 

technological fields. The need for image compression 

arises from various factors, including limitations in data 

storage, the demand for efficient transmission, and the need 

to optimize available resources. [1]. Scientifically, the 

utilization of image compression arises from several 

essential considerations. Firstly, the inherent challenge of 

limited storage capacity confronts scientific datasets, 

particularly those generated by sources like remote sensing 

satellites [2-5] or medical imaging devices. This results in 

the need to condense data without compromising crucial 
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information [6, 7]. Moreover, bandwidth constraints pose 

challenges when transmitting large image files over 

networks with limited capacity, making compression 

essential for efficient data transmission. Resource 

optimization is another crucial aspect, as the computational 

and hardware resources necessary for processing extensive 

image data can be substantial, and compression aids in 

minimizing these demands. Compressed images facilitate 

swift data transfer and analysis in applications demanding 

real-time processing, such as medical diagnostics or 

satellite communication. 

Additionally, image compression contributes to cost 

efficiency by mitigating expenses related to storage 

infrastructure and network resources. The preservation of 

information is a paramount concern during compression, 

with practical methods striving to retain critical scientific 

details and features within the compressed images. Lastly, 

in scientific endeavors like space exploration or 

environmental monitoring, where data is remotely 

collected, compression becomes indispensable for 

extracting relevant information while minimizing the 

impractical transmission of vast amounts of data back to 

Earth [8, 9]. 

Satellite imagery obtained through remote sensing 

technologies exhibits advancements in spatial, temporal, 

and spectral resolutions and increased data rates, as 

outlined in Table 1. This progression, however, results in 

escalating compression requirements due to the 

burgeoning wealth of information. Managing vast data 

volumes at each stage of the image acquisition process 

becomes a challenge, necessitating the application of 

compression techniques to streamline satellite image data 

[10 -12]. 

 
Table 1. Earth Observation Satellites and Technical Properties. 

Satellites 
Swath 

(km) 

Spatial 

Resolution (m) 

Data rate 

(Mbps) 

Rasat 30 7.5/15 25 

Gokturk 2 20 2.5/5 100 

Göktürk 1 15 0.5/1 465 

İmece 19 1/4 320 

Spot 5 60 2.5 128 

Quick Bird 18 2.6 320 

Ikonos 11 3.2 320 

 

The computational load posed by large multispectral 

imageries and concerns about data storage and 

transmission underscores the urgency of employing 

compression methods. While lossless compression ensures 

data volume reduction without information loss, it 

becomes indispensable given the significant expense and 

subsequent utilization of multispectral data for extensive 

analysis and processing operations, including classification 

and target detection. In scenarios where higher 

compression is acceptable, lossy image compression 

methods can be employed to balance data reduction and 

preserving essential information [13-15]. 

Satellite images, renowned for accurately mapping 

geospatial features, incur challenges such as high storage 

requirements, hardware throughput constraints, and the 

need for data transmission under limited bandwidth and 

time windows. These limitations necessitate the utilization 

of image compression algorithms to alleviate dependency 

on constraints. Various techniques have been explored, 

ranging from the Direct Cosine Transform (DCT) to more 

computationally efficient methods like the Bandelets 

transform [16]. 

Earth Observation (EO) satellites primarily utilize 

onboard multispectral imagers to acquire images, 

employing separate sensors for different wavelengths. 

Multispectral images, crucial in remote sensing 

applications, face challenges due to the limited capabilities 

of onboard satellite hardware. Image compression becomes 

imperative to reduce onboard data storage and transmission 

bandwidth requirements, especially during the satellite's 

limited passes over ground stations. Increasing the 

compression ratio emerges as a primary goal to optimize 

resource utilization while preserving scientific information 

during image reconstruction on Earth [11, 17,18]. 

Recent studies in satellite image compression methods 

and performance evaluation highlight the ongoing 

advancements in the field. For instance, the Lightweight 

Bit-Depth Recovery Network for Gaofen Satellite 

Multispectral Image Compression [19] explores efficient 

recovery techniques for multispectral images, addressing 

the challenges of bit-depth reduction. The study Satellite 

Image Compression and Denoising with Neural Networks 

[3] leverages neural network architectures to 

simultaneously compress and denoise satellite imagery, 

demonstrating the potential of AI-driven approaches. The 

research on a Computationally Efficient Compression 

Scheme for Satellite Images [16] focuses on optimizing 

computational resources while maintaining image quality, 

catering to the constraints of onboard processing. 

Additionally, the study titled Efficient Onboard 

Compression for Arbitrary-Shaped Cloud-Covered 

Remote Sensing Images via Adaptive Filling and 

Controllable Quantization [20] introduces innovative 

techniques for handling complex image geometries, 

including cloud-covered areas, through adaptive filling and 

precise quantization strategies. These recent works 

emphasize the evolving nature of satellite image 

compression, aiming to improve efficiency, quality, and 

applicability in various remote sensing scenarios. 

The spectrum of image compression schemes falls into 

two main categories: lossless and lossy. While lossless 

compression, exemplified by the CCSDS 123 algorithm, 

maintains information integrity, lossy compression, such 

as JPEG2000, accepts a controlled amount of data loss for 

significantly higher compression ratios. In this context, 

DWT-based compression techniques gain prominence over 

DCT-based methods, offering multi-resolution transforms 

and achieving superior compression ratios with enhanced 

reconstructed image quality [13, 22-24]. 

Notably, some satellite missions, including Mars 

Exploration Rover, Rasat, X-Sat, and Pleiades-HR, 

demonstrate the prevalence of wavelet-based compression 

techniques in handling payloads. This underscores the 

applicability of such methods in the developing landscape 

of satellite technology. 
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2 Wavelet Transform and Compression Methods 
 

The wavelet transform is a versatile tool with 

applications in diverse fields, including fault detection, 

medical applications, and crop recognition [23, 27- 30]. Its 

relevance continues to grow, making it an emerging field 

of study.  

Wavelet-based image compression is a process where 

individual images are transformed and analyzed. The 

wavelet transform breaks down an image into its frequency 

components, creating a multi-resolution representation. 

This transformation is effective for compression as it 

eliminates unnecessary or less noticeable image data while 

keeping important visual information intact. The process 

involves several steps, starting with the application of 

wavelet transforms and progressing through quantization 

and, coding i.e., Progressive Coefficients Significance 

Methods (PCSM), ultimately resulting in the creation of a 

compressed image, as depicted in Figure 1. 

 

 
Figure 1. Basics steps of image compression: Transform, Quantization, 

and Coding (PCMS).  
 

The first step involves the transformation of the image, 

where it undergoes decomposition into wavelet 

coefficients. This process is typically executed using 

techniques like the discrete wavelet transform (DWT) or 

the lifting scheme. Composing the image in this manner 

enables extracting key features and details. 

Following the transformation, the next step is 

quantization. During this stage, the coefficients obtained 

from the wavelet transformation are quantized. Higher 

frequency and less perceptually significant coefficients are 

subjected to more aggressive quantization. This step is 

crucial in prioritizing and preserving essential image 

information while efficiently managing data size. 

The final step in wavelet-based image compression is 

entropy coding. This involves the application of coding 

techniques such as Huffman coding or arithmetic coding. 

The primary objective here is to compress the quantized 

coefficients further, optimizing the storage and 

transmission of the compressed image [31, 32]. 

Collectively, these steps form a systematic approach to 

wavelet-based image compression, demonstrating its 

effectiveness in various applications. This process reduces 

data size and ensures the retention of critical image details, 

making it a valuable technique in fields requiring efficient 

data management and transmission. 

In the specific domain of wavelet-based image 

compression, a series of sequential steps are employed to 

achieve efficient data reduction. Satellite image 

compression is essential for optimizing storage and 

transmission bandwidth without compromising crucial 

information, 

 

2.1  Overview of Coif3 Wavelet 
 

The Coif3 wavelet, short for Coiflet-3, belongs to the 

Coiflets family, a class of wavelets designed to balance 

smoothness and vanishing moments. The Coif3 wavelet, in 

particular, possesses three vanishing moments, providing 

effective localization in both time and frequency domains. 

The scaling function, responsible for generating a Coiflet, 

is formulated as the solution to the scaling equation [29, 

30]. 

 

𝜓(𝑥) = ∑ (−1)𝑘𝑎1−𝑘𝜙(2𝑥 − 𝑘)1
𝑘=2−𝑁    (1) 

  

where the  ϕ scaling coefficients  are selected to ensure that 

the associated scaling functions and wavelets have the 

necessary properties. 

 

The Coif3 wavelet's three vanishing moments ensure 

that the wavelet function cancels out polynomials of degree 

two. This property aids in capturing and representing 

details in the signal effectively [32]. 

 

𝜙(𝑥) = 2∑ ℎ𝑘𝜙(2𝑥 − 𝑘)𝑘𝜖𝑍    (2) 

 

The scaling coefficients hk are determined to ensure 

that the corresponding scaling functions and wavelets 

possess the necessary properties.  

 

Figure 2 represents Coif3 wavelet functions. Coif3 

wavelet is orthogonal, forming a complete and 

orthonormal basis for representing signals. Orthogonality 

simplifies computations and ensures energy preservation 

during the transformation process. 

Coif3 wavelet balances regularity and smoothness, 

making it well-suited for applications where preservation 

of fine details is crucial, such as in image compression. 

The Coif3 wavelet's characteristics contribute to an 

effective and balanced decomposition, ensuring that both 

high and low-frequency details are appropriately 

represented. 

 

 
Figure 2. Coif3 wave function. 

 

We chose the Coif3 wavelet based on the outcomes of 

the PhD dissertation titled 'Image and Video Compression 

Using Two-Dimensional Wavelet Transform' [24]. In our 

study, we implemented the Coif3 wavelet with a 4-level 

decomposition in our compression methods. Opting for 

higher decomposition levels enhances image quality. To 

strike a balance and address concerns like computation 

time, we specifically chose a 4-level decomposition for our 

research. This process involves breaking the image into 

wavelet coefficients, representing various frequency 

components. Following the approach outlined in the 

mentioned thesis, for Huffman coding with a compression 

ratio of 10 applied to a standard house image, the PSNR 

values are 35.10, 36.71, 36.94, and 39.99 dB for 

Original
Image

Wavelet 
Transform

PCMS
Compressed 

Image
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decomposition levels 1, 2, 3, and 4, respectively. Notably, 

all methods in our study incorporate the Coif3 wavelet 

transform during the compression process. This decision is 

made to balance computational efficiency and the ability to 

capture details present in the image [24]. 

Figure 3 presents a detailed representation of a four-

level decomposition of the test satellite images. Using the 

Coif3 wavelet, this process carefully breaks down the 

image into different components, capturing the overall 

structure and finer details. The result includes 

approximation and detailed coefficients covering 

horizontal, diagonal, and vertical components. This multi-

level decomposition is essential for gaining insights into 

the intrinsic characteristics of satellite imagery.

 

 
Figure 3. Four-level image decomposition and approximations, horizontal details, diagonal details and vertical details for each level. 

 

The acquired coefficients undergo a crucial phase in 

the analytical process in the next step. Six distinct 

compression methods are systematically applied to these 

coefficients, aiming to evaluate and compare the efficiency 

of each method. This meticulous analysis delves into how 

well these compression techniques handle the diverse and 

intricate information embedded within the coefficients. By 

scrutinizing the compressed results, we gain valuable 

insights into the methods' ability to reduce data without 

sacrificing the essential features and nuances in the satellite 

images. The intricate dance between Coif3 wavelet 

decomposition and subsequent compression methods 

unfolds, shedding light on optimizing storage and 

transmission while preserving the scientific significance of 

satellite imagery. 

 

2.2 Methods to Compress Satellite Image  
 

This study thoroughly evaluated the effectiveness of 

six widely recognized Progressive Coefficients 

Significance Methods (PCSM), based on an extensive 

analysis [33]. These six methods were intentionally 

selected due to their broad popularity in the literature, 

especially in image compression and other related 

applications [34-36]. The raw satellite images used in this 

research were sourced from Rasat EO satellites, further 

emphasizing the relevance of these methods for satellite 

image compression. 

 

2.2.1 Embedded Zero Tree Wavelet (EZW) 
 

The Embedded Zero Tree Wavelet algorithm (EZW) is 

a valuable image compression technique that generates a 

fully embedded bit stream for image coding. Remarkably 

competitive in compression performance with known 

techniques, this method requires no training, pre-stored 

codebooks, or prior image source knowledge. EZW is 

rooted in four fundamental concepts: discrete wavelet 

transform (DWT) or hierarchical sub-band decomposition, 

prediction of information absence across scales, entropy-

coded successive-approximation quantization, and 

universal lossless data compression through adaptive 

arithmetic coding. The algorithm's consecutive operation is 

noteworthy, ceasing upon meeting a target bit rate or 

distortion. The encoding process represents a pivotal 

aspect of EZW. 

 

2.2.2 Set-Partitioning In Hierarchical Trees (SPIHT): 
 

SPIHT is a fully embedded wavelet coding algorithm 

prioritizing information in decreasing energy levels. It 

allocates the bit budget between encoding the tree map and 

the significance information, enabling precise rate control 

and reasonable computational complexity. Reportedly 

surpassing other coding techniques like DCT and EZT, 

SPIHT, an enhanced version of EZW, has demonstrated 

superior performance with high PSNR values for diverse 

images. Its widespread adoption makes it a standard for 
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comparing subsequent wavelet-based image compression 

algorithms. 

 

2.2.3 Spatial-Orientation Tree Wavelet (STW) 
 

STW is essentially an adaptation of the SPIHT 

algorithm, differing only in the organization of coding 

output. It utilizes a state transition model to encode zero 

tree information, deviating from EZW's approach. The 

3D_spiht scheme, an extension from 2D SPIHT, maintains 

partial ordering by magnitude, ordered bit-plane 

transmission, and the SPIHT algorithm's principles. 

 

2.2.4 Wavelet Difference Reduction (WDR) 
 

The WDR algorithm is a straightforward procedure 

involving a wavelet transform applied to the image, 

followed by bit-plane-based WDR encoding for the 

wavelet coefficients. 

 

2.2.5 Adaptively Scanned Wavelet Difference Reduction 
(ASWDR) 
 

ASWDR is a generalization of the WDR method by 

Tian and Wells, producing an embedded bit stream for 

progressive transmission and encoding precise indices for 

significant transform values. This capability facilitates 

Region of Interest (ROI) and various image processing 

operations on compressed image files [12]. 

 

2.2.6 SPIHT_3D 
 

SPIHT_3D exploits self-similarity across spatial-

temporal orientation trees, providing a wholly-embedded 

compressed bit stream. This characteristic allows for 

progressive video quality, enabling the algorithm to stop at 

any compressed file size or run until nearly lossless 

reconstruction. Such flexibility is desirable in applications 

like high-definition television. 

 

2.3 Evaluation Metrics 
 

In this study, we employ the following evaluation 

metrics to assess the performance of the compression 

methods applied to satellite images [33, 34]. 

 

2.3.1. Bit Per Pixel (bpp) 
 

Bpp is a fundamental metric representing the average 

number of bits required to encode each pixel in the 

compressed image. It provides insights into the overall 

efficiency of the compression methods regarding data 

representation.  

 

𝑏𝑝𝑝 =
𝑛∗8

𝐻∗𝑊
     (4) 

 

where H: the height of an image, W: the width of an image. 

 

2.3.2. Compression Ratio 
 

The compression ratio measures the extent to which 

the image size is reduced after compression. It is calculated 

as the ratio of the original image size to the compressed 

image size. 

 

𝐶𝑅 = (1 −
ℎ𝑐

ℎ𝑖
) ∗ 100      (5) 

 

where, hc: the number of bits in the compressed image, hi: 

the number of bits in the original image. 

 

2.3.3. Mean Squared Error (MSE) 
 

MSE represents the average squared difference 

between the original and compressed images. Lower MSE 

values indicate better fidelity in image reconstruction. 

 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ |𝑋(𝑖, 𝑗) − 𝑋𝑐(𝑖. 𝑗)|

2𝑛=1
𝑗=0

𝑚=1
𝑖=0     (6) 

 

where M and N represent the image's size, X represents the 

given input image and Xc represents the reconstructed 

image.  

 

2.3.3. Peak Signal-to-Noise Ratio (PSNR) 
 

PSNR quantifies the quality of the compressed image 

by comparing it to the original. Higher PSNR values 

indicate better preservation of image quality. 

 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(
𝑚𝑎𝑥2

𝑀𝑆𝐸
)    (7) 

 

where max : the maximum possible pixel value of the 

image. 

 

2.3.5. Calculation Time 
 

The time taken by each compression method for 

processing is a critical factor, especially in real-time 

applications. It provides insights into the computational 

efficiency of the methods. 

 

𝐶𝑇 = 𝑐𝑝𝑢𝑡2 − 𝑐𝑝𝑢𝑡1    (8) 

 

where cput2: process stop time, cput1: process start time. 

 

A satellite test image showcasing diverse 

characteristics served as the focal point for our analysis. 

Employing the Coif3 wavelet during the transform phase, 

we applied six compression methods to compress the 

image. Subsequently, the resultant images underwent 

evaluation using predefined metrics. 

Systematic comparisons were made among the 

outcomes of each compression method, relying on 

evaluation metrics such as bits per pixel (bpp), 

compression ratio, Peak signal-to-noise ratio (PSNR), 

Mean Squared Error (MSE), and calculation time. This 

comprehensive assessment provided insights into the 

performance of each method across these criteria. 

The results derived from the satellite images were 

compared with those obtained from a standard test image 

commonly employed in compression studies to verify our 

findings. This comparative analysis further validated the 

effectiveness and reliability of our compression methods in 

handling satellite image data. 
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3 Results and Discussion 
 

In this study, we carefully compressed a satellite test 

image using six distinct compression methods. We 

specifically chose the Coif3 wavelet for the transformation 

phase due to its exceptional performance, seamlessly 

meeting the study's requirements. The decision to use 

Coif3 is rooted in its proven effectiveness in balancing 

detail capture and computational efficiency. The 

assessment is conducted based on key statistical 

parameters such as bits per pixel (BPP), compression ratio 

(CR), Peak signal-to-noise ratio (PSNR), calculation time, 

and Mean Squared Error (MSE). 

Figure 4 presents the results of satellite image 

compression using six analyzed compression methods, 

considering different numbers of encoding loops. It is 

important to note that the Coif3 wavelet transformer 

remains constant across all scenarios. Figure 4a illustrates 

the compression methods bit-per-pixel (bpp) 

performances. Notably, the WDR method achieves the best 

values, and the SP-3D method exhibits the lowest curve. 

Figure 4b provides insights into the calculation time, with 

the SPIHT method demonstrating the most efficient 

performance among the methods. 

In contrast, the EZW method lags behind with the least 

favorable results. Figures 4c and 4d depict the peak signal-

to-noise ratio (PSNR) and compression ratio (CR) 

performances, respectively. The WDR method yields 

higher PSNR, while three other methods demonstrate 

comparable results. Regarding compression ratio, the 

WDR method excels, offering the most efficient 

compression, whereas the SP-3D method exhibits the least 

favorable results. 

 

  
a) b) 

  
c) d) 

Figure 4. Satellite image compression performances using six methods from 5 to 10 encoding loops a) bit per pixel b) calculations time c) image quality, 

PSNR d) compression ratio. 

 

Within Figure 5, a visual narrative unfolds, presenting 

a triptych of images that encapsulate the transformative 

journey of a test satellite image. The pristine satellite image 

on the left stands as the original, untouched representation. 

In the center, we witness the intricate web of details 

unveiled through the original decomposition process, 

showcasing the distinct components obtained through the 

Coif3 wavelet family. Finally, on the right emerges the 

reconstructed image, a harmonious synthesis achieved 

through the marriage of Coif3 wavelet decomposition and 

the WDR compression method, meticulously executed 

across 10 encoding loops. 

In this scenario, utilizing the Coif3 wavelet family and 

the WDR compression method reveals a result adorned 

with a remarkable 45 dB PSNR (Peak Signal-to-Noise 

Ratio) value. This metric, indicative of the fidelity between 

the original and reconstructed images, underscores the 

method's proficiency in retaining crucial information 

during the compression process. Furthermore, the 

Compression Ratio (CR) of 8% highlights the adeptness of 

the chosen compression strategy in significantly reducing 

data size while maintaining a balance that allows for 

efficient storage and transmission. 

 

 

 
Figure 5. a) Original satellite image b) four-level wavelet decomposition c) reconstructed image. 
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These visual and quantitative insights provide a 

captivating glimpse into the transformative capabilities of 

the Coif3 wavelet family and the WDR compression 

method, showcasing their collaborative prowess in 

striking a harmonious balance between preservation and 

efficiency in the realm of satellite image processing. 

Table 2 presents the statistical results of satellite 

image compression employing various compression 

methods for encoding loops ranging from 5 to 10. 

Notably, the WDR method attains the best bit per pixel 

(bbp) value at 15.62 bpp, displaying its efficiency in data 

representation. The highest compression ratio (CR) is 

achieved using the EZW method, reaching an impressive 

96.55 db. In terms of peak signal-to-noise ratio (PSNR), 

the WDR method excels, attaining the highest value at 

48.85. Similarly, the mean squared error (MSE) is optimal 

for the WDR, EZW, and ASWDR methods, all obtaining 

the best MSE at 35.51. Furthermore, the WDR method 

stands out for its computational efficiency, boasting the 

lowest computation time at 6.58 seconds in 10 loops, 

emphasizing its effectiveness in achieving a balance 

between compression performance and computational 

speed.  

The overall performance of compression methods can 

be expressed as; 

 

𝑃𝑎𝑙𝑙 = 𝐶𝑅 + 𝑃𝑆𝑁𝑅 + (𝐶𝑇𝑚𝑎𝑥 − 𝐶𝑇)  (9) 

 

WDR demonstrates superior overall performance, 

achieving a value of 152.34, as illustrated in the last row 

of Table 2. 

 
Table 2. Performance values of Satellite Image Coif3 Transform and Six Compression Methods. 

 EZW SP STW WDR ASWDR SP3D 

 max Average max Average max Average max Average max Average max Average 

bpp 13.32 5.26 6.59 2.94 9.29 3.44 15.62 6.08 15.06 5.96 5.32 2.33 

CR 96.55 78.07 95.46 87.76 97.05 85.69 96.36 74.68 96.28 75.19 96.50 90.29 

PSNR 48.34 40.07 44.45 35.52 48.65 37.81 48.84 40.07 48.34 40.07 44.45 35.52 

CT 13.72 6.40 5.47 2.90 7.13 3.49 6.58 2.85 7.75 3.50 6.86 3.67 

MSE 36.51 12.87 107.64 35.80 58.92 21.99 36.51 12.87 36.51 12.87 107.64 35.80 

Pall 144.89 125.47 148.16 134.11 152.29 133.73 152.34 125.63 150.59 125.49 117.35 135.87 

 

It is crucial to ensure satisfaction with the results by 

comparing them with established references. Therefore, 

for the purpose of comparative analysis, the results 

obtained from WDR are compared with those from the 

well-known Huffman coding.  

Table 3 presents a comprehensive comparative 

analysis of compression performance for satellite images, 

utilizing both Huffman coding (huf_lvl) and Wavelet 

Difference Reduction (WDR) techniques. The satellite 

images undergo Coif3 wavelet decomposition at level 4, 

and various statistical parameters are assessed by selecting 

the number of encoding loops from 5 to 10 in compression 

methods to evaluate their effectiveness. 

In the case of Huffman coding, the bits per pixel 

(BPP) range from a minimum of 0.66 to a maximum of 

14.00, with an average of 8.35, indicating variations in 

data representation. Compression ratios (CR) range from 

41.68 to 97.25, with an average of 65.22, significantly 

reducing data size. Peak Signal-to-Noise Ratio (PSNR) 

values vary between 31.00 and 48.74, with an average of 

39.94, reflecting the quality of the compressed images. 

The computational efficiency is evident in the calculation 

time, ranging from 0.41 to 3.28 seconds, with an average 

of 1.85 seconds. Mean Squared Error (MSE) values range 

from 0.87 to 51.71, averaging 14.73, representing the 

deviation between the original and compressed images. 

On the other hand, Wavelet Difference Reduction 

(WDR) outperforms in bits per pixel (BPP), with a range 

of 0.87 to 15.62 and an average of 6.08, displaying its 

efficiency in data representation. Compression ratios (CR) 

for WDR vary between 34.93 and 96.36, with an average 

of 74.68, indicating a substantial reduction in data size. 

PSNR values for WDR range from 32.51 to 48.34, 

averaging at 40.07, highlighting the method's proficiency 

in preserving image quality. WDR also demonstrates 

computational efficiency, with calculation times ranging 

from 1.08 to 6.58 seconds and an average of 2.85 seconds. 

MSE values for WDR span from 0.95 to 36.51, averaging  

12.87, emphasizing the accuracy of the compressed 

images.  

In terms of overall performance, the Huffman coding 

method scores 149.29, while the WDR technique achieves 

a slightly lower value of 144.70. These values are 

indicative of the effectiveness of the respective 

compression methods when considering multiple 

performance metrics 

This comprehensive comparison offers nuanced 

insights into the performance of Huffman coding and 

Wavelet Difference Reduction. It provides a detailed 

understanding of their strengths and limitations across key 

statistical parameters in satellite image compression. 

 
Table 3 Performance Comparison of Satellite Image with Coif3 

Transform and Decomposition Level-4: Huffman vs. WDR. 

 Huffman WDR 

 max min avg max min Average 

bpp 14.00 0.66 8.35 15.62 0.87 6.08 

CR 97.25 41.68 65.22 96.36 34.93 74.68 

PSNR 48.74 31.00 39.94 48.84 32.51 40.07 

CT 3.28 0.41 1.85 6.58 1.08 2.85 

MSE 51.71 0.87 14.73 36.51 0.95 12.87 

Pall 149.29 78.85 109.90 144.70 72.94 118.49 
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A well-known daily house image was selected for 

evaluation to assess the performance of Wavelet 

Difference Reduction (WDR) in satellite image 

compression. Both images were compressed by 

employing WDR and Huffman methods while 

maintaining the Coif3 wavelet transform.  

Table 4 comprehensively compares compression 

performances for daily house images using Huffman 

coding and Wavelet Difference Reduction (WDR) 

techniques. The house images undergo Coif3 wavelet 

decomposition at level 4, and various statistical 

parameters are evaluated to assess the efficiency of the 

compression methods. 

For Huffman coding, the bits per pixel (BPP) values 

range from a minimum of 1.34 to a maximum of 11.66, 

with an average of 6.87, illustrating variations in data 

representation. Compression ratios (CR) range from 51.43 

to 94.43, with an average of 71.39, indicating a substantial 

reduction in data size. Peak Signal-to-Noise Ratio (PSNR) 

values vary between 36.42 and 54.67, with an average of 

47.02, reflecting the quality of the compressed images. 

The computational efficiency is evident in the calculation 

time, ranging from 0.50 to 3.11 seconds, with an average 

of 1.88 seconds. Mean Squared Error (MSE) values range 

from 0.22 to 14.84, with an average of 3.07, representing 

the deviation between the original and compressed 

images. 

On the other hand, Wavelet Difference Reduction 

(WDR) outperforms in bits per pixel (BPP), with a range 

of 0.35 to 9.86 and an average of 3.40, displaying its 

efficiency in data representation. Compression ratios 

(CR100) for WDR vary between 58.92 and 98.54, with an 

average of 85.85, indicating a substantial reduction in data 

size. PSNR values for WDR range from 31.22 to 45.00, 

averaging at 37.19, highlighting the method's proficiency 

in preserving image quality. WDR also demonstrates 

computational efficiency, with calculation times ranging 

from 0.84 to 3.22 seconds and an average of 1.56 seconds. 

MSE values for WDR span from 2.05 to 49.05, averaging 

at 20.22, emphasizing the accuracy of the compressed 

images. 

 
Table 4 Performance Comparison of House Image with Coif3 
Transform and Decomposition Level-4: Huffman vs. WDR. 

 Huffman WDR 

 max min avg max min Average 

bpp 11.66 1.34 6.87 9.86 0.35 3.40 

CR 94.43 51.43 71.39 98.54 58.92 85.85 

PSNR 54.67 36.42 47.02 45.00 31.22 37.19 

CT 3.11 0.50 1.88 3.22 0.84 1.56 

MSE 14.84 0.22 3.07 49.05 2.05 20.22 

Pall 152.54 93.90 123.08 146.87 95.85 128.03 

 

Considering the overall performances of all 

compression methods, the Huffman coding method 

exhibits a commendable score of 152.54, highlighting its 

effectiveness in various aspects. On the other hand, the 

Wavelet Difference Reduction (WDR) method performs 

admirably with a slightly lower yet competitive score of 

146.87. These values reflect the comprehensive 

assessment of both techniques across multiple 

performance metrics, demonstrating their respective 

strengths and capabilities in the context of image 

compression 

The analysis of compression performance for both 

daily house and satellite images using Huffman coding 

and Wavelet Difference Reduction (WDR) techniques, as 

depicted in Tables 3 and Table 4, provides valuable 

insights into the effectiveness of these methods. 

The Coif3 wavelet, known for combining smoothness 

and vanishing moments, is a valuable tool for 

transforming the satellite test image, capturing both 

spatial and spectral features. This intentional choice aims 

to enhance the efficiency and quality of the compression 

process, aligning with a systematic and informed 

approach. The study seeks to leverage the strengths of 

Coif3 to derive optimal insights and results from the 

compression methods employed. 

The comparative analysis highlights the nuanced 

performance characteristics of Huffman coding and WDR 

when dealing with distinct image datasets. While 

Huffman coding demonstrates computational efficiency 

and competitive CR values, WDR excels in achieving 

lower BPP values, superior accuracy (reflected in lower 

MSE values), and competitive CR values. The selection 

between these methods would depend on the specific 

requirements and priorities of the given application, 

balancing considerations of data size reduction, 

computational efficiency, and image quality preservation. 

 

4 Conclusion 
 

This study evaluated the performance of six widely 

recognized compression methods specifically designed 

for satellite images. It acknowledged the unique 

characteristics of satellite imagery, which differ from 

other types of images, such as medical or everyday photos, 

each requiring distinct measurement metrics. The research 

aimed to demonstrate the impact of compression methods 

on satellite images while consistently utilizing the Coif3 

wavelet as the transform. Key statistical parameters, 

including BPP, CR, PSNR, CT, and MSE, were analyzed 

to gain a comprehensive understanding of the strengths 

and limitations of each method. 

WDR demonstrates superior accuracy in image 

reconstruction when considering all parameters together. 

The validation using the well-known Huffman coding 

further confirms the efficacy of the proposed WDR 

method. 

Future endeavors in this research domain could focus 

on several promising directions. Firstly, exploring hybrid 

compression approaches that combine the strengths of 

Huffman coding and WDR could potentially yield 

enhanced results. Investigating the impact of varying 

wavelet families and decomposition levels on 

compression outcomes may provide valuable insights into 

optimizing the process further. Additionally, 

incorporating machine-learning techniques for adaptive 

compression based on image content and context could be 

an avenue for future exploration. 

Further research efforts may also address the 

development of real-time compression algorithms for 

dynamic image data and explore the application of these 

compression methods in various domains, such as medical 
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imaging or video compression. Assessing the robustness 

of the compression methods under different image 

characteristics and exploring their performance on large-

scale datasets could contribute to a more comprehensive 

understanding of their applicability. 

In summary, the findings from this study lay the 

groundwork for future investigations that aim to refine 

existing compression methodologies, explore hybrid 

approaches, and adapt compression techniques to diverse 

and dynamic imaging scenarios. As technology advances 

and the demand for efficient image processing grows, 

continuous exploration and refinement of compression 

methods remain imperative for addressing evolving 

requirements in various scientific and technological 

domains. 
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