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 The present study looks at the Love wave propagating through an elastic layer containing 
empty pores situated above a heterogeneous elastic semi-infinite space. We have constructed 
separate formulations of equations of motion for both media under congruous boundary 
conditions. The separation of variables approach is used to build the phase velocity frequency 
relation in compact form using the Whittaker function. The resulting closed-form dispersion 
equation matches the conventional Love wave equation when heterogeneity has been 
removed. The propagation of Love waves is strongly influenced by a porous layer of limited 
thickness across an elastic semi-infinite space. Three wave fronts are demonstrated to have 
the potential to propagate. The equilibrated inertia and the variation in the void volume 
fraction are related to two wave fronts that are connected to the characteristics of the void 
pores. Numerical treatments are applied and graphically illustrated to implement these effects 
associated to Love waves’ phase velocity. 
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1. Introduction  
 

The way seismic waves travel around the Earth is 
significantly influenced by its layered structure. An 
abundance of data is supplied by Ewing et al. [1] 
regarding how seismic waves propagate. Love [2] 
developed a mathematical simulation of a specific kind of 
surface wave known as the Love wave. Many researchers, 
e.g. Achenbach [3], Pilant [4] etc. investigated how Love 
waves propagate in both homogeneous and 
heterogeneous space. Rayleigh waves are less 
susceptible to structural complexity than Love waves. 
Satô [5], [6], [7] and Noyer [8] created a model to show 
how Love waves move through a medium with various 
crustal thicknesses. 

According to the current research, Love waves 
propagate under certain physical conditions that are 

most likely found inside the Earth. Techniques for 
geophysical prospecting and surveying are necessary to 
examine how elastic waves propagate through porous 
media. A porous medium is defined as a solid or group of 
solid bodies that have enough space between them for a 
fluid to pass through or around them. Inherently porous 
and liquid-filled materials are common in the natural 
world. The mean distribution of the pores is uniform and 
their pore size is tiny. Numerous studies have stressed 
the importance of pore water in seismology. The 
dispersion of water and the readjusting of fluid pressure 
are what produce earthquakes. An elastic, porous, liquid-
saturated medium has an established constitutive 
equation, according to Biot [9]. The Biot’s hypothesis 
[10], [11] of fluid-saturated porous solids consolidated 
introduces numerous ideas on porous material’s 
mechanical characteristics. 
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Nunziato and Cowin [12] postulated the existence of 
voids in a non-linear elastic material. Bulk density was 
stated as the result of multiplying the material matrix 
density by the volume fraction. The strain, the change in 
voids and void volume percentage are all regarded as 
independent kinematic variables in the linear theory of 
elastic material with voids. A substance that has sparsely 
spaced tiny spaces where there are none may be referred 
to as a porous substance. The field of geophysics & 
artificially produced porous substances have planned 
uses based on this theory. Applying Biot's theory to a 
porous media, Chattopadhyay et al. [13] discovered Love 
wave dispersion. According to Dey et al. [14], Love waves 
should propagate in an elastic layer containing empty 
pores.  

The acceleration caused by gravity is essential to 
comprehending dynamic as well as static problems since 
Earth functions as a gravitational medium. As 
seismologists learn more about the Earth's structure, the 
gravitational impact of Love wave propagation is 
becoming more significant. Rayleigh wave’s interaction 
with gravity in an incompressible half-space was 
demonstrated by Biot [15]. Love waves propagating in a 
transversely isotropic layer is significantly impacted by 
gravity as well as initial stresses, according to Dey et al. 
[16]. In a sand-filled, dry medium, Dey et al. [17] found 
that initial stress & gravity had an impact on torsional 
surface waves. Gupta et al. [18] compared the Rayleigh 
wave secular equations that are precise and 
approximate. The study conducted by Gupta et al. [19] 
aimed to examine the characteristics of wave 
propagation in carbon nanotubes. 

        Recently, Kumar et al. [20] showed that all of the 
material components of the model under discussion have 
a substantial effect on both the damped and phase 
velocity. A layered composite system’s dynamic response 
to a load travelling on its upper rough surface with 
parabolic irregularity was examined by Gupta et al. [21]. 
Kumhar et al. [22] calculated the complex wave velocity 
of the SH-wave using the Fourier transformation method 
and Green's function. Gupta et al. [23] demonstrated the 
characteristics of the field variables by contrasting three 
distinct generalized thermoelastic models. Chowdhury et 
al. [24] looked at how irregularity and other influencing 
factors, such magnetic couplings and hydrostatic 
stresses, affected the propagation of waves. The electrical 
and mechanical displacements as well as the elements of 
electric potential have all been concurrently calculated 
by Maity et al. [25]. Kumar et al. [26] examined the 
Rayleigh wave's ability to travel through a piezoelectric-
orthotropic substrate. Using a set of time-history natural 
ground motion records, Deringöl et al. [27] examined the 
seismic reactions of the fixed-base and base-isolated 
buildings. Using the criteria outlined in the 
aforementioned seismic codes, Ertuğrul et al. [28] 
examined yielding rigid retaining walls and anchored 
walls. Alam et al. [29] investigated the attenuation and 
dispersion characteristics of shear waves. The works 
done by Alam et al. [30], [31], Mario et al. [32], Singh et 
al. [33], [34] may also be cited. 

In this problem, the feasibility of Love wave 
propagation over an inhomogeneous semi-infinite space 
in an elastic layer containing empty pores is studied. The 

half space's inhomogeneity has been estimated to be 𝜇 =
𝜇1(1 + 𝑎𝑧) and = 𝜌1(1 + 𝑏𝑧) , where 𝜇 & 𝜌are the 
stiffness and mass density of the semi-infinite space 
respectively and the constants 𝑎 and 𝑏 have dimensions 
that are opposite to those of length. Bullen [35] 
discovered that as Earth's depth increases, so does its 
density. The layers' inherent non-uniformity may make 
this feasible. Brich [36] demonstrated in a different 
investigation that the stiffness of the Earth's strata varies 
at varying rates with depth. For this problem, Cowin and 
Nunziato's mechanics [37] of the elastic matrix with void 
pores are applied. We have established the velocity 
equation of Love waves in an elastic layer with void pores 
over a heterogeneous semi-infinite space. Three wave 
fronts are demonstrated to have the potential to 
propagate. The equilibrated inertia and the variation in 
the void volume fraction are related to two wave fronts 
that are connected to the characteristics of the void 
pores. The elasticity of the medium is linked to the other 
wave front. 

 

2. Field equations and constitutive relationships 
 

In the absence of body forces, Cowin and Nunziato 
[37] provide the following equations of motion for a 
homogeneous & isotropic porous elastic medium 

 

𝜇𝛻2�⃗� + (𝜆 + 𝜇)𝛻(𝛻. �⃗� ) + 𝛽𝛻𝜙 = 𝜌
𝜕2�⃗� 

𝜕𝑡2
 (1) 

  

�̄�𝛻2𝜙 − 𝜉𝜙 − 𝜔
𝜕𝜙

𝜕𝑡
− �̄�𝛻. �⃗� = 𝜌𝑘

𝜕2𝜙

𝜕𝑡2
 (2) 

 

Where 𝜆 and 𝜇 are Lame’s moduli; �̄�, �̄�, 𝜉, 𝜔 & 𝑘 the 
functions of matrix volume fraction. 𝜉 is a void parameter 
dependent on the inertial frame of reference; 𝑢(𝑥, 𝑡) 
stands for displacement vector; the difference in volume 
fraction from the reference volume fraction is 
represented by 𝜙; 𝜌is the medium’s density and 𝑡 is the 
time parameter. 

 
Cowin and Nunziato [12] provide the relationship 

between stress and strain components as follows: 
 

𝜏𝑖𝑗 = 𝜆𝛿𝑖𝑗𝑒𝑘𝑘 + 2𝜇𝑒𝑖𝑗 + 𝛽𝜙𝛿𝑖𝑗(𝑖, 𝑗 = 1,2,3) (3) 

 
where 𝛿𝑖𝑗  stands for the kronecker delta, 𝜏𝑖𝑗  stress 

components and 𝑒𝑖𝑗are strain components given by 

𝑒𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑢𝑗
+

𝜕𝑢𝑗

𝜕𝑢𝑖
). 

 

2.1. Statement of the problem 
 

Content We assume a heterogeneous semi-
infinite space under an elastic layer of thickness 𝐻 that 
has pores containing nothing. Both density and rigidity 
have been taken into consideration while discussing 
heterogeneity. In the lower space, the 𝑧 -axis is oriented 
vertically downward. Along the path that the wave is 
moving in, the 𝑥 -axis is selected to run along the layer. 
The layer-half space interface is where the origin is 
selected, as Fig. 1 illustrates. 
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Figure 1. The Problem’s Geometrical Shape. 

 
Love waves have the displacement components 𝑢 =

0,𝑤 = 0& 𝑣 = 𝑣(𝑥, 𝑧, 𝑡). The equations (1) and (2) that 
are not identically zero have the following form 

 

𝜇 (
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑧2
) + �̄� (

𝜕𝜙

𝜕𝑥
+

𝜕𝜙

𝜕𝑧
) = 𝜌

𝜕2𝑣

𝜕𝑡2
 (4) 

 

�̄� (
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑧2
) − �̄�

𝜕𝜙

𝜕𝑡
− 𝜉𝜙 = 𝜌�̄�

𝜕2𝜙

𝜕𝑡2
 

(5) 

 
 

2.2. Analytical solutions for wave velocities 
 

The The solutions of equations (4) and (5) can be 
interpreted as follows for waves propagating at a velocity 
of 𝑐 along 𝑥 -axis pointing positively 𝑣 =

𝜓1(𝑧)𝑒
𝑖𝑘(𝑥−𝑐𝑡)and 𝜙 = 𝜓2(𝑧)𝑒

𝑖𝑘(𝑥−𝑐𝑡) 
where  the equations satisfied by 𝜓1(𝑧)& 𝜓2(𝑧) are 
 
𝜓1

′′(𝑧) − 𝑁2𝜓1(𝑧) + 𝐵[𝑖𝑘𝜓2(𝑧) + 𝜓2
′(𝑧)] = 0 (6)  

 
And 
 

𝜓2
′′(𝑧) − 𝑀2𝜓2(𝑧) = 0 (7)  

 

Where 𝑁 = 𝑘(1 − (𝑐2/𝐴2))
1/2

, 𝐵 = �̄�/𝜇, 𝐴 = (𝜇/

𝜌)1/2,𝑀 = [(�̄�𝑘2 − 𝜌𝑘𝑘2𝑐2 − 𝑖�̄�𝑘𝑐𝑡 + 𝜉)/�̄�]
1/2

�̄�, 𝑘, 𝜉 

representing constants specific to a certain substance. It 
is possible to interpret the value of 𝑀 as follows while 
omitting the damping factor �̄�, which is negligible for 
sinusoidal waves  

 

𝑀 = 𝑘 [1 −
𝑐2

(�̄�/𝜌�̄�)
+

1

𝑘2(�̄�/𝜉)
]

1/2

 (8) 
 

 
Solution of equation (7) with 𝑀 as given in (8) may be 

taken as 
 

𝜓2 = 𝑅3𝑒
𝑀𝑧 + 𝑅4𝑒

−𝑀𝑧 (9)  
 
Using (9), the solution of equation (6) becomes 
 

𝜓1 = 𝑅1𝑒
𝑁𝑧 + 𝑅2𝑒

−𝑁𝑧 −
𝐵(𝑖𝑘 + 𝑀)

𝑀2 − 𝑁2
𝑒𝑀𝑧𝑅3

−
𝐵(𝑖𝑘 − 𝑀)

𝑀2 − 𝑁2
𝑒−𝑀𝑧𝑅4 

(10) 

 

 
Hence the solution of equation (4) and equation (5) 

may be written as 
 

𝑣 = [𝑅1𝑒
𝑁𝑧 + 𝑅2𝑒

−𝑁𝑧 −
𝐵(𝑖𝑘 + 𝑀)

𝑀2 − 𝑁2
𝑒𝑀𝑧𝑅3

−
𝐵(𝑖𝑘 − 𝑀)

𝑀2 − 𝑁2
𝑒−𝑀𝑧𝑅4] 𝑒𝑖𝑘(𝑥−𝑐𝑡) 

(11) 

 

 

𝜙 = [𝑅3𝑒
𝑀𝑧 + 𝑅4𝑒

−𝑀𝑧]𝑒𝑖𝑘(𝑥−𝑐𝑡) (12)  

 
2.2.1. Solution for  layer 

 
Only The solution can be expressed as follows, with 

the upper layer’s quantities indicated by the subscript 0 
 
𝑣0

= [𝑅1𝑒
𝑁0𝑧 + 𝑅2𝑒

−𝑁0𝑧 −
𝐵(𝑖𝑘 + 𝑀0)

𝑀0
2 − 𝑁0

2 𝑒𝑀0𝑧𝑅3

−
𝐵(𝑖𝑘 − 𝑀0)

𝑀0
2 − 𝑁0

2 𝑒−𝑀0𝑧𝑅4] 𝑒𝑖𝑘(𝑥−𝑐𝑡) 

(13) 

 

 

𝜙0 = [𝑅3𝑒
𝑀0𝑧 + 𝑅4𝑒

−𝑀0𝑧]𝑒𝑖𝑘(𝑥−𝑐𝑡) (14)  

 

Where 𝑁0 = 𝑘(1 − (𝑐2/𝐴0
2))

1/2
, 𝐵0 = �̄�0/𝜇0, 𝐴0 =

(𝜇0/𝜌0)
1/2 and 𝑀0 = 𝑘 [1 −

𝑐2

(�̄�0/𝜌0�̄�)
+

1

𝑘2(�̄�0/𝜉0)
]
1/2

. 

 
 

2.2.2. Solution for  half-space 
 
The displacement caused by Love waves can be 

expressed in terms of an equation of motion as follows 
(Biot [15]) 

 
𝜕𝑠21

𝜕𝑥
+

𝜕𝑠23

𝜕𝑧
=

𝜕2

𝜕𝑡2
(𝜌𝑣) (15) 

 

 
Where 𝑠𝑖𝑗  represents the stress components in the 

semi-infinite space and 𝜌 the density of the substance. 
The inhomogeneity in the space has been assumed 

as 
𝜇 = 𝜇1(1 + 𝑎𝑧), 𝜌 = 𝜌1(1 + 𝑏𝑧) (16)  

 
where 𝜇 = 𝜇1, 𝜌 = 𝜌1 at 𝑧 = 0 and the variables 

𝑎, 𝑏have inversely sized dimensions in relation to length. 
Making use of the stress-strain relationships 
 

𝑠21 = 2𝜇𝑒𝑥𝑦 , 𝑠23 = 2𝜇𝑒𝑦𝑧 (17)  

 
and the relation (16), the equations of motion (15) 

becomes 
 
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑧2
+

𝑎

1 + 𝑎𝑧

𝜕𝑣

𝜕𝑧
=

𝜌1(1 + 𝑏𝑧)

𝜇1(1 + 𝑎𝑧)

𝜕2𝑣

𝜕𝑡2
 (18) 

 

 

Let 𝑣 = 𝜓(𝑧)𝑒𝑖𝑘(𝑥−𝑐𝑡) be the solution of (18), then 
equation (18) reduces into 
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𝑑2𝜓

𝑑𝑧2
+

𝑎

(1 + 𝑎𝑧)

𝑑𝜓

𝑑𝑧
+ [

𝜌1(1 + 𝑏𝑧)

𝜇1(1 + 𝑎𝑧)
𝑐2 − 1] 𝑘2𝜓

= 0 

(19) 

 

 

Now by inserting 𝜓 =
𝜙(𝑧)

(1+𝑎𝑧)1/2 in equation (19) to 

get rid of  
𝑑𝜓

𝑑𝑧
, we obtain 

 
𝑑2𝜙(𝑧)

𝑑𝑧2
+ [

𝑎2

4(1 + 𝑎𝑧)2

− 𝑘2 {1 −
𝑐2(1 + 𝑏𝑧)

𝑐1
2(1 + 𝑎𝑧)

}] 𝜙(𝑧)

= 0 

(20) 

 

 

where 𝑐1 = √𝜇1/𝜌1 and 𝑐 the velocity of Love wave. 

Substituting 𝛾1 = [1 −
𝑐2

𝑐1
2

𝑏

𝑎
]
1/2

, 𝜂1 =
2𝛾1𝑘(1+𝑎𝑧)

𝑎
, 𝜔 =

𝑘𝑐 in equation (20), we get 
 
𝑑2𝜙(𝜂1)

𝑑𝜂1
2

+ [
𝑅

2𝜂1

+
1

4𝜂1
2
−

1

4
] 𝜙(𝜂1) = 0 (21) 

 

 

where =
𝜔2(𝑎−𝑏)

𝑐1
2𝑎2𝛾1𝑘

 . 

The equation (21) has the solution 𝜙(𝜂1) =
𝑅5𝑊𝑅/2,0(𝜂1) + 𝑅6𝑊−𝑅/2,0(−𝜂1), where 𝑊𝑅/2,0(𝜂1) is the 

Whittaker’s function [38]. Under the condition 𝑙𝑖𝑚 𝑧 → ∞ 
when 𝑉(𝑧) → 0 i.e. 𝑙𝑖𝑚 𝜂1 → ∞when 𝜙(𝜂1) → 0 the 
solution becomes 

 
𝜙(𝜂1) = 𝑅5𝑊𝑅/2,0(𝜂1) (22)  

 
Thus, in the heterogeneous space, the displacement 

component is 

𝑣 =
𝑅5𝑊𝑅/2,0(𝜂1)

(1 + 𝑎𝑧)1/2
𝑒𝑖𝑘(𝑥−𝑐𝑡) (23) 

 

 
Equation (23) is reduced to when Whittaker's 

function is expanded to linear terms 
 

𝑣 = 𝑣1(say)

=
𝑅5

(1 + 𝑎𝑧)1/2
𝑒−

𝛾1𝑘(1+𝑎𝑧)
𝑎 {

2𝛾1𝑘(1 + 𝑎𝑧)

𝑎
}

𝑅/2

[1

−
(
𝑅
2

−
1
2
)
2

𝑎

2𝛾1𝑘(1 + 𝑎𝑧)
] 𝑒𝑖𝑘(𝑥−𝑐𝑡) 

(24) 

 

 
3. Boundary conditions  
 

(i) References It is necessary for the stress 
component to remain continuous at  𝑧 = 0, 
i.e., 

(ii)  

𝜇0

𝜕𝑣0

𝜕𝑧
= 𝜇1

𝜕𝑣1

𝜕𝑧
 (25) 

 

(iii) It is necessary for the displacement 
component to remain continuous at 𝑧 = 0, 
i.e., 

(iv)  
𝑣0 = 𝑣1 (25b)  

(v) At, 𝑧 = −𝐻 the stress  vanishes such that 

𝜇0

𝜕𝑣0

𝜕𝑧
= 0 (25c) 

 

(vi) At, 𝑧 = 0 the boundary condition 𝜙0 is 
�⃗� . 𝛻𝜙0 = 0 i.e.  

𝜕𝜙0

𝜕𝑧
= 0 (25d) 

 

where �⃗�  represents  the unit vector perpendicular to 
the external boundary. 

(vii) At, 𝑧 = −𝐻 the boundary condition 𝜙0 is 
�⃗� . 𝛻𝜙0 = 0 (25d)  

 
where �⃗�  represents the unit vector perpendicular to 

the external boundary. 
Equations (13), (14) & (24) combined with  

aforementioned boundary conditions (25a)–(25e) result 
in 

 

𝜇0 [𝑅1𝑁0 − 𝑅2𝑁0 −
𝐵(𝑖𝑘 + 𝑀0)𝑀0

𝑀0
2 − 𝑁0

2 𝑅3

+
𝐵(𝑖𝑘 − 𝑀0)𝑀0

𝑀0
2 − 𝑁0

2 𝑅4]

− 𝜇1𝑅5𝑒
−
𝛾1𝑘
𝑎 {

2𝛾1𝑘

𝑎
}
𝑅/2

𝑃 = 0 

(26) 

 

 
Where 

𝑃 = [𝛾1 {1 −
(
𝑅
2

−
1
2
)
2 𝑎
𝑘

2𝛾1

}

−
𝑎

𝑘
{(

𝑅

2
−

1

2
)

−
(
𝑅
2

−
1
2
)
2 𝑎
𝑘

2𝛾1

(
𝑅

2
−

3

2
)}] 

(27) 

 
Where 
 

𝑄 = {1 −
(
𝑅
2

−
1
2
)
2 𝑎
𝑘

2𝛾1

} 

 
𝑁0𝑅1𝑒

−𝑁0𝐻 − 𝑁0𝑅2𝑒
𝑁0𝐻

−
𝐵(𝑖𝑘 + 𝑀0)𝑀0

𝑀0
2 − 𝑁0

2 𝑒−𝑀0𝐻𝑅3

+
𝐵(𝑖𝑘 − 𝑀0)𝑀0

𝑀0
2 − 𝑁0

2 𝑒𝑀0𝐻𝑅4 = 0 

(28) 

 

 
𝑀0𝑅3 − 𝑀0𝑅4 = 0 (29)  

 
𝑀0𝑅3𝑒

−𝑀0𝐻 − 𝑀0𝑅4𝑒
𝑀0𝐻 = 0 (30)  

 
Eliminating 𝑅1, 𝑅2, 𝑅3, 𝑅4and  𝑅5 from equations (26)-

(30), we get 
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|

|

|
𝑁0 −𝑁0 −

𝐵(𝑖𝑘 + 𝑀0)𝑀0

𝑀0
2 − 𝑁0

2

𝐵(𝑖𝑘 − 𝑀0)𝑀0

𝑀0
2 − 𝑁0

2

𝜇1

𝜇0

𝑒−
𝛾1𝑘
𝑎 {

2𝛾1𝑘

𝑎
}

𝑅
2

𝑃

1 1 −
𝐵(𝑖𝑘 + 𝑀0)

𝑀0
2 − 𝑁0

2 −
𝐵(𝑖𝑘 − 𝑀0)

𝑀0
2 − 𝑁0

2 𝑒−
𝛾1𝑘
𝑎 {

2𝛾1𝑘

𝑎
}

𝑅
2

𝑄

𝑁0𝑒
−𝑁0𝐻 −𝑁0𝑒

𝑁0𝐻 −
𝐵(𝑖𝑘 + 𝑀0)𝑀0𝑒

−𝑀0𝐻

𝑀0
2 − 𝑁0

2

𝐵(𝑖𝑘 − 𝑀0)𝑀0𝑒
𝑀0𝐻

𝑀0
2 − 𝑁0

2 0

0 0 𝑀0 −𝑀0 0

0 0 𝑀0𝑒
−𝑀0𝐻 −𝑀0𝑒

𝑀0𝐻 0

|

|

|

= 0 

The above determinant gives either, 
 

𝑀0 = 0 (31)  
 
or, 
 

sinh(𝑀0𝐻) = 0 (32)  
 
or, 
 

|

𝑁0 −𝑁0

𝜇1

𝜇0

𝑃

1 1 𝑄

𝑁0𝑒
−𝑁0𝐻 −𝑁0𝑒

𝑁0𝐻 0

| = 0 (33) 

 

 

Equation (31) gives 𝑘 [1 −
𝑐2

(�̄�0/𝜌0�̄�0)
+

1

𝑘2(�̄�0/𝜉0)
]
1/2

=

0 
i.e. 
 

 𝑐 = [1 +
1

(𝑘𝑚0)2
]

1

2
𝑐3 (34) 

 

 
This is the first-kind Love wave's velocity in the 

assumed model. 

Equation (32) gives 𝑠𝑖𝑛ℎ [1 −
𝑐2

(�̄�0/𝜌0�̄�)
+

1

𝑘2(�̄�0/𝜉0)
]
1/2

𝑘𝐻 = 0 

i.e.  

𝑐 = [1 +
1

(𝑘𝑚0)
2
+ (

𝑛𝜋

𝑘𝐻
)
2

]

1
2
𝑐3 (35) 

 

 

where 𝑚0 = (
�̄�0

𝜉0
)

1

2
stands for displacement parameter, 

𝑐3 = (
�̄�0

𝜌0�̄�
)  is the shear wave velocity caused by 

the  layer’s changing void volume fraction, 𝑛 is not a 
fractional number and  𝑘is the spatial frequency of 
a wave. 

In the assumed model, equation (35) gives the 
velocity of the second form of Love wave. 

Equation (33) yields 
 

𝑡𝑎𝑛ℎ(𝑁𝐻) =
𝜇1

𝜇0

𝑃

𝑁𝑄
 (36) 

 

 
Substituting 𝑃 and 𝑄 in equation (36) one gets 
 
 

𝑡𝑎𝑛 [(√
𝑐2

𝐴0
2 − 1)𝑘𝐻] =

𝜇1

𝜇0

[𝛾1 {1 −
(
𝑅
2

−
1
2
)
2 𝑎
𝑘

2𝛾1
} −

𝑎
𝑘

{(
𝑅
2

−
1
2
) −

(
𝑅
2

−
1
2
)
2 𝑎
𝑘

2𝛾1
(
𝑅
2

−
3
2
)}]

{1 −
(
𝑅
2

−
1
2
)
2 𝑎
𝑘

2𝛾1
}√

𝑐2

𝐴0
2 − 1

 (37) 

where  𝑅 =
𝜔2(𝑎−𝑏)

𝑐1
2𝑎2𝛾1𝑘

 and 𝛾1 = [1 −
𝑐2

𝑐1
2

𝑏

𝑎
]
1/2

 

 
This is the Love wave dispersion equation in the 

assumed model and is dependent on the half-space’s 
inhomogeneity parameter as well as the elastic 
parameters of the layer and half-space. 

This study demonstrates that Love waves propagate 
in three wave fronts in elastic media with void pores: two 
of the wave fronts, given by equations (34) and (35) are 
dependent on the void pores’ parameters, while the third 
wave front, given by equation (37) does not depend on 
any parameter related to the variation in the void volume 
pores. 
 
 
 
 

4. Particular case 
 

When homogeneity occurs in the semi-infinite space, 

i.e. for 0, 0a b→ →  the dispersion equation (37) 
becomes 

𝑡𝑎𝑛 [𝑘𝐻√
𝑐2

𝐴0
2 − 1] =

𝜇1

𝜇0

√1 −
𝑐2

𝑐1
2

√
𝑐2

𝐴0
2 − 1

 (38) 

 

 
It validates the solution to the topic under discussion 

and is well recognized classical outcome of the Love 
wave. 

 

https://en.wikipedia.org/wiki/Spatial_frequency
https://en.wikipedia.org/wiki/Wave
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5. Numerical calculation & discussions 
 
The following data have been collected in order to 

investigate the impact of inhomogeneity: 
1) The rigidity and density in upper layer are 

considered as (Kumar and Vandana [39]) 
 2) The rigidity & density in inhomogeneous lower 

space are considered as (Gubbins [40]) 
 To highlight the significance of porosity and 

inhomogeneity on Love wave propagation, numerical 
calculations were conducted using equations (34), (35) 
and (37) with varying parameter values that 
corresponded to the aforementioned features. 

The values of   in numerical form have been 
computed from equation (34) and (35) for various values 
of  . Also the values of   in numerical form have been 
computed from equation (37) for various values of . 

The dimensionless phase velocity   and the 
dimensionless wave number  for various values of   are 
displayed against each other in Fig. 2. The phase velocity 
has been found to decrease with increasing   values. 

In Fig. 3 and Fig. 4, the curves are plotted with   
against   for various values of  = 0.5, 0.7, 0.9 at  =1, 2 
respectively. The phase velocity has been found to 
decrease as the value of   grows. 

Figure 5 shows the curves with phase velocity   
plotted against spatial frequency considering various 
values of the inhomogeneity parameter related to the 
medium’s stiffness. For curves 1, 2, and 3, the value of   
has been considered to be 0.1, whereas the values of   
have been determined to be 0.3, 0.4, and 0.5, respectively. 
The velocity of the Love wave has been observed to rise 
with the value of   in the half-space. 

Figure 6 shows curves with phase velocity plotted 
against wave number considering various values of the 
inhomogeneity parameter related to medium density. 
The value of    has been assumed as 0.4 whereas the value 
of   is considered as 0.3, 0.4 and 0.5 for the curves 1, 2 and 
3 respectively. It has been noted that the velocity of the 
Love wave decreases as the value of   in the half-space 
grows. 

Figure 2. First kind Love wave dispersion curve with 
void pores for varying values of 𝑚0/𝐻. 

 

 
Figure 3. Second kind Love wave dispersion curve with 
void pores for varying values of  𝑘𝑚0 at n =1. 

 

 
Figure 4. Second kind Love wave dispersion curve with 

void pores for various value of 0km  at n =2. 

 
Figure 5. Influence of rigidity on Love wave propagation 
in the heterogeneous semi-   infinite space for 𝑏/ 𝑘=0.1. 
 

 
Figure 6. Impact of density on Love wave propagation in 
the heterogeneous semi-infinite space for 𝑎/𝑘 =0.4. 
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6. Discussion 
 

Three Love wave fronts can persist in the medium 
concurrently, according to the study. The variation in the 
volume fraction of the pores determines two fronts. The 
third front is dependent on the medium's inhomogeneity 
characteristics and elastic constants. The following 
succinctly describes the conclusions drawn from the 
aforementioned analysis: 

1. First and second kind Love waves’ phase 
velocities decrease as the void parameter rises 
with dimensionless wave number. 

2. While the inhomogeneity factor in rigidity has 
the opposite influence on the phase velocity, the 
inhomogeneity factor owing to linear variation 
in density in the inhomogeneous semi-infinite 
space decreases the phase velocity as it grows. 

3. The dispersion equation (38) reduces to the 
generic Love wave equation in the case of a 
homogeneous layer over a homogeneous half-
space. 

 
Potential application in geophysical prospecting is the 

present thorough investigation of torsional surface 
waves in the assumed model. Knowing the origin and 
approximate damage from earthquakes is helpful. 
Additional applications for this research could be in-
depth geologic structure mapping and oil drilling. 
Researchers in material science and designers of new 
materials may find usefulness in the findings reported in 
this study. 
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