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Abstract: Fungi play a pivotal role in our ecosystem and human health, serving as both essential 

contributors to environmental sustainability and significant agents of disease. The importance of 

precise fungi detection cannot be overstated, as it underpins effective disease management, 

agricultural productivity, and the safeguarding of global food security. This research explores the 

efficacy of vision transformer-based architectures for the classification of microscopic fungi 

images of various fungal types to enhance the detection of fungal infections. The study 

compared the pre-trained base Vision Transformer (ViT) and Swin Transformer models, 

evaluating their capability in feature extraction and fine-tuning. The incorporation of transfer 

learning and fine-tuning strategies, particularly with data augmentation, significantly enhances 

model performance. Utilizing a comprehensive dataset with and without data augmentation, the 

study reveals that the Swin Transformer, particularly when fine-tuned, exhibits superior 

accuracy (98.36%) over the ViT model (96.55%). These findings highlight the potential of 

vision transformer-based models in automating and refining the diagnosis of fungal infections, 

promising significant advancements in medical imaging analysis.  

 

 

Mantar Enfeksiyonlarının Gelişmiş Tespiti İçin Görüntü Dönüştürücüleri Kullanılarak 

Mikroskobik Mantar Görüntülerinin Sınıflandırılması 
 

 

Anahtar 

Kelimeler 

Görüntü 

dönüştürücüler,  

Swin 

dönüştürücü,  

Görüntü 

sınıflandırma,  

Mantar 

enfeksiyonu,  

Mikroskobik 

görseller 

Öz: Mantarlar, hem çevresel sürdürülebilirliğe temel katkıda bulunarak, hem de önemli hastalık 

etmenleri olarak hizmet ederek, ekosistemimizde ve insan sağlığında kritik bir rol 

oynamaktadırlar. Mantarların hassas olarak tespiti, etkili hastalık yönetimi, tarımsal verimlilik ve 

küresel gıda güvenliğinin korunması açısından önemlidir. Bu araştırma, çeşitli mantar türlerinin 

mikroskobik görüntülerinin sınıflandırılmasında görüntü dönüştürücü tabanlı mimarilerin 

etkinliğini keşfetmekte ve mantar enfeksiyonlarının tespitini geliştirmeyi amaçlamaktadır. 

Çalışma, önceden eğitilmiş temel görüntü dönüştürücü (ViT) ve Swin dönüştürücü modellerini 

karşılaştırmış, özellik çıkarma ve ince ayarlanma yeteneklerini değerlendirmiştir. Nakil öğrenme 

ve ince ayar stratejilerinin, özellikle veri artırımı ile birlikte, model performansını önemli ölçüde 

artırdığı belirlenmiştir. Veri artırımı yapılmış ve yapılmamış kapsamlı bir veri setini kullanarak 

yapılan çalışma, ince ayar yapıldığında Swin dönüştürücünün (%98,36), ViT modeline kıyasla 

(%96,55) üstün doğruluk sergilediğini ortaya koymuştur. Bu bulgular, mantar enfeksiyonlarının 

tanısını otomatikleştirmede ve iyileştirmede vizyon dönüştürücü tabanlı modellerin potansiyelini 

vurgulamakta, tıbbi görüntüleme analizinde önemli ilerlemeler vaat etmektedir.  

 

1. INTRODUCTION 

 

Fungi are critical to addressing global challenges, 

significantly impacting both ecosystems and human 

health. They exist in diverse forms, from complex 

multicellular organisms to single-celled entities, thriving 

mostly on land in soil or plant matter. Fungi's dual nature 

is evident in their contributions to medicine, agriculture, 

and ecological processes through antibiotic production, 

food fermentation, and nutrient cycling, contrasted with 

their potential to cause diseases in humans, animals, and 

plants, leading to significant health and economic 

concerns [1–3].  
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Fungal infections pose a substantial challenge to global 

health, impacting millions of people each year across 

various demographics and geographic locations. Fungal 

diseases, ranging from minor infections like athlete's foot 

to severe systemic conditions, pose threats to humans, 

animals, and crops, impacting economic stability and 

food security [2,4–6]. Accurate fungi identification is 

crucial for enhancing human well-being, promoting 

effective disease treatment, optimizing agricultural 

practices, and preventing disease outbreaks. Early and 

precise diagnosis is key to effective treatment, reducing 

the risk of severe outcomes and ensuring appropriate 

care. Particularly, microscopic fungi are major culprits 

behind superficial infections, making precise 

identification crucial for successful treatment [7–9].  

 

Traditional diagnostic methods, reliant on microscopy 

and culture techniques, face challenges in speed and 

specificity, leading to a demand for more advanced 

solutions. Automated fungi classification, leveraging 

deep learning algorithms, offers significant advantages 

in processing efficiency, diagnostic accuracy, and cost 

reduction. It enables rapid analysis of large image 

datasets, facilitating timely and informed decisions in 

healthcare and agriculture. Automated classification 

mitigates the risk of human error and supports research 

by providing consistent, reproducible results, which is 

critical for understanding disease patterns and 

contributing to public health efforts [7,8,10,11].  

 

Recent advances in deep learning have shown promise in 

different fields [12–14], especially in medical image 

analysis [15–18]. The integration of deep learning 

techniques for fungal detection, especially through 

microscopic imaging, has demonstrated the ability to 

accurately identify various fungal species, highlighting 

the technology's potential in both medical and 

agricultural fields [8,9,19]. A multitude of studies have 

applied convolutional neural networks (CNNs) and, 

more recently, vision transformers, demonstrating their 

efficacy in distinguishing fungal species with high 

accuracy. These advances offer profound implications 

for understanding the morphological diversity of fungi 

and their impact on human health and food security [20–

22].  

 

For instance, the work of S. S. Gaikwad et al. highlights 

the application of CNN models to categorize fungi 

affecting apple plant leaves, achieving an impressive 

88.9% accuracy using images from an accessible plant 

pathology dataset. This study illustrates the potential of 

deep learning in agricultural disease management by 

facilitating early detection and treatment of fungal 

infections in crops [20]. Similarly, L. Picek et al. 

introduced the Danish Fungi 2020 dataset, a 

comprehensive collection aiding in the fine-grained 

classification of fungal species. Their research 

underscores the challenges posed by highly unbalanced 

class distributions and complex class hierarchies in 

fungal identification. By comparing CNN models and 

vision transformers, they demonstrated the superior 

performance of vision transformers, with an accuracy of 

80.45% and a notable reduction in classification error, 

showcasing the potential of these models in handling 

complex, fine-grained classification tasks [21]. Koo et al. 

developed a deep learning model with a regional 

convolutional neural network to detect fungal hyphae in 

microscopic images, achieving high sensitivity (95.2% 

for 100× and 99% for 40× magnification models) and 

specificity (100% for 100× and 86.6% for 40× 

magnification models), suggesting significant 

improvements over conventional fungal infection 

diagnostics [23]. Gao et al. (2021) developed an 

automated microscope coupled with a deep learning 

model, primarily ResNet-50, to enhance fungal detection 

in dermatological samples. The system demonstrated 

high sensitivity (99.5% for skin, 95.2% for nails) and 

specificity (91.4% for skin, 100% for nails), showcasing 

the potential to significantly improve efficiency and 

accuracy in fungal diagnostics in dermatology [24]. In 

another vein, M. A. Rahman et al. explored the 

classification of pathogenic fungi using deep CNN 

models across several well-known architectures. Their 

study, which achieved top accuracy of 65.35% with the 

DenseNet model, underscores the diverse capabilities of 

CNNs in processing microscopic images to distinguish 

among 89 different fungal genera, thereby contributing 

to faster and more accurate diagnostic processes [22].  

 

C. J. P. Sopo, F. Hajati, and S. Gheisari’s work further 

exemplifies the role of deep learning in fungi 

classification, experimenting with different CNN models 

and training approaches. Their findings, particularly the 

high performance of the VGG16 model under transfer 

learning, highlight the effectiveness of leveraging pre-

trained models to enhance classification accuracy in 

specialized domains such as mycology [25]. Nawarathne 

et al. explored the classification of fungi images using 

various CNNs, addressing challenges like class 

imbalance through data augmentation and employing 

multiple preprocessing techniques. By testing thirteen 

pre-trained CNN models across different image 

resolutions, the research finds the BigTransfer (BiT) 

model, particularly with a mix of original and high-

resolution images, to outperform others with an accuracy 

of 87.32%, with optimal precision, recall, and F1-score 

[26]. Cinar et al. investigated the application of deep 

learning techniques for detecting fungal infections from 

microscopic images, employing CNNs and transfer 

learning for accurate classification of various fungal 

species. Through data augmentation and fine-tuning, the 

study achieves significant improvements in accuracy as 

97.19%, showcasing the potential of deep learning in 

enhancing diagnostic processes for fungal infections 

[27]. These studies exemplify the continuous evolution 

of methodologies in the classification and identification 

of fungal infections, promising to improve diagnostic 

processes through increased efficiency and reduced 

costs, with profound implications for global health, 

agriculture, and ecological preservation. 

 

Our study delves into the application of deep learning 

techniques, specifically leveraging vision transformers 

within a framework that utilizes the DeFungi dataset, 

transfer learning, and data augmentation to enhance the 

accuracy of fungal detection from microscopic images. 
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The aim is to improve the identification and 

classification of fungal infections, thereby supporting 

clinical decision-making with rapid, accurate, and 

scalable diagnostic tools.  

 

The remaining of the paper is organized as follows. In 

Section 2, the details of the methodology are given, such 

as dataset, data augmentation, vision transformer 

architectures, transfer learning, and experimental details. 

In Section 3, the results of the proposed methods and 

corresponding discussions are presented. The conclusion 

of the study is reported in the last section.  

 

2. MATERIAL AND METHOD 

 

In the Methodology section, an approach employing 

vision transformers for classifying fungi images into five 

distinct categories is detailed. This section describes the 

process of dataset selection and preparation, the 

application of data augmentation techniques to enhance 

model performance, the experimental setup, and the 

architecture of the vision transformers utilized. 

Additionally, the application of transfer learning and 

fine-tuning processes aimed at enhancing the accuracy of 

the model is described.  

 

2.1. Dataset  

 

The DeFungi dataset utilized for this study was acquired 

from the University of California Irvine (UCI) Machine 

Learning Repository [25]. The images in the dataset 

were provided by a mycological laboratory in Colombia. 

The dataset contains images depicting superficial fungal 

infections attributed to yeasts, molds, and dermatophyte 

fungi. These images underwent a detailed classification 

process, being manually sorted into five distinct 

categories with the assistance of domain experts to 

ensure the categorization's accuracy and relevance. 

Subsequently, automated coding procedures were 

employed to crop and patch these images. The finalized 

dataset includes a total of 9,114 images, distributed 

across five categories. The fungi image samples from the 

dataset are shown in Figure 1.  

 

2.2. Data Augmentation   

 

Data augmentation was implemented to enhance the 

diversity of the training dataset, especially to increase 

the representation of underrepresented classes. The 

augmentation aimed to balance the number of images 

across all categories, as depicted in Table 1, which 

illustrates the image counts in each class before and after 

augmentation. The augmentation procedure involved 

four specific transformations applied to the images in the 

dataset such as vertical flip, horizontal flip, and 45-

degree rotations.  

 

For each class (H1, H2, H3, H5, and H6), the number of 

images was augmented to match a target value. The 

target for classes H2, H3, H5, and H6 was set to 

approximately match the initial count of H1, which had 

the most images at 4404.  

 
Figure 1. Representative images illustrating five distinct classes within 
the fungi dataset. H1) Tortuous septate hyaline hyphae (TSH), H2) 

Beaded arthroconidial septate hyaline hyphae (BASH), H3) Groups or 

mosaics of arthroconidia (GMA), H5) Septate hyaline hyphae with 
chlamydioconidia (SHC), and H6) Broad brown hyphae (BBH). 

 

This target was selected to ensure that each class had a 

similar number of images, thus preventing class 

imbalance that could bias the model training. The 

augmentation script dynamically generated the required 

number of images by applying the aforementioned 

transformations consecutively to existing images until 

the target count was reached. The generated images were 

saved with a unique naming convention indicating the 

class, the type of transformation, and a sequence number 

to ensure uniqueness. This data augmentation process 

allowed the creation of additional training data, which 

was essential for training robust models capable of 

generalizing well across different presentations of fungal 

classes. It increased the total number of images in the 

dataset from 9,114 to 22,004, significantly enriching the 

dataset and providing more variability for model 

training.  

 
Table 1. Number of images for different classes before and after data 
augmentation.  

 
 

2.3. Vision Transformer Architectures  

 

In this study, we explore the application of vision 

transformer models for image classification tasks. Vision 

transformers represent an adaptation of the transformer 

architecture, originally designed for natural language 

processing [28], to the domain of computer vision.  
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Unlike traditional convolutional neural networks 

(CNNs), vision transformers divide an image into a 

series of patches and process these patches as a 

sequence, employing self-attention mechanisms to 

capture global dependencies within the image [29,30].  

 

In the first model, the base Vision Transformer (ViT) 

model is utilized [29]. This approach segments an image 

into fixed-size patches, linearizes these patches, and then 

processes them through a series of transformer blocks 

that include multi-headed self-attention and position-

wise fully connected layers. The base ViT model treats 

the image as a sequence of patches to learn 

representations, relying on the self-attention mechanism 

to weigh the importance of each patch relative to others 

in the image. The architecture of the ViT model is shown 

in Figure 2.  

 

Additionally, the Swin Transformer is employed, which 

is a variation of the standard ViT that introduces a 

hierarchical structure through the use of shifted windows 

[31]. This design allows the Swin Transformer to 

efficiently manage computational resources by focusing 

on smaller sections of the image at lower levels of the 

hierarchy before progressively merging these sections at 

higher levels. The Swin Transformer's unique approach 

to partitioning the image and processing it in stages 

enables it to adaptively focus on different scales of 

image features, potentially offering advantages in 

capturing both local and global image contexts. Figure 3 

shows the Swin Transformer architecture.  

 

2.4. Transfer Learning and Fine-Tuning  

 

Transfer learning is a machine learning methodology 

where a model trained on one task is repurposed for a 

second related task [32]. This approach is often utilized 

in image classification, with models pre-trained on large 

and diverse datasets, such as ImageNet, to leverage 

learned features and patterns applicable across various 

visual domains [33]. By starting with models that have 

already learned a broad representation of images, the 

training process can be accelerated, higher performance 

achieved with less labeled data, and model 

generalization improved.  

 

Fine-tuning represents a specific application of transfer 

learning, where the pre-trained model is further adjusted 

to suit the target task more closely. This process involves 

unfreezing some or all of the layers of the pre-trained 

Figure 2. Schematic representation of the Vision Transformer (ViT) model utilized in the study, illustrating the transformer architecture adapted for 

the task of classifying fungi images into five categories, highlighting the sequence of image patches, positional embeddings, multi-head attention, 
and the fully connected layers. 

 

Figure 3. Illustration of the Swin Transformer utilized for image classification, detailing the mechanism of shifted windows and embedded patch 

processing for feature extraction, as applied to the categorization of complex image data. 
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model and continuing the training process on the new 

dataset. The extent of the fine-tuning can vary, from 

adjusting just the final layers to retraining the entire 

network. This allows the model to adapt the generic 

features learned from the initial dataset to the nuances of 

the new task, enhancing performance on the target 

domain [32,34].  

 

In this study, both the base ViT and Swin Transformer 

models were employed, leveraging their pre-training on 

the ImageNet dataset [35] to harness a rich feature set 

relevant to the image classification tasks at hand. Two 

principal approaches were taken: feature extraction and 

fine-tuning. In feature extraction, the pre-trained models 

were used as feature extractors. Images were passed 

through the models to obtain high-level feature 

representations from the layers preceding the output 

layer. These features were then used as input to fully 

connected layers designed for the classification tasks in 

this study. This method benefited from the deep and 

complex representations learned by the models without 

necessitating extensive retraining. The second approach 

involved fine-tuning the pre-trained models on the 

specific fungi dataset of this study. This involved 

making minor adjustments to the model parameters to 

better align with the specific features and distributions of 

the task. After fine-tuning, features extracted from these 

adjusted models were fed into fully connected layers for 

classification.  

 

2.5. Experimental Details  

 

The Python programming language was used for the 

preprocessing and training operations. The vision 

transformer models are implemented in the PyTorch 

framework. Computational experiments were performed 

on a workstation with the following properties: Intel i5-

12600k CPU, 64 GB RAM, and NVIDIA RTX 3090 Ti 

24 GB GPU.  

 

Two distinct approaches for image classification were 

implemented utilizing the base ViT and Swin 

Transformer models. The first approach involves fine-

tuning, where the pretrained vision transformers are 

adapted by replacing their classification head with a new 

fully connected layer tailored to our specific number of 

output classes. This method allows the entire network to 

learn and adjust to our dataset during training. The 

second approach is feature extraction, where vision 

transformer models are utilized to generate feature 

representations of the images, effectively freezing the 

pretrained layers and only training a series of new fully 

connected layers for classification. This custom network 

consists of dense layers with ReLU activations, batch 

normalization, and dropout for regularization, 

concluding with a softmax layer for output. The training 

involved optimizing these layers with an Adam 

optimizer and categorical cross-entropy loss, using the 

features extracted from vision transformers as input. 

Hold-out validation is utilized to assess the performance 

of image classification models. Data is allocated as 70% 

for training, 15% for validation, and the remaining 15% 

for testing.  

To assess the performance of our image classification 

models, four metrics are employed: accuracy, precision, 

recall, and F1-score. Accuracy measures the proportion 

of correctly identified images across the dataset, 

providing an overall effectiveness of the model. 

Precision quantifies the accuracy of positive predictions, 

indicating the model's ability to minimize false positives. 

Recall assesses the model's capability to correctly 

identify all relevant instances, reflecting its sensitivity. 

F1-score combines precision and recall into a single 

metric, offering a balanced view of the model’s 

performance by accounting for both the precision's and 

recall's contributions.  

 

3. RESULTS AND DISCUSSION  

 

The detection of fungi plays a pivotal role in addressing 

key global challenges, impacting both human health and 

ecosystems. Fungi, which range from simple single-

celled organisms to complex multicellular forms, are 

significant for their contributions to medicine, 

agriculture, and ecological balance, but also pose serious 

health and economic risks through disease [1–3]. 

Accurate identification of fungi is essential for effective 

disease management, enhancing agricultural efficiency, 

and safeguarding food security. Traditional diagnostic 

methods often fall short in speed and accuracy, 

underscoring the need for advanced, automated 

classification techniques. Leveraging deep learning-

based algorithms for fungi detection promises greater 

diagnostic precision, efficiency, and cost-effectiveness, 

crucial for early and accurate diagnosis, ultimately 

supporting healthcare, agriculture, and ongoing research 

efforts [7–9].  

 

In this study, the efficacy of vision transformer models 

for classifying medical images, specifically for fungi 

diagnosis, was assessed. The findings suggest that vision 

transformer models are potentially more adept at 

capturing detailed and nuanced features from complex 

medical images than conventional approaches, indicating 

their capacity to improve diagnostic accuracy. This paper 

outlines the model's accuracy rates, feature extraction 

capabilities, and the outcomes of fine-tuning, alongside 

discussing the progress in fungi image classification 

facilitated by the use of vision transformer models.  

 

The comparison between Convolutional Neural 

Networks (CNNs) and vision transformer models reveals 

unique strengths and challenges for each technology. 

CNNs excel in identifying spatial features in images due 

to their strong image analysis capabilities and are more 

computationally efficient, particularly with smaller 

datasets or images. However, they face challenges in 

modeling long-range dependencies, though there are 

methods to address this issue. Thanks to their localized 

processing and shared weight architecture, CNNs 

typically offer better generalization on smaller datasets. 

Conversely, vision transformers are capable of 

identifying complex global patterns by analyzing images 

as a whole, which requires more computational 

resources, especially for processing larger images.  
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Their use of self-attention mechanisms allows them to 

effectively handle long-range dependencies. 

Additionally, vision transformers tend to scale better 

with larger datasets compared to CNNs [30,36–38].  

 

The architectural distinctions between the models play a 

pivotal role in their ability to manage the complexities 

inherent in various classification challenges. The base 

ViT model, with its straightforward approach to treating 

images as sequences of patches, demonstrates 

remarkable efficiency in capturing global image features. 

However, its performance indicates potential limitations 

in scenarios requiring a nuanced understanding of local 

features due to its uniform treatment of image patches. In 

contrast, the Swin Transformer's hierarchical, shifted 

window approach introduces a level of adaptability and 

efficiency not present in the base ViT model. By 

processing images in stages and allowing for variable-

sized representation, the Swin Transformer exhibits a 

more nuanced capability to balance between local and 

global feature recognition. This structural difference 

notably enhances the model's performance on complex 

image classification tasks, where the interplay of local 

and global image features is critical. A key advantage of 

the Swin Transformer is its linear computational 

complexity, achieved by applying self-attention in a 

localized manner. On the other hand, the ViT model 

faces quadratic computational complexity due to its 

global application of self-attention across all patches.  

 

The comprehensive results presented in Table 2, in 

conjunction with the visual examples from Figure 1, 

shed light on the ability of ViT and Swin Transformer 

models to handle the complexity and variability inherent 

in microscopic fungi images. The distinct textural and 

morphological features across the five classes, as 

depicted in Figure 1, underscore the challenges faced in 

accurate fungi classification.  

 

When the models were not fine-tuned nor exposed to 

data augmentation, the ViT model displayed a 

commendable aptitude for feature extraction with an 

accuracy of 86.70%. This suggests an innate capability 

of ViT model to discern proper features even in 

unaltered datasets. The Swin Transformer lagged slightly 

behind with an 82.32% accuracy rate. However, once 

fine-tuned, the Swin Transformer's accuracy improved 

remarkably to 90.87%, outperforming the fine-tuned ViT  

model's accuracy of 88.39%.  

 

This improvement hints at the Swin Transformer's ability 

to adapt its architecture more effectively upon learning 

from the dataset's specific characteristics.  

 

The introduction of data augmentation substantially 

increased the number of images across all categories, 

with the total image count rising from 9,114 to 22,004. 

This enhancement in dataset volume, particularly for 

underrepresented classes such as H3, H5, and H6, has 

contributed to the notable performance gains observed in 

the models. The feature extraction capacity of the Swin 

Transformer enhanced to 92.61% accuracy, while the 

ViT model reached 94.34%, indicating a significant 

positive impact of data augmentation in preparing the 

models to recognize and generalize from the diversified 

visual data. Notably, the fine-tuning of both models with 

data augmentation yielded the most impressive 

outcomes, with the Swin Transformer reaching an 

accuracy of 98.36% and the ViT model an accuracy of 

96.55%. These results reflect the models' enhanced 

ability to classify complex patterns observed in the 

varied images, achieving high precision, recall, and F1-

scores uniformly across classes.  

 

 
Figure 4. Training performance comparison for the ViT and Swin 
Transformer models during the feature-extraction approach with 

augmented data. Subfigures (a) and (b) illustrate the accuracy and loss 

plots for the ViT model, while subfigures (c) and (d) show the same for 
the Swin Transformer model. 

Table 2. Model performance metrics for feature extraction and fine-tuning. All values are percentages. 
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Figure 5. Training performance comparison for the ViT and Swin 

Transformer models during the fine-tuning approach with augmented 
data. Subfigures (a) and (b) depict the accuracy and loss plots for the 

ViT model, whereas subfigures (c) and (d) present these plots for the 

Swin Transformer model. 

 

The use of transfer learning and fine-tuning in this study 

is justified by their demonstrated ability to enhance 

model performance, especially in situations with limited 

labeled data. By beginning with models that have 

learned comprehensive visual representations, the need 

for extensive computational resources and time required 

to train complex models from scratch is reduced. The 

nuanced textural differences and class-specific features 

highlighted in Figure 1 may explain the models' 

improved performance when fine-tuned with data 

augmentation, as the process likely aids the models in 

learning to differentiate subtle variations and complex 

patterns within and across the classes.  

 

Figures 4 and 5 display the training performance of the 

ViT and Swin Transformer models with augmented data. 

In feature extraction (Figure 4), both models exhibit high 

validation accuracy, with ViT reaching convergence 

swiftly, indicative of efficient feature transfer. For fine-

tuning (Figure 5), the Swin Transformer slightly 

outperforms ViT in validation accuracy, suggesting a 

better adaptation to the fungi classification task. Figure 6 

depicts confusion matrices for ViT and Swin 

Transformer models with augmented data. Both models 

exhibit high classification accuracy across all classes, 

with improved precision upon fine-tuning, as shown by 

denser diagonals in Figures 6c and 6d. Fine-tuning 

particularly enhances the Swin Transformer's ability to 

distinguish between the more confusable classes.  

 

In conclusion, the exemplary performance of the Swin 

Transformer and ViT models, especially when fine-

tuned with augmented data, demonstrates their 

robustness and adaptability in classifying high-

variability microscopic images. Such findings are 

promising for the field of automated medical diagnosis, 

suggesting that with sufficient training and data 

enhancement, these models can potentially serve as  

 
Figure 6. Confusion matrices demonstrating classification accuracy 

with augmented data for (a, c) the ViT model and (b, d) the Swin 
Transformer model, with (a, b) illustrating results from feature 

extraction approach and (c, d) fine-tuning approach, respectively. 

 

reliable tools for accurate fungi classification, ultimately 

aiding in the prompt and precise diagnosis of fungal 

diseases.  

 

4. CONCLUSION  

 

Understanding the intricate role of fungi within our 

ecosystems and their impact on human health 

emphasizes the need for nuanced approaches to their 

detection and management. The development of 

advanced diagnostic tools stands as a critical step 

towards mitigating the risks fungi pose, while also 

leveraging their beneficial properties for environmental 

and medical applications. This research underscores the 

transformative potential of employing vision 

transformer-based models in the classification of 

microscopic fungi images. The Swin Transformer model, 

especially with fine-tuning and data augmentation, 

emerges as particularly effective, demonstrating a 

notable accuracy improvement (98.36%). These results 

not only advocate for the integration of vision 

transformer technologies in medical diagnostics but also 

mark a promising avenue for future research. Further 

exploration into optimizing these models for broader 

diagnostic applications and investigating their 

performance in diverse medical imaging contexts could 

lead to significant enhancements in automated disease 

detection, offering a new horizon for precision medicine 

and healthcare.  
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