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Abstract. As a natural extension of the metric and the bipolar metric, this article intro-
duces the new abstract bipolar b− metric. The bipolar b−metric is a novel technique ad-
dressed in this article; it is explained by combining the well-known b−metric in the theory
of metric spaces, as defined by Mutlu and Gürdal (2016) [10], with the description of the
bipolar metric. In this new definition, well-known mathematical terms such as Cauchy
and convergent sequences are utilized. In the bipolar b−metric, fundamental topological
concepts are also defined to investigate the existence of fixed points implicated in such
mappings under different contraction conditions. An example is provided to demonstrate
the presented results.

1. Introduction

Fixed point theory is a fabulous blend of Topology, Analysis, and Geometry. It has
been a crucial part of exploring linear and nonlinear phenomena. There are also excellent
applications of fixed-point theorems to encourage mathematical inquiry, economics, game
theory, computer science, and digital image embedding. Thanks to its application in math-
ematics and other disciplines, the Banach ([4]) contraction principle has become widely
used. Two situations enable this principle to become widespread. Either the mapping
space is universalized, or the map’s contraction condition is extended.

One of the exciting topics of the last few decades is the theory of fixed points. In
particular, the issue of changing the abstract structure of the mapping to form a fixed point
has been intensively studied. The concept of a metric space has been variously revised,
expanded, and generalized to ensure the existence of a fixed point for certain mappings

2020 Mathematics Subject Classification. Primary: 47H10, 51F99, 54H25.
Key words and phrases. Fixed point theory; complete b−metric space; bipolar metric space; bipolar b−metric

space.
©2024 Proceedings of International Mathematical Sciences.
Submitted on 25.02.2024, Accepted on 29.06.2024.
Communicated by Hakan Şahin.
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defined in these new constructs. The most exciting and general concept is the b−metric
space. Several mathematicians have considered it by different names (such as the quasi-
metric [5] and the general metric), but it became famous for the publications of Bakhtin
[3] and Czerwik [6].

It is exciting to get fixed point theorems for covariant and contravariant maps with
different contraction maps in both expanding and non-expanding topological spaces. There
are unique bivariate metric spaces like b−metric spaces [3, 6], extended b−metric spaces,
and trivariate metric-type spaces like bipolar metric spaces [10].

In [10] the new distance function, the distance between the members of two different
sets is different from the empty set. A successful description of generalized and improved
metric spaces is called bipolar metric spaces. This study also validated new versions of
Banach and Kannan Caristi’s fixed point theorems (see [14]).

Recent articles on bipolar metric space refer to popular theorems of fixed point theory
contained in them (see [14] and [15]). In addition, various issues related to this theory are
covered (see [1, 2, 7, 11, 12, 8, 13, 16, 17]).

This study aims to combine the bipolar metric space defined in [10] 2016 with the
b−metric space definition, which is a new approach for general metric spaces. This article
discusses the existence of and gives examples of some fixed point theorems in the bipolar
b−metric.

2. Preliminaries

In this section, the definition and theorem that will be required for the analysis will be
reminded again for convenience.

Recall (see, e.g., [3, 6]) that a b−metric d on a set X is a generalization of standard
metric, where the triangular inequality is replaced by

d(x, z) ≤ b[d(x, y) + d(y, z)],

for all x, y, z ∈ X, for some fixed b ≥ 1.
Definition 2.1. ( [10]). A bipolar metric space is a triple (X,Y, d) such that X,Y , ∅ and
d : X × Y −→ R+ is a function satisfying the following conditions:

(i) d(x, y) = 0⇐⇒ x = y,
(ii) if x, y ∈ X ∩ Y, then d(x, y) = d(y, x),
(iii) d(x1, y2) ≤ d(x1, y1) + d(x2, y1) + d(x2, y2)
for all (x, y), (x1, y1), (x2, y2) ∈ X×Y. Then d is called a bipolar metric on the pair (X,Y).

Example 2.1. Let X = {(a, 2a)| a ∈ R}, Y = {(d, c)| d, c ∈ R} = R2 and

d(x, y) =| a − d | + | 2a − c |,

for every x = (a, 2a) ∈ X and y = (d, c) ∈ Y. Obviously X ∩ Y = X and conditions (i) and
(ii) of Definition 2.1 are satisfied.

For each x = (a, 2a), x′ = (a′, 2a′) ∈ X and y = (d, c), y′ = (d′, c′) ∈ Y, we have

d(x, y) = | a − d | + | 2a − c |

≤ | a − d′ | + | 2a − c′ | + | a′ − d′ | + | 2a′ − c′ | + | a′ − d | + | 2a′ − c |

= d(x, y′) + d(x′, y′) + d(x′, y).

So, condition (iii) of Definition 2.1 is also satisfied and d is a bipolar metric.

Definition 2.2. ( [10]). Let (X1,Y1) and (X2,Y2) be pairs of sets.
(a) Let f : X1 ∪ Y1 −→ X2 ∪ Y2 be a given function.
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If f (X1) ⊆ X2 and f (Y1) ⊆ Y2, f is said a covariant map from (X1,Y1) to (X2,Y2) and write
f : (X1,Y1)⇒ (X2,Y2).

(b) f : X1 ∪ Y1 −→ X2 ∪ Y2 be a given function.
If f (X1) ⊆ Y2, and f (Y1) ⊆ X2, f is said a contravariant map from (X1,Y1) to (X2,Y2) and
f : (X1,Y1)⇄ (X2,Y2) is written in this paper.

Example 2.2. Let X = {(a, 0)| a ∈ R}, Y = {(b, c)| b, c ∈ R} = R2 and
f : X ∪ Y −→ X ∪ Y defined by f (x, y) = (x2, xy) for every (x, y) ∈ X ∪ Y. Obviously
f (X) ⊆ X and f (Y) ⊆ Y. Therefore, f is a covariant map from (X,Y) to (X,Y), that is
f : (X,Y)⇒ (X,Y).

It is superimposed on the b−metric with the bipolar metric, just as different previously
defined metrics are combined in one definition. An example of these is the metric structure
in defining bipolar and ultrametric,and the description presented is the definition of bipolar
b−metric.

3. MAIN RESULTS

It is superimposed on the b−metric with the bipolar metric, just as different previously
defined metrics are combined in one definition. An example of these is the metric structure
in defining bipolar and ultrametric [7], and the description presented is the definition of
bipolar b−metric.

Definition 3.1. A bipolar b−metric space is a triple (X,Y, d) such that X,Y , ∅ and
d : X × Y −→ R+ is a function satisfying the following conditions:

(i) d(x, y) = 0⇐⇒ x = y,
(ii) if x, y ∈ X ∩ Y, then d(x, y) = d(y, x),
(iii) d(x1, y2) ≤ b[d(x1, y1) + d(x2, y1) + d(x2, y2)] for all (x, y), (x1, y1), (x2, y2) ∈ X × Y

and b ≥ 1. We say d is a bipolar b−metric on the pair (X,Y).

Example 3.1. Let X = {(a, 0)| a ∈ R}, Y = {(d, c)| d, c ∈ R} = R2 and

d(x, y) = (a − d)2+ | c |,

for every x = (a, 0) ∈ X and y = (d, c) ∈ Y. Obviously X ∩ Y = X and conditions (i) and
(ii) of Definition 3.1 are satisfied.

For each x = (a, 0), x′ = (a′, 0) ∈ X and y = (d, c), y′ = (d′, c′) ∈ Y and b = 3, we have

d(x, y) = (a − d)2+ | c |= [(a − d′) + (d′ − a′) + (a′ − d)]2+ | c |

≤ 3(a − d′)2+ | c′ | +3(a′ − d′)2+ | c′ | +3(a′ − d)2+ | c |

= 3[d(x, y′) + d(x′, y′) + d(x′, y)].

So, condition (iii) of Definition 3.1 is also satisfied and d is a bipolar b−metric for b = 3.

It is useful to state the following here. If b = 1 in a bipolar b−metric, a bipolar metric
is obtained (see [10]).
It should be noted that in the preceding example, if (X,Y, d) is a bipolar b−metric space,
then (X,Y, d) is not necessarily a bipolar metric space, because the triangle inequality does
not hold.

Let Ψ denote a family of mappings such that for each ψ ∈ Ψ,
ψ : [0,∞) −→ (0,∞) and

(1) ψ(t) is continuous and it is decreasing for every t ∈ [0,∞),
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(2)
∫ m s

0 ψ(t)dt ≤ m
∫ s

0 ψ(t)dt for every s > 0 and m ≥ 1.

For example, if ψ : [0,∞) −→ (0,∞) defined by ψ(t) = e−t, ψ(t) = 1
1+t , then it is easy to

see that ψ ∈ Ψ.

Example 3.2. Let (X,Y, d) be a bipolar b−metric space. If it is defined with

ρ(x, y) =
∫ d(x,y)

0
ψ(t)dt, f or every (x, y) ∈ X × Y and ψ ∈ Ψ,

then (X,Y, ρ) is a bipolar b−metric space.

Proof. Obviously conditions (i) and (ii) of Definition 3.1 are satisfied. Now, since d is
bipolar b−metric hence for all (x, y), (x1, y1) ∈ X × Y and b ≥ 1, we have d(x, y) ≤
b[d(x, y1) + d(x1, y1) + d(x1, y)]. Since ψ is positive we get:

ρ(x, y) =

∫ d(x,y)

0
ψ(t)dt

≤

∫ b[d(x,y1)+d(x1,y1)+d(x1,y)]

0
ψ(t)dt

=

∫ b d(x,y1)

0
ψ(t)dt +

∫ b[d(x,y1)+d(x1,y1)]

b d(x,y1)
ψ(t)dt

+

∫ b[d(x,y1)+d(x1,y1)+d(x1,y)]

b[d(x,y1)+d(x1,y1)]
ψ(t)dt.

If set t = b d(x, y1) + s, since ψ is decreasing then we get:

∫ b[d(x,y1)+d(x1,y1)]

b d(x,y1)
ψ(t)dt =

∫ b d(x1,y1)

0
ψ(b d(x, y1) + s)ds ≤

∫ b d(x1,y1)

0
ψ(s)ds

≤ b
∫ d(x1,y1)

0
ψ(s)ds.

Similarly, if set t = b[d(x, y1) + d(x1, y1)] + s, then

∫ b[d(x,y1)+d(x1,y1)+d(x1,y)]

b[d(x,y1)+d(x1,y1)]
ψ(t)dt =

∫ b d(x1,y)

0
ψ(b[d(x, y1) + d(x1, y1)] + s)ds

≤

∫ b d(x1,y)

0
ψ(s)ds ≤ b

∫ d(x1,y)

0
ψ(s)ds.

Therefore,

ρ(x, y) =

∫ d(x,y)

0
ψ(t)dt

≤

∫ b d(x,y1)

0
ψ(t)dt +

∫ b[d(x,y1)+d(x1,y1)]

b d(x,y1)
ψ(t)dt

+

∫ b[d(x,y1)+d(x1,y1)+d(x1,y)]

b[d(x,y1)+d(x1,y1)]
ψ(t)dt

≤ b
∫ d(x,y1)

0
ψ(t)dt + b

∫ d(x1,y1)

0
ψ(t)dt + b

∫ d(x1,y)

0
ψ(t)dt

= b[ρ(x, y1) + ρ(x1, y1) + ρ(x1, y)].
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So, condition (iii) of Definition 3.1 is also satisfied and ρ is a bipolar b−metric. □

Remark. If d1, d2 are bipolar b−metrics on (X1,Y1) and (X2,Y2), respectively, we shall
sometimes write f : (X1,Y1, d1)⇒ (X2,Y2, d2) and f : (X1,Y1, d1)⇄ (X2,Y2, d2).

Definition 3.2. Let (X,Y, d) be a bipolar b−metric space
(a) The set X is called the left pole, Y is called the right pole and X ∩ Y is called the

center of (X,Y, d). Especially, the points in the left pole are called left points, the points in
the right pole are called right points, and the points in the center are called central points.

(b) A sequence {xn} ⊆ X is called a left sequence, and a sequence {yn} ⊆ Y is called
a right sequence. In a bipolar b−metric space, a left or right sequence is simply called a
sequence.

(c) A sequence {un} is said to be convergent to a point u, if and only if {un} is a left
sequence, u is a right point and lim

n−→∞
d(un, u) = 0, or {un} is a right sequence, u is a left

point and lim
n−→∞

d(u, un) = 0.
(d) A bi-sequence {(xn, yn)} on (X,Y, d) is a sequence on the set X × Y. If the sequence

{xn} and {yn} are convergent, then the bi-sequence {(xn, yn)} is said to be convergent, and if
{xn} and {yn} converge to a common fixed point, then {(xn, yn)} is said to be bi-convergent.

(e) {(xn, yn)} is called a Cauchy bi-sequence if lim
n,m−→∞

d(xn, ym) = 0.

(f) A bipolar b−metric space is called complete, if every Cauchy bi-sequence is conver-
gent, hence bi-convergent.

Definition 3.3. Let (X1,Y1, d1) and (X2,Y2, d2) be bipolar b−metric spaces
(a) A map f : (X1,Y1, d1) ⇒ (X2,Y2, d2) is called left-continuous at a point x0 ∈ X1, if

for every ε > 0, there exists a δ > 0 such that d1(x0, y) < δ implies d2( f x0, f y) < ε for all
y ∈ Y1.

(b) A map f : (X1,Y1, d1)⇒ (X2,Y2, d2) is called right-continuous at a point y0 ∈ Y1, if
for every ε > 0, there exists a δ > 0 such that d1(x, y0) < δ implies d2( f x, f y0) < ε for all
x ∈ X1.

(c) A map f is called continuous if it is left-continuous at each point x ∈ X1 and right-
continuous at each point y ∈ Y1.

(d) A contravariant map f : (X1,Y1)⇄ (X2,Y2) is continuous if and only if it is contin-
uous as a covariant map f : (X1,Y1)⇒ (Y2, X2).

Remark. ([10]). A covariant or contravariant map f from (X1,Y1, d1) to (X2,Y2, d2) is
continuous if and only if {un} −→ v on (X1,Y1, d1) implies { f (un)} −→ f (v) on (X2,Y2, d2).

In bipolar b−metric space we have the following Lemma.

Lemma 3.1. Let (X,Y, d) be a bipolar b−metric space with b ≥ 1, and suppose that {xn} ⊆

X and {yn} ⊆ Y are convergent to y, x respectively, where y ∈ Y and x ∈ X. Then we have

1
b

d(x, y) ≤ lim inf
n−→∞

d(xn, yn) ≤ lim sup
n−→∞

d(xn, yn) ≤ bd(x, y).

In particular if b = 1, then we have lim
n−→∞

d(xn, yn) = d(x, y).

Proof. By property (iii) of Definition 3.1, we have

d(x, y) ≤ b[d(x, yn) + d(xn, yn) + d(xn, y)].

Taking the lower limit as n→ ∞ we obtain
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1
b

d(x, y) ≤ lim inf
n−→∞

d(xn, yn).

On the other hand

d(xn, yn) ≤ b[d(xn, y) + d(x, y) + d(x, yn)].

And taking the upper limit as n→ ∞ we obtain

lim sup
n−→∞

d(xn, yn) ≤ bd(x, y).

So we obtain the desired result. □

Definition 3.4. Let (X,Y, d) be a bipolar b−metric space and assume that f , g : (X,Y, d)⇒
(X,Y, d). Then the pair { f , g} is said to be compatible if and only if lim

n−→∞
d(g f xn, f gyn) = 0,

whenever {xn} and {yn} are two sequences in X and Y respectively, such that lim
n−→∞

f xn =

lim
n−→∞

gyn = t for some t ∈ X ∩ Y.

Lemma 3.2. Let (X,Y, d) be a bipolar b−metric space and f , g : (X,Y, d) ⇒ (X,Y, d) such
that the pair { f , g} be compatible and g is continuous. Suppose that {xn} ⊆ X and {yn} ⊆ Y
such that lim

n−→∞
f xn = lim

n−→∞
gyn = u for some u ∈ X ∩ Y. Then lim

n−→∞
f gyn = gu.

Proof. Since f and g are compatible, hence lim
n−→∞

d(g f xn, f gyn) = 0. Since g is continuous
it follows that

lim
n→∞

g f xn = gu.

By property (iii) of Definition 3.1, we have

d(gu, f gyn) ≤ b[d(gu, gu) + d(g f xn, gu) + d(g f xn, f gyn)].

Taking the limit as n→ ∞ we obtain

lim
n−→∞

d(gu, f gyn) ≤ b[ lim
n−→∞

d(gu, gu) + lim
n−→∞

d(g f xn, gu) + lim
n−→∞

d(g f xn, f gyn)] = 0.

Therefore, lim
n−→∞

d(gu, f gyn) = 0, so we obtain the desired result. □

In this section, we first express and prove some different extensions and generalizations
of the Banach contraction principle [4] on bipolar b−metric spaces.

Theorem 3.3. Let (X,Y, d) be a complete bipolar b−metric space and f , g : (X,Y, d) ⇒
(X,Y, d) with:

(i) f (X) ⊆ g(X), f (Y) ⊆ g(Y) and g is continuous,
(ii)

d( f (x), f (y)) ≤
λ

b2 d(g(x), g(y)),

for all (x, y) ∈ X × Y and 0 < λ < b,
(iii) the pair ( f , g) is compatible.

Then the functions f , g : X ∪ Y −→ X ∪ Y have a unique common fixed point in X ∩ Y.
There exists a unique point u ∈ X ∩ Y such that f (u) = g(u) = u.
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Proof. Let x0 ∈ X and y0 ∈ Y . For each n ∈ N, define f (xn) = g(xn+1) = an and f (yn) =
g(yn+1) = bn. Then {(an, bn)} is a bisequence on (X,Y, d). For each positive integer n, we
have

d(an, bn) = d( f (xn), f (yn))

≤
λ

b2 d(g(xn), g(yn)) =
λ

b2 d(an−1, bn−1) =
λ

b2 d( f (xn−1), f (yn−1))

≤
λ2

b4 d(g(xn−1), g(yn−1)) =
λ2

b4 d( f (xn−2), f (yn−2))

...

≤
λn

b2n d(a0, b0).

Also,

d(an, bn+1) = d( f (xn), f (yn+1))

≤
λ

b2 d(g(xn), g(yn+1)) =
λ

b2 d(an−1, bn) =
λ

b2 d( f (xn−1), f (yn))

≤
λ2

b4 d(g(xn−1), g(yn)) =
λ2

b4 d( f (xn−2), f (yn−1))

...

≤
λn

b2n d(a0, b1).

Hence for m ≥ n we get

d(am, bn) ≤ b[d(am, bn+1) + d(an, bn+1) + d(an, bn)]

≤ bd(am, bn+1) +
λn

b2n−1 [d(a0, b1) + d(a0, b0)].

Also,

d(am, bn+1) ≤ b[d(am, bn+2) + d(an+1, bn+2) + d(an+1, bn+1)]

≤ bd(am, bn+2) +
λn+1

b2n+1 [d(a0, b1) + d(a0, b0)].

Similarly,

d(am, bm−1) ≤ b[d(am, bm) + d(am−1, bm) + d(am−1, bm−1)]

≤ bd(am, bm) +
λm−1

b2m−3 [d(a0, b1) + d(a0, b0)].

Therefore, if set d(a0, b1) + d(a0, b0) = α then we have:

d(am, bn) ≤ bd(am, bn+1) +
λn

b2n−1α

≤ b2d(am, bn+2) +
λn

b2n−1α +
λn+1

b2n+1α

...

≤ bm−nd(am, bm) +
λn

b2n−1α +
λn+1

b2n+1α + · · · +
λm−1

b2m−3α

≤ bm−n λ
m

b2mα +
λn

b2n−1α +
λn+1

b2n+1α + · · · +
λm−1

b2m−3α
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≤
λn

b2n−1α +
λn+1

b2n+1α + · · · +
λm−1

b2m−3α +
λm

bm+nα

≤ (
λ

b
)nα + (

λ

b
)n+1α + · · · + (

λ

b
)m−1α + (

λ

b
)mα

≤
( λb )nα

1 − λ
b

−→ 0.

Therefore, (an, bn) is a Cauchy bisequence. Since (X,Y, d) is complete, (an, bn) converges,
and thus biconverges to a point u ∈ X ∩ Y and

lim
n→∞

f (xn) = lim
n→∞

g(xn+1) = lim
n→∞

an = u,

and
lim
n→∞

f (yn) = lim
n→∞

g(yn+1) = lim
n→∞

bn = u.

We show that u is a common fixed point of f and g.
Let g be continuous it follows that

lim
n→∞

g f (xn) = g(u), lim
n→∞

gg(xn) = g(u).

Since f and g are compatible, so by Lemma 3.2 lim
n−→∞

f g(yn) = g(u). Putting x = gxn

and y = u in inequality (ii) of Theorem 3.3 we obtain

d( f g(xn), f (u)) ≤
λ

b2 d(gg(xn), g(u)). (3.1)

Now, by taking the upper limit when n→ ∞ in (3.1) and using Lemma 3.1 we get

1
b

d(g(u), f (u)) ≤ lim sup
n−→∞

d( f g(xn), g(u))

≤
λ

b2 lim sup
n−→∞

d(gg(xn), g(u))

=
λ

b2 bd(g(u), g(u)) = 0.

Consequently d(g(u), f (u)) = 0, it follows that f (u) = g(u). Now, we show that f (u) =
u. Putting x = u and y = yn in inequality (ii) of Theorem 3.3 we obtain

d( f (u), f (yn)) ≤
λ

b2 d(g(u), g(yn)). (3.2)

Similarly by taking the upper limit when n→ ∞ in (3.2) and using Lemma 3.1 we obtain

1
b

d( f (u), u) ≤ lim sup
n−→∞

d( f (u), f (yn)) ≤
λ

b2 lim sup
n−→∞

d(g(u), g(yn))

≤
λ

b2 bd(g(u), u)) =
λ

b
d( f (u), u))

<
1
b

d( f (u), u),

it follows that g(u) = f (u) = u. If there exists another common fixed point v in X ∩ Y of f
and g, then

d(u, v) = d( f (u), f (v)) ≤
λ

b2 d(g(u), g(v)) =
λ

b2 d(u, v)

< d(u, v),
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which implies that d(u, v) = 0 and u = v. Thus u is a unique common fixed point of f and
g. The proof of the theorem is completed. □

Now we give an example to support our result.

Example 3.3. Let X = {(a, 0) | a ∈ R} and Y = {(d, c) | d ∈ R, c ∈ [0,∞)} be endowed
with bipolar b−metric d(x, y) = (a − d)2 + c, where x = (a, 0) ∈ X and y = (d, c) ∈ Y.
By Example 3.1, (X,Y, d) is a bipolar b−metric for b = 3. For every (x, y) ∈ X ∪ Y,
define f , g : X ∪ Y −→ X ∪ Y by f (x, y) = 1

3 (sin(x), ln(1 + y
3 )) and g(x, y) = (x, y2 + y).

f , g : (X,Y) ⇒ (X,Y), that is f and g are two covariant maps from (X,Y) to (X,Y). It is
easy to see that the pairs { f , g} are compatible mappings.

Also for each x ∈ X and y ∈ Y we have

d( f x, f y) = d( f (a, 0), f (d, c))

=
1
9

(sin(a) − sin(d))2 +
1
3

ln(1 +
c
3

)

≤
1
9

(sin(a) − sin(d))2 +
1
9

c

≤
1
9

(a − d)2 +
1
9

(c2 + c)

=
1
9

d(g(a, 0), g(d, c)) =
1
9

d(gx, gy)

≤
λ

b2 d(gx, gy),

where 1 ≤ λ < 3 and b = 3. Thus f and g satisfy the conditions given in Theorem 3.3 and
(0, 0) ∈ X ∩ Y is the unique common fixed point of f and g.

Now we get the special cases of Theorem 3.3 as follows:

Corollary 3.4. Let (X,Y, d) be a complete bipolar b−metric space and f : (X,Y, d) ⇒
(X,Y, d) be a mapping such that

d( f x, f y) ≤
λ

b2 d(x, y), for all (x, y) ∈ X × Y with 0 < λ < b.

Then f has a unique fixed point in X ∩ Y.

Proof. If we take g as identity map on X and on Y , then from Theorem 3.3 follows that f
has a unique fixed point. □

Corollary 3.5. Let (X,Y, d) be a complete bipolar metric space and f , g : (X,Y, d) ⇒
(X,Y, d) with:

(i) f (X) ⊆ g(X), f (Y) ⊆ g(Y) and g is continuous,
(ii)

d( f (x), f (y)) ≤ λd(g(x), g(y)),

for all (x, y) ∈ X × Y and 0 < λ < 1,
(iii) the pair ( f , g) is compatible.

Then the functions f , g : X ∪ Y −→ X ∪ Y have a unique the common fixed point in X ∩ Y.
There exists a unique point u ∈ X ∩ Y such that f (u) = g(u) = u.

Proof. It is enough to set b = 1 in Theorem 3.3. □
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The following corollary gives the Theorem of Mutlu, Gürdal [10].

Corollary 3.6. Let (X,Y, d) be a complete bipolar b−metric space and let f : (X,Y, d) ⇒
(X,Y, d) with:

d( f (x), f (y)) ≤ λd(x, y), f or all (x, y) ∈ X × Y and 0 < λ < 1.
Then the function f : X ∪ Y −→ X ∪ Y has a unique fixed point in X ∩ Y. There exists a

unique point u ∈ X ∩ Y such that f (u) = u.

Proof. If we take g as identity map on X and on Y , then from Corollary 3.5 follows that f
has a unique fixed point. □

4. Fixed point theorem for contravariant maps

Below we prove a similar result for contravariant maps.

Definition 4.1. Let (X,Y, d) be a bipolar b−metric space and f : (X,Y, d) ⇄ (X,Y, d)
and g : (X,Y, d) ⇒ (X,Y, d). Then the pair { f , g} is said to be compatible if and only if
lim

n−→∞
d(g f yn, f gxn) = 0, whenever {xn} and {yn} are two sequences in X and Y respectively,

such that lim
n−→∞

f yn = lim
n−→∞

gxn = t for some t ∈ X ∩ Y.

Lemma 4.1. Let (X,Y, d) be a bipolar b−metric space and let f : (X,Y, d) ⇄ (X,Y, d)
and g : (X,Y, d) ⇒ (X,Y, d) such that the pair { f , g} be compatible and g is continuous.
Suppose that {xn} ⊆ X and {yn} ⊆ Y such that lim

n−→∞
f yn = lim

n−→∞
gxn = u for some u ∈ X∩Y.

Then lim
n−→∞

f gxn = gu.

Proof. Since f and g are compatible, hence lim
n−→∞

d(g f yn, f gxn) = 0. Since g is continuous
it follows that

lim
n→∞

g f yn = gu.

By property (iii) of Definition 3.1, we have

d(gu, f gxn) ≤ b[d(gu, gu) + d(g f yn, gu) + d(g f yn, f gxn)].

Taking the limit as n→ ∞ we obtain

lim
n−→∞

d(gu, f gxn) ≤ b[ lim
n−→∞

d(gu, gu) + lim
n−→∞

d(g f yn, gu)

+ lim
n−→∞

d(g f yn, f gxn)] = 0.

Therefore, lim
n−→∞

d(gu, f gxn) = 0, so we obtain the desired result. □

Theorem 4.2. Let (X,Y, d) be a complete bipolar b−metric space and f : (X,Y, d) ⇄
(X,Y, d) and g : (X,Y, d)⇒ (X,Y, d) with:

(i) f (X) ⊆ g(Y), f (Y) ⊆ g(X) and g is continuous,
(ii)

d( f (y), f (x)) ≤
λ

b2 d(g(x), g(y)),

for all (x, y) ∈ X × Y and 0 < λ < b2,
(iii) the pair ( f , g) is compatible.
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Then the functions f , g : X ∪ Y −→ X ∪ Y have a unique common fixed point in X ∩ Y.
There exists a unique point u ∈ X ∩ Y such that f (u) = g(u) = u.

Proof. Let x0 ∈ X and y0 ∈ Y . For each n ∈ N, define f (xn) = g(yn) = bn and f (yn) =
g(xn+1) = an. Then {(an, bn)} is a bisequence on (X,Y, d). For each positive integer n, we
have

d(an, bn) = d( f (yn), f (xn))

≤
λ

b2 d(g(xn), g(yn)) =
λ

b2 d(an−1, bn) =
λ

b2 d( f (yn−1), f (xn))

≤
λ2

b4 d(g(xn), g(yn−1)) =
λ2

b4 d(an−1, bn−1)

...

≤
λ2n

b4n d(a0, b0).

Also,

d(an, bn+1) = d( f (yn), f (xn+1))

≤
λ

b2 d(g(xn+1), g(yn)) =
λ

b2 d(an, bn) =
λ

b2 d( f (yn), f (xn))

≤
λ2

b4 d(g(xn), g(yn)) =
λ2

b4 d(an−1, bn)

...

≤
λ2n

b4n d(a0, b1).

Hence for m ≥ n we get

d(am, bn) ≤ b[d(am, bn+1) + d(an, bn+1) + d(an, bn)]

≤ bd(am, bn+1) +
λ2n

b4n−1 [d(a0, b1) + d(a0, b0)].

Also,

d(am, bn+1) ≤ b[d(am, bn+2) + d(an+1, bn+2) + d(an+1, bn+1)]

≤ bd(am, bn+2) +
λ2(n+1)

b4(n+1)−1 [d(a0, b1) + d(a0, b0)].

Similarly,

d(am, bm−1) ≤ b[d(am, bm) + d(am−1, bm) + d(am−1, bm−1)]

≤ bd(am, bm−2) +
λ2(m−1)

b4(m−1)−1 [d(a0, b1) + d(a0, b0)].

Therefore, if set d(a0, b1) + d(a0, b0) = α then we have:

d(am, bn) ≤ bd(am, bn+1) +
λ2n

b4n−1α

≤ b2d(am, bn+2) +
λ2n

b4n−1α +
λ2(n+1)

b4(n+1)−1α

...
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≤ bm−nd(am, bm) +
λ2n

b4n−1α +
λ2(n+1)

b4(n+1)−1α + · · · +
λ2(m−1)

b4(m−1)−1α

≤ bm−n λ
2m

b4m α +
λ2n

b4n−1α +
λ2(n+1)

b4(n+1)−1α + · · · +
λ2(m−1)

b4(m−1)−1α

≤
λ2n

b4n−1α +
λ2(n+1)

b4(n+1)−1α + · · · +
λ2(m−1)

b4(m−1)−1α +
λ2m

b3m+nα

≤
1
b

[(
λ2

b4 )nα + (
λ2

b4 )n+1α + · · · + (
λ2

b4 )m−1α + (
λ2

b4 )mα]

≤
1
b

[
( λ

2

b4 )nα

1 − λ2

b4

] −→ 0.

Therefore, (an, bn) is a Cauchy bisequence. Since (X,Y, d) is complete, (an, bn) converges,
and thus biconverges to a point u ∈ X ∩ Y and

lim
n→∞

f (yn) = lim
n→∞

g(xn+1) = lim
n→∞

an = u,

and
lim
n→∞

f (xn) = lim
n→∞

g(yn) = lim
n→∞

bn = u.

We show that u is a common fixed point of f and g.
Since g is continuous it follows that

lim
n→∞

g f (yn) = g(u), lim
n→∞

gg(xn+1) = g(u).

Since f and g are compatible, so by Lemma 4.1 lim
n−→∞

f g(xn) = g(u). Putting x = gxn

and y = u in inequality (ii) of Theorem 4.2 we obtain

d( f (u), f g(xn)) ≤
λ

b2 d(gg(xn), g(u)). (4.1)

Now, by taking the upper limit when n→ ∞ in (4.1) and using Lemma 3.1 we get

1
b

d( f (u), g(u)) ≤ lim sup
n−→∞

d( f (u), f g(xn))

≤
λ

b2 lim sup
n−→∞

d(gg(xn), g(u))

=
λ

b2 bd(g(u), g(u)) = 0.

Consequently d( f (u), g(u)) = 0, it follows that f (u) = g(u). Now, we show that f (u) =
u. Putting x = u and y = yn in inequality (ii) of Theorem 4.2 we obtain

d( f (yn), f (u)) ≤
λ

b2 d(g(u), g(yn)). (4.2)

Similarly by taking the upper limit when n→ ∞ in (4.2) and using Lemma 3.1 we obtain

1
b

d(u, f (u)) ≤ lim sup
n−→∞

d( f (yn), f (u)) ≤
λ

b2 d(g(u), g(yn))

≤
λ

b2 bd(g(u), u) =
λ

b
d( f (u), u)

<
1
b

d(u, f (u)),
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it follows that g(u) = f (u) = u. If there exists another common fixed point v in X ∩ Y of f
and g, then

d(u, v) = d( f (u), f (v)) ≤
λ

b2 d(g(v), g(u)) =
λ

b2 d(u, v)

< d(u, v),

which implies that d(u, v) = 0 and u = v. Thus u is a unique common fixed point of f and
g. The proof of the theorem is completed. □

Example 4.1. Let

X =
{

(xn) ∈ R∞| xn ≤ 0 for each n ∈ N and
∞∑

n=1

√
−xn < ∞

}
and

Y =
{

(yn) ∈ R∞| yn ≥ for each n ∈ N and
∞∑

n=1

√
yn < ∞

}
.

Defined d : X × Y → R, by d(x, y) =
(
∞∑

n=1

√
yn − xn

)2

, where x = (xn) ∈ X and y = (yn) ∈ Y.

Then (X,Y, d) is a bipolar b−metric space with the constant b = 4.
f : (X,Y, d)⇄ (X,Y, d), f (un) = (−un)

g : (X,Y, d)⇒ (X,Y, d), g(un) = (u3
n) + 2un

These are compatible as f ◦ g = g ◦ f . Note that

d( f (yn), f (xn)) ≤
8
42 d(g(xn), g(yn)),

and also g is continuous and f (X) ⊆ g(Y), f (Y) ⊆ g(X). Then by Theorem 4.2. f and g
must have a unique common fixed point. Indeed, the only point (un) = (0, 0, 0, . . .) ∈ X ∩ Y
is a common fixed point of f and g.

Now we get the special cases of Theorem 4.2 as follows:

Corollary 4.3. Let (X,Y, d) be a complete bipolar b−metric space and f : (X,Y, d) ⇄
(X,Y, d) be a mapping such that

d( f y, f x) ≤
λ

b2 d(x, y), for all (x, y) ∈ X × Y, with 0 < λ < b2.

Then f has a unique fixed point in X ∩ Y.

Proof. If we take g as identity map on X and on Y , then from Theorem 4.2 follows that f
has a unique fixed point. □

Corollary 4.4. Let (X,Y, d) be a complete bipolar metric space and f : (X,Y, d)⇄ (X,Y, d)
and g : (X,Y, d)⇒ (X,Y, d) with:

(i) f (X) ⊆ g(Y), f (Y) ⊆ g(X) and g is continuous,
(ii)

d( f (y), f (x)) ≤ λd(g(x), g(y)),

for all (x, y) ∈ X × Y and 0 < λ < 1,
(iii) the pair ( f , g) is compatible.

Then the functions f , g : X ∪ Y −→ X ∪ Y have a unique common fixed point in X ∩ Y.
There exists a unique point u ∈ X ∩ Y such that f (u) = g(u) = u.

Proof. It is enough to set b = 1 in Theorem 4.2. □

The following corollary gives the Theorem of Mutlu, Gürdal [10].
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Corollary 4.5. Let (X,Y, d) be a complete bipolar metric space and let f : (X,Y, d) ⇄
(X,Y, d) with:

d( f (y), f (x)) ≤ λd(x, y), f or all (x, y) ∈ X × Y and 0 < λ < 1.

Then the function f : X ∪ Y −→ X ∪ Y has a unique fixed point in X ∩ Y. There exists a
unique point u ∈ X ∩ Y such that f (u) = u.

Proof. If we take g as identity map on X and on Y , then from Corollary 4.4 follows that f
has a unique fixed point. □

Remark. In Fixed point theory for readers’ interest well known of Meir-Keeler type con-
traction, C̆iric̆ type of quasi contraction, Nadler type of contraction Sehgal-Guseman type
of contraction, the completion of bipolar b−metric space, Suzuki-Berinde type of contrac-
tion, etc., that is these structures can be proven in bipolar b−metric space exploration.
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