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Abstract 

 

In this paper, we establish and describe the notions of fuzzy minimal prime filters of an Almost 

Distributive Lattice (ADL). We prove that a fuzzy filter is the point wise infimum of all minimal prime 

fuzzy filters (all fuzzy minimal prime filters) of an ADL. Mainly, we introduce the topological space on 

the set of all fuzzy minimal prime filters of an ADL (denoted by M(R)). For an ADL  R, we prove that 

an open set M(R) is a base for the topology and it constitutes a base for the subspace topology on a 

closed set N and they are the only compact open sets. 

 

 

Keywords: Almost distributive lattice (ADL), fuzzy filter, prime fuzzy filter, minimal prime fuzzy 
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1. Introduction 
 

The concept of a fuzzy subset of a set X was introduced by Zadeh [8] as a function from X into 

[0,1] of real numbers and Goguen [1] replaced the valuation set [0,1] by of a complete lattice 

L in an attempt to make a generalized study of fuzzy set theory by fuzzy sets. Subsequently, 

(Liu [2]) worked on Fuzzy invariant subgroups and ideals. The concept of an Almost 

Distributive Lattice (ADL) was introduced by Swamy and Rao [7]. Later, the notion of L-fuzzy 

filters of ADLs and, prime and maximal L-fuzzy filters of an ADL were introduced by Raj, 

Natnael and Swamy[5, 6]. Furthermore, Ming [3] introduced the concepts of fuzzy topological 

space. 

 

In this paper, we study fuzzy prime filters contains fuzzy minimal prime filters of an ADL. 

Mainly, we extend M.H. Stone Theorem on prime filters of distributive lattice to fuzzy prime 

filters (prime fuzzy filters) as well as fuzzy minimal prime filters (minimal prime fuzzy filters) 

of an ADL. Also, we characterize all minimal prime fuzzy filters in terms of minimal prime 

filters of an ADL and minimal meet elements of a frame. Finally, we introduce the hull kernel 

https://orcid.org/0000-0001-5771-0757
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topology on the set of all fuzzy minimal prime filters of an ADL, denoted by M(R). For a fuzzy 

filter η of an ADL R, open set of M(R) is of the form M(R)(η) =  {φ ∈  M(R): η ≰  ϕ} and 

N(η) =  {φ ∈  M(R): η ≤  φ}  is a closed set. We prove that an open set {M(R)(xs): x ∈
R and 0 ≠ s ∈ L}  is a base for the topology on M(R) and the family {M(R)(xs)  ∩  Nt: x ∈
R and s ≰ t}  Constitute a base for the sub space topology on N and they are the only compact 

open sets (called Nt) in M(R). Also, we show the space M(R) is a T0-space. 

 

Throughout this paper, R stands for an ADL (R, ∧, ∨ ,0) with a maximal element and L stands 

for a complete lattice (L, ∧, ∨, 0, 1) satisfying the infinite meet distributive law and this type 

of a lattice is called a frame. 

 

2. Preliminaries 
 

In this section, we recall some definitions and basic results mostly taken from [7] and [5]. 

 

Definition 2.1 An algebra R = (R, ∧, ∨, 0) of type (2,2,0)  is called an Almost Distributive 

Lattice(abbreviated as ADL) if it satisfies the following conditions for all  a, b  and c ∈ R. 

1. 0 ∧ a = 0 

2. a ∨ 0 = a 

3. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 

4. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 

5. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)  

6. (a ∨ b) ∧ b = b. 

             

Any bounded below distributive lattice is an ADL. Any non empty set X can be made 

into an ADL which is not a lattice by fixing an arbitrarily chosen element 0 in X  and 

by defining the binary operations ∧ and ∨ on X by 

a ∧ b =  {
0, if a = 0
b,         if  a ≠ 0

 

    and   

a ∨ b =  {
b, if a = 0

a,         if  a ≠ 0.
 

This ADL (X, ∧, ∨, 0)  is called a discrete ADL ([7]). 

 

Definition 2.2  Let R be an ADL. For any a and  b ∈ R, define a ≤ b iff a = a ∧
b (⟺ a ∨ b = b).  Then ≤  is a partial order on  R with respect to which X is the 

smallest element in R. 

 

Theorem 2.3 The following hold for any a, b and c in an ADL R. 

 

(1) a ∧ 0 = 0 = 0 ∧ a and a ∨ 0 = a = 0 ∨ a 

(2)  a ∧ a = a = a ∨ a 

(3) a ∧ b ≤ b ≤ b ∨ a  

(4) a ∧ b = a ⟺ a ∨ b = b  

(5) a ∧ b = b ⟺ a ∨ b = a  

(6) (a ∧ b) ∧ c = a ∧ (b ∧ c) (i.e.,  is associative) 

(7)  a ∨ (b ∨ a) = a ∨ b 

(8) a ≤ b ⟹ a ∧ b = a = b ∧ a(⟺ a ∨ b = b = b ∨ a) 

(9) (a ∧ b) ∧ c = (b ∧ a) ∧ c 
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(10)  (a ∨ b) ∧ c = (b ∨ a) ∧ c 

(11) a ∧ b = b ∧ a ⟺ a ∨ b = b ∨ a 

(12) a ∧ b = inf {a, b} iff a ∧ b = b ∧ a iff a ∨ b = sup{a, b}. 
 

An element m ∈ R is said to be maximal if, for any x ∈ R, m ≤ x implies m = x. It can  

be easily observed that m is maximal if and only if m ∧ x = x,  for all x ∈ R. 
 

Definition2.4  Let F be a non empty subset of R. Then F is called a filter of R if a, b ∈
F ⇒ a ∧ b ∈ F and x ∨ a ∈ F, for all x ∈ R. 

 

As a consequence, for any filter F of R, a ∨ x ∈ F for all a ∈ F and x ∈ R. For any S ⊆
R, the smallest filter of R containing S is called the filter generated by S in R and is 

denoted by [S〉.  It is known that 

[S〉 = {b ∨ (⋀ xi

n

i=1

) : n ≥ 0, xi ∈ S and b ∈ R} 

 

When S = {x}, we write [x〉 for [{x}). Note that [x〉 = {a ∨ x: a ∈ R}.  

 

Theorem 2.5 Let ϕ be a fuzzy subset of R and m maximal elements in R. Then the 

following are equivalent to each other, for all x, y ∈ R. 
(1) ϕ  is a fuzzy filter of R 

(2) ϕ(m) = 1 and ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y) 

(3) ϕ(m) = 1 and ϕ(x ∨ y) ≥ ϕ(x) ∨ ϕ(y) and ϕ(x ∧ y) ≥ ϕ(x) ∧ ϕ(y). 
 

Theorem 2.6  Let ϕ be a fuzzy filter of R and F a non-empty subset of R. Then for any x, y ∈
R, we have the following. 

(1) ϕ is an isotone mapping, in the sense that x ≤ y ⇒ ϕ(x) ≤ ϕ(y) 

(2) x ∼ y ⇒ ϕ(x) = ϕ(y) 

(3) ϕ(x ∨ y) = ϕ(y ∨ x) 

(4) x ∈ [F〉 ⇒ ϕ(x) ≥ ⋀ ϕ(ai)
n
i=1 , for some a1, a2, … , an ∈ F 

(5) x ∈ [y〉 ⇒ ϕ(x) ≥ ϕ(y). 
 

3. Fuzzy minimal prime filters 
 

In this section, we introduce the concepts of minimal prime fuzzy filters and fuzzy minimal 

prime filters of an ADL. Mainly, we extend M.H. Stone Theorem on prime filters of distributive 

lattice of fuzzy prime filters (prime fuzzy filters) as well as fuzzy minimal prime filters (minimal 

prime fuzzy filters) of an ADL. 

     

Let us recall from [6] that a proper fuzzy filter ϕ of R is called a fuzzy prime filter of R if, for 

any x and y ∈ R, ϕ(x ∨ y) = ϕ(x) or ϕ(y). 

 

Theorem 3.1 [6]  Let ϕ  be any proper fuzzy filter of R. Then the following are equivalent to 

each other. 

(1) For each t ∈ L, ϕt = R or ϕt is a prime filter of R 

(2) ϕ is a fuzzy prime filter of R 

(3) For any x, y ∈ R, ϕ(x ∨ y) ≤ ϕ(x) ∨ ϕ(y) and hence  ϕ(x ∨ y) =  ϕ(x) ∨ ϕ(y) and either 

ϕ(x) ≤ ϕ(y) or ϕ(y) ≤ ϕ(x). 
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Example 3.2 Let R = {0, a, b, c, 1}be a lattice represented by the Hasse diagram given below: 

 
 

Define fuzzy subsets ϕ and η from R to [0,1] by  ϕ(a) = ϕ(1) = 1, ϕ(0) = ϕ(b) = ϕ(c) =
0.5 and η(1) = 1, η(x) = 0.75 for all x ∈ R − {1}. For any x and y ∈ R, we have x ≤ y implies 

ϕ(x) ≤ ϕ(y) and hence ϕ is an isotone. Also, we observe that ϕ(x ∨ y) = ϕ(x) or ϕ(y), for 

any x and y ∈ R.  Thus, ϕ is a fuzzy prime filter of ϕ. On the other hand, it can be easily verified 

that η is a fuzzy filters of R but not fuzzy prime filter of R; since  η(a ∨ b) = η(1) = 1 ≠ η(a) 

and η(b). 

 

Let us recall that for any fuzzy subset ϕ of R and t ∈ L, we define the fuzzy subsets ϕ ∨ t and 

ϕ ∧ t by (ϕ ∨ t)(x) = ϕ(x) ∨ t and (ϕ ∧ t)(x) = ϕ(x) ∧ t, for all x ∈ R. 
 

Theorem 3.3 Let ϕ be a fuzzy filter of  R. Then  ϕ ∨ t is a fuzzy filter of R, for all t ∈ L. 
 

Proof. Let m be a maximal element in R and t ∈ L. Then (ϕ ∨ t)(m) = ϕ(m) ∨ t = 1 ∨ t = 1. 

Also, for any x and y ∈ R,  

                                                         (ϕ ∨ t)(x ∧ y) =  ϕ(x ∧ y) ∨ t 
                                                                              = (ϕ(x) ∧ ϕ(y)) ∨ t(since ϕ is a fuzzy filter) 

                                                                             = (ϕ(x) ∨ t) ∧ (ϕ(y) ∨ t) 

                                                                             = (ϕ ∨ t)(x) ∧ (ϕ ∨ t)(y). 
Therefore, ϕ ∨ t is a fuzzy filter of R.  

 

Unlike ϕ ∨ t, ϕ ∧ t is not a fuzzy filter of R, unless t = 1. For ϕ ∧ t to be a fuzzy filter, it is 

necessary that (ϕ ∧ t)(m) = 1 and hence t = 1 ∧ t = ϕ(m) ∧ t = 1. 
Also, note that if t = 1, then ϕ ∨ t is the constant map 1̅. Therefore, for ϕ ∨ t 
to be a proper fuzzy filter, it is necessary that t < 1. 
 

Theorem 3.4 Let ϕ be a fuzzy prime filter of R and an element t in L such that  ϕ(0) ≤ t < 1. 
Then ϕ ∨ t is a fuzzy prime filter of R. 

 

Proof. By the above theorem, ϕ ∨ t is a fuzzy filter of R. Also, (ϕ ∨ t)(0) = ϕ(0) ∨ t = t < 1. 

Therefore, ϕ ∨ t is a proper fuzzy filter of R. For any x and y ∈ R,  
                            (ϕ ∨ t)(x ∧ y) = ϕ(x ∧ y) ∨ t 
                                                      = ϕ(x) ∨ t or ϕ(y) ∨ t (since ϕ is a fuzzy prime filter) 

                                                     = (ϕ ∨ t)(x) or (ϕ ∨ t)(y). 
Therefore,  ϕ ∨ t is a fuzzy prime filter of  R. 

         

Let us recall that any proper filter of R is contained in a prime filter of R. Now, we extend this 

result to fuzzy prime filters of R in the following. 
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Theorem 3.5  If ϕ is a proper fuzzy filter of R such that  Sup { ϕ(x): x ∈ R and ϕ(x) < 1} <
1. Then there exists a fuzzy prime filter η of R such that ϕ ≤  η.  
 

Proof. Let = Sup{ ϕ(x): x ∈ R and  ϕ(x) < 1} < 1  and F = {x ∈ R: ϕ(x) = 1}.  
Then F is a filter of R (since F isthe1-cut ϕ1). Since ϕ is a proper fuzzy filter of ϕ, it follows 

that F is a proper filter of R. Then, there exists a prime filter J of R such that F ⊆ J. Thus, χJ is a 

fuzzy prime filter of R, where χJ is the characteristic mapping corresponding to J. By theorem 

3.4, χJ ∨ t is a fuzzy prime filter of R. Note that χJ ∨ t = tJ.  Now, for any x ∈ R, 

                                                                 x ∈ J ⇒ ϕ(x) ≤ 1 = tJ(x) 

                                        and x ∉ J ⇒ x ∉ F 

                                                          ⇒ ϕ(x) < 1 

                                                          ⇒ ϕ(x) ≤ t = tJ(x). 

Therefore, ϕ(x) ≤ tJ(x), for all x ∈ R. Thus, ϕ ≤ tJ and tJis a fuzzy prime filter of R. 
 

The following theorem provides a method for constructing fuzzy prime filter of a given ADL 

and this straight verification which is analogous from prime filter of an ADL. 

 

Theorem 3.6 Let C be a chain such that 1 ∈ C and C is closed under arbitrary supremums. Let 

{Ft}t∈C  be a class of filters of R such that Ft = R or Ft is a prime filter of R, for each t ∈ C. 
Also, suppose that, ⋂ Ftt∈△ = FSup S, for any S ⊆ C.  Define a fuzzy subset ϕ of R by ϕ(x) =

 ∨ {t ∈ C: x ∈ Ft}, for any x ∈ R. Then ϕ is a fuzzy prime filter of R if ϕ is proper.  

 

In the following, we extend an important theorem of M. H. Stone to fuzzy prime filters of ADLs. 

 

Theorem 3.7 Let η be a fuzzy ideal and ϕ a fuzzy filter of R such that η ∧ ϕ ≤ t ̅(the constant 

fuzzy subset attaining the value t) where, t is a prime element in L. Then there exists a fuzzy 

prime filter (prime fuzzy filter) ν of R such that ϕ ≤ ν  and η ∧ ν ≤ t.̅ 
 

Proof. We are given that η(x) ∧ ϕ(x) ≤ t, for all x ∈ R. Put  I = {x ∈ R: η(x) ≰ t} and F =
{x ∈ R: ϕ(x) ≤ t}.  Clearly, I is an ideal and F is a filter of R. Since t is prime and     η(x) ∧
ϕ(x) ≤ t, it follows that η(x) ≤ t or (x) ∧ ϕ(x) ≤ t and hence x ∉ I or x ∉ F.  Therefore, I ∩ F  

is empty set. Then, there exists a prime filter  J of R such that  F ⊆ J  and I ∩ J  is empty set. 

Since t is a prime element in L and J is a prime filter of R, then tJ  is a prime 

fuzzy filter of R and hence,  tJ is a fuzzy prime filter of R. Now,  for any x ∈ R, 
             x ∉ J ⟹ x ∉ F ⟹ ϕ(x) ≤ t =  tJ(x) 

       and  x ∈ J ⟹ ϕ(x) ≤ 1 =  tJ(x).  
 

Therefore,  ϕ ≤  tJ. Finally, we prove that  η ∧ tJ ≤ t.  Now,  

               x ∈ J ⟹  x ∉ I (since I ∩ J = ∅)  

                        ⟹ η(x) ∧ tJ(x) =  η(x) ∧ 1 =  η(x) ≤ t = t(̅x) 

     and   x ∉ J ⟹  η(x) ∧ tJ(x) =  η(x) ∧ t ≤ t = t(̅x). 
 

Therefore, η ∧ tJ ≤ t.̅  
 

Note that the close interval [0,1] of real numbers is a frame and in which every element is 

prime. 
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Corollary 3.8 Let L = [0,1] such that 0 ≤ t ≤ 1. Let η be a fuzzy ideal of R and  ϕ  be a fuzzy 

filter of R such that η(x) ∧ ϕ(x) ≤ t, for all x ∈ R.  Then there exists a fuzzy prime filter (prime 

fuzzy filter) φ of R such that  ϕ ≤ φ  and  η(x) ∧ φ(x) ≤ t, for all x ∈ R.   
In the following, we introduce the notion of minimal prime fuzzy filters of R and discuss certain 

properties of these. Also, we characterize all minimal prime fuzzy filters of  R in terms of 

minimal prime filters of R and minimal prime elements in L. 

 

Definition 3.9 Let η be a fuzzy filter of R. A prime fuzzy filter φ of R containing η is said to 

be minimal prime fuzzy filter belonging to η if there is no prime fuzzy filter of R containing η 

and properly contained in φ. 

 

The following can be easily proved by using Zorn’s Lemma.  

 

Theorem 3.10 Let ϕ be a prime fuzzy filter of R containing a fuzzy filter φ. Then there exists 

a minimal prime fuzzy filter η of R such that φ ≤ η ≤ ϕ. 

 

Corollary 3.11 Every prime fuzzy filter of R contains a minimal prime fuzzy filter. 

 

Theorem 3.12 Let ϕ be a fuzzy filter of R. Then ϕ is a minimal prime fuzzy filter of R if and 

only if ϕ = tF, for some minimal prime filter F of R and a minimal prime element t in L. 

 

Proof.  Suppose ϕ = tF, for some minimal prime filter F of R and a minimal prime element t 

in L.  Then  ϕ is a prime fuzzy filter of R. Let η be a prime fuzzy filter of R and η ≤ ϕ.  Again 

η = sG,   for some prime filter G of R and a prime element s in L. Therefore,  sG ≤ tFand it 

follows that, s ≤ t and G ⊆ F.  By the minimality of F and t, we get that s = t and G = F. 

Therefore, η = ϕ and hence ϕ is a minimal prime fuzzy filter of R. Conversely suppose that ϕ 

is a minimal prime fuzzy filter of R.   Since ϕ is prime, there exists a prime filter F of R and a 

prime element t in L such that ϕ = tF. Let G be a prime filter of R such that G ⊆ F. Then tG is 

a prime fuzzy filter of R and tG ⊆ tF = ϕ.  By the minimality of ϕ, we get  tG = tF. Therefore, 

G = F and hence F is a minimal prime filter of R. Let s be a prime element in L and s ≤ t.  Then 

sF ≤ tF. Again by minimality of ϕ, sF = tF  and hence s = t. Thus t is a minimal prime element 

in L. 

 

Corollary 3.13 The mapping (F, t) ⟼ tFestablishes a one-to-one correspondence between the 

pairs (F, t), where F is a minimal prime filter of R and t is a minimal prime element in L, and 

the minimal prime fuzzy filters of R. 

 

If the smallest element 0 in L is prime, then  will be the only minimal prime element in  L. 

Also, note that χF = 0F,  for any filter F of R. The following is a consequence of 3.12. 

 

Theorem 3.14 Let 0 be a prime element in L. Then a fuzzy filter ϕ of R is a minimal prime 

fuzzy filter of R if and only if ϕ = χF, for some minimal prime filter F of R. Moreover, F ↦ χF 

is a one-to-one correspondence between the set of minimal prime filters of R onto the set of 

minimal prime fuzzy filters of R. 

 

Next, we characterize all fuzzy minimal prime filters of R. By an fuzzy minimal prime filter of 

R we mean, as usual, a minimal element in the poset of all fuzzy prime filters of R under the 

point-wise ordering. 
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Theorem 3.15 [6]  Let R be an ADL in which every maximal is ∨-irreducible element and let ϕ 

be an L-fuzzy prime filter of R. Then ϕ is an L-fuzzy minimal prime filter of R if and only if 

the t-cut ϕt is a minimal prime filter of R, for all t ∈ L. 

By using Zorn’s Lemma we can prove that there exists a fuzzy minimal prime filter belonging 

to a fuzzy filter, whenever ϕ is contained in a fuzzy prime filter η of R. Thus we have the 

following and this is a consequence of  3.7. 

 

Theorem3.16 Let ψ be a fuzzy ideal of R and η be a fuzzy filter of R such that ψ ∧  η ≤ t,̅ 
where t is a prime element in L. Then there exists a fuzzy minimal prime filter (minimal prime 

fuzzy filter) φ of R belonging to η such that ψ ∧φ ≤ t.  
 

Let us recall that the intersection of all minimal prime filters belonging to a filter F of R is a 

filter itself. Now, we extend this result to the case of fuzzy filters in the following. 

 

Theorem 3.17  Suppose that every element of L is meet of prime elements of L and η is a fuzzy 

filter of R. Then η = ∧ {ψ: ψ is a fuzzy minimal prime filter (minimal prime fuzzy filter) of R 

belonging to η}. 

 

Proof. Put  ω = ∧ {ψ: ψ is a fuzzy minimal prime filter (minimal prime fuzzy filter) of R 

belonging to η}. It can be easily verified that η ≤ ω.  On the other hand, suppose ω(x) ≰ η(x), 

for some x ∈ R. By assumption η(x) = ⋀ tii∈△ , where each ti is a prime element in  L. It follows 

that, ω(x) ≰  ⋀ tii∈△ . Then there exists j ∈△ such that ω(x) ≰  tj and η(x) ≤ tj.  Consider a 

fuzzy subset φ of R defined by  

 

φ(y) =  χ(x](y). Thus, φ is a fuzzy ideal of R.  Now we prove  η ∧ φ ≤  ti, for all i ∈△.  

 

Let y ∈ R. Then  

            y ∈ (x] ⟹ y = x⋀y 

                         ⟹ η(y) = η(x ∧ y) = η(x) ∧ η(y) 

                         ⟹ η(y) ≤ η(x) 

            y ∈ (x] ⟹ (η ∧ φ)(y) = η(y) ∧ φ(y) =  η(y) ≤ η(x) ≤ tj 

    and  y ∉ (x] ⟹ φ(y) = 0 

                         ⟹ η(y) ∧ φ(y) =  0 ≤ tj.  

 

Therefore, in both cases, η ∧ φ ≤  ti and hence, there exists a fuzzy minimal prime filter 

(minimal prime fuzzy filter)  ψ of R such that η ≤ ψ and ψ ∧ φ ≤ tj. But ω ≤ ψ, in particular, 

ω(x) ≤ ψ(x) = (ω ≤ ψ)(x) ≤ tj.  It follows that, ω(x) ≤ tj, which is a 

contradiction.Therefore, ω ≤ η. Thus, ω = η.   Note that the set F(R)  of all maximal elements 

of R forms a filter of R and which is the smallest filter of R. If χF(R)  is the characteristic map 

of F(R), then χF(R)  is the smallest fuzzy filter of R and fuzzy minimal prime filter (minimal 

prime fuzzy filter) belonging to χF(R)  is simply called a fuzzy minimal prime filter (minimal 

prime fuzzy filter) of R. Now we have the following. 

 

Corollary 3.18 Suppose that every element of L is meet of prime elements in L. Then the point-

wise infimum of all fuzzy minimal prime filters (and hence all fuzzy prime filters) of R is χF(R). 

 

Corollary 3.19 Suppose that every element of L is meet of prime elements in L. Then the point-

wise infimum of all minimal prime fuzzy filters (and hence all prime fuzzy filters) of R is χF(R).   
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4. Hull space 
 

Let M(R) denote the set of all fuzzy minimal prime filters of R. For any fuzzy subset η of R, let   

N(η) =  {ϕ ∈ M(R): η ≤  ϕ}  and  M(R)(η) =  {ϕ ∈  M(R): η ≰  ϕ}. 

 

It can be easily seen that, for any subset η of R, N(η) = N(η̅) and M(R)(η) = M(R)(η̅), where  

η̅  is the fuzzy filter of R generated by η.  
 

Theorem 4.1 Let  τ = {M(R)(η): η is a fuzzy filter of R}.  Then the pair (M(R), τ) is a 

topological space. 

 

Proof. Consider fuzzy filters η and ψ of R defined by, η(x) = χ{0} and ψ(x) = 1, for all x ∈ R. 

Then N(η) = M(R) and N(ψ) = ∅, and M(R)(η) = ∅ and M(R)(ψ) = M(R). Thus, η, ψ ∈ τ. 

Also, ϕ ∈ N(η) ∩ N(ψ) ⟺ η ≤ ϕ and ψ ≤ ϕ 

                                                                                   ⟺ η ∧ ψ ≤ ϕ 

                                                                                   ⟺ ϕ ∈ N(η ∧ ψ).  

 

Thus τ is closed under finite intersections. Also, let {ηi: i ∈ I} be non-empty collection of fuzzy 

filters of  R. Then it can be easily verified that ∩ {N(ηi): i ∈ I} = N(⋁ ηii∈I
̅̅ ̅̅ ̅̅ ̅̅ )  and ∪

{M(R)(ηi): i ∈ I} = M(R)(⋁ ηii∈I
̅̅ ̅̅ ̅̅ ̅̅ ).  Thus τ is closed under arbitrary union. Therefore, τ is a 

topology on M(R). 
 

Definition 4.2 Let x ∈ R and t ∈ L, define xt: R → L by  

xt(y) = {
t        if x = y
0   otherwise

 

for all y ∈ R, is called a fuzzy point corresponding to x and t. 

 

Theorem 4.3 For any x ∈ R and t, s ∈ L, M(R)(xs) = {tF ∈ M(R): x ∉ F and s ≰ t}. 

 

Proof. ϕ ∈ M(R)(xs) ⟹ xs ≰ tF = ∅ 

                                          ⟹ xs(y) ≰ tF(y), for some y ∈ R 

                                          ⟹ s ≰ tF(y)  and y = x  
                                          ⟹ x ∉ F, s ≰ t and  ϕ = tF. 

 

On the other hand, let tF ∈ M(R) such that x ∉ F and s ≰ t.  Then tF(x) = t, so that xs ≰ tF. 
 

From [5] recall that, for any filter F of R and s ≤ t ∈ L, the fuzzy filter 〈t, s〉F defined by 

〈t, s〉F(x) = {
1                                        if x is maximal
t            if x is not maximal and x ∈ F
s            if x is not maximal and x ∉ F.

 

 

Theorem 4.4 For any x ∈ R and t ∈ L, M(R)(xt) = M(R)(ϕ), for some fuzzy filter  ϕ of R. 
 

Proof. It is clear; for, xt̅ = 〈t, 0〉〈x] and M(R)(xt) =  M(R)(xt̅). 
 

Theorem 4.5 The sub family {M(R)(xs): x ∈ R and s ∈ L} form a base for a topology on M(R). 
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i 

Proof. By the previous theorem, {M(R)(xs): x ∈ R and s ∈ L} is a sub family of τ.  

Let M(R)(η) ∈ τ and ϕ ∈ M(R)(η). Then η ≰ ϕ and hence there exists x ∈ R such that η(x) ≰
ϕ(x). Let η(x) = s. Then xs(x) ≰ ϕ(x). So that xs ≰  ϕ and hence xs̅ ≰ ϕ.  

 

Therefore, ϕ ∈  M(R)(xs̅) = M(R)(xs).  Now,  ψ ∈ N(η) ⟹ η ≤ ψ 

                                                                                                           ⟹ η(x) ≤ ψ(x) 

                                                                                                           ⟹ s ≤ ψ(x) 

                                                                                                           ⟹ xs(x) ≤ ψ(x) 

                                                                                                          ⟹ xs ≤ ψ 

                                                                                                          ⟹ ψ ∈ N(xs). 

 

Therefore, N(η) ⊆ N(xs). Thus, M(R)(xs) ⊆ M(R)(η).     
 

Definition 4.6 By the above theorem, the class {M(R)(xs): x ∈ R and s ∈ L} form a base for 

the topology on M(R) is called the fuzzy stone topology and M(R) together with the fuzzy stone 

topology is called the fuzzy stone space of  R. 

 

Theorem 4.7 Let t be a prime element in L. Then Nt = {η ∈ M(R): Image of η = {1, t}} is 

compact.  

 

Proof. As  {M(R)(xs): x ∈ R and 0 ≠ s ∈ L} is a base for the topology τ on M(R), it can be 

easily seen that the family {M(R)(xs) ∩ Nt: x ∈ R and s ≰ t} constitute a base for the subspace 

topology on N.  Now, let {M(R)((xi)si
) ∩ Nt: i ∈△, xi ∈ R and s ≰ t} be an open cover of Nt. 

Let s =∨ {si: i ∈△}. Then the family  {M(R)((xi)s) ∩ Nt: i ∈△, xi ∈ R and s ≰ t} also covers 

Nt.  Now, 

                             Nt = ∪ {M(R)((xi)s) ∩ Nt: i ∈△, xi ∈ R and s ≰ t}  

                                 = (∪ {M(R)((xi)s): i ∈△, xi ∈ R and s ≰ t}) ∩ Nt 

                                  = (M(R) −  N(∪ {(xi)s: i ∈△, xi ∈ R and s ≰ t})) ∩ Nt 

= Nt −  N(∪ {(xi)s: i ∈△, xi ∈ R and s ≰ t}) ∩ Nt). 
 

So that N(∪ {(xi)s: i ∈△, xi ∈ R and s ≰ t}) ∩ Nt is empty set. Let F be a prime filter of R and 

define a fuzzy minimal prime filter η of R by η = tF. So that, Im η = {1, t} and hence η ∈ Nt. 

Clearly, η ∉ N(∪ {(xi)s: i ∈△, xi ∈ R and s ≰ t}). Hence there exists  i ∈△ such that   (xi)s ⊈
η and hence s ≰ η(xi). Consequently, xi ∉ F. Hence there is no prime ideal of R containing the 

set {xi}i∈△ in R. Put Q = {xi ∈ R: i ∈△}. Then 〈Q] = R. In particular, u ∈ 〈Q], where n is a 

maximal element in R and u = (⋁ xi
n
i=1 ) ∧ y, for some x1,x2, … , xn ∈ Q and y ∈ R. Now, 

N(∪ {(xi)s: i = 1, … , n and s ≰ t}) ∩ Nt = ∅. Thus, η ∉ N(∪ {(xi)s: i = 1, … , n and s ≰ t}).  
This show that η ∈ M(R)(∪ {(xi)s: i = 1, … , n and s ≰ t}) and hence j ∈ {1,2, … , n} such that 

(xj)s
≰  η and hence s ≰  η(xj). So that xj ∉ F. Thsi shows that η ∈ M(R)((xj)s

) and hence 

x ∈ ⋃ M(R)((xj)s
) n

j=1 . Therefore, Nt ⊆  ⋃ {M(R)((xj)s
) n

j=1 ∩ Nt: s ≰ t}. Thus, 

⋃ {M(R)((xj)s
) n

j=1 ∩ Nt: s ≰ t} covers Nt. Hence Nt is compact.     

 

Let us recall that a topological space X is said to be T0- space if, for any x ≠ y ∈ X there exists 

an open set containing x and not containing y or vice-versa. By using this, we prove the 

following result. 

 

Theorem 4.8 For any topological space M(R), we have the space M(R) is a T0-space 

N(ϕ) = {ϕ}̅̅ ̅̅̅, where {ϕ}̅̅ ̅̅̅  is the closure of ϕ in M(R). 
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Proof. (1). Let xt  and ys ∈ M(R) such that xt ≠ ys, for all t, s ∈ L − {0}. Then either xt ≰ ys 

or ys ≰ xt.  Thus, ys ∈ M(R)(xt). Also,  xt ∉ M(R)(xt) and hence M(R)(xt) is open set in 

M(R). Therefore,  M(R) is T0.  
 

(2). Let ϕ ∈ M(R).  Then N(ϕ) is a closed  set in M(R) containing ϕ and hence {ϕ}̅̅ ̅̅̅ ⊆ N(ϕ). 

On the other inequality, if η ∉ {ϕ}̅̅ ̅̅̅, then there exists an open set M(R) − N(xt) = M(R)(xt) 

such that η ∈ M(R) − N(xt) but ϕ ∉ M(R) − N(xt).  Therefore, xt ≰ η but xt ≤  ϕ and hence 

η ∉ N(ϕ). Thus,  N(ϕ) ⊆ {ϕ}̅̅ ̅̅̅. Hecne the result.  

 

5. Conclusion 
 

In this work, fuzzy prime filters, fuzzy minimal prime filters, and the topological space of these 

ideas are discussed and different findings are obtained. In the future, we plan to investigate O-

fuzzy prime filters and related ideas. 
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