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, , , .J J J n J J2 2 0 1n n n1 2 0 1$= + = =- -      (1)

The sequence of Jacobsthal-Lucas numbers Jn" , is defined 
by

, , , .j n jj j j2 2 2 1n n n1 2 0 1$= + = =- -   (2)

The Binet’s formula for Jacobsthal sequence is given by

( ( ) )J 3
1
2 1n

n n

n n

a b
a b

=
-
-

= - -6 @  (3)

where 2a =  and 1b =- .

Similarly, the Binet’s formula for Jacobsthal-Lucas sequence 
is given by

( ) .j 2 1n
n n n na b= + = + -   (4)

In this paper, we present various properties of the general-
ized Jacobsthal-Like sequence  defined by

,V V V n2 2n n n1 2 $= +- -   (5)

with V 20 =  and ,V m m11 = +  being a fixed positive inte-
ger.

Here the initial conditions V0  and V1  are the sum of m times 
the initial conditions of Jacobsthal sequence and the initial 
conditions of Jacobsthal-Lucas sequence respectively.

1. Introduction
For many years, extensive studies have been conducted on 
generalized Fibonacci-Like sequences, exploring both their 
characteristics and preliminary results. (Harne et al. 2014, 
Gupta et al. 2014, Singh et al. 2014). Using these studies on 
generalized Fibonacci-Like sequences, we can extend these 
studies to the generalized Jacobsthal-Like and other inter-
esting sequences in a similar fashion.

Every term in the Jacobsthal sequence can be determined 
recursively with the initial values J0 =0, J1=1. Similar is the 
case with Jacobsthal-Lucas sequence. See (Horadam 1996). 
The definitions of Jacobsthal-Like sequences associated 
with Jacobsthal and Jacobsthal-Lucas sequences can be 
found in the papers (Natividad 2016, Pakapongpun 2020). 

The sequence of Jacobsthal numbers {Jn} is defined by
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The relation between Jacobsthal sequence and generalized 
Jacobsthal-Like sequence can be written as

, .V mJ j n 0n n n $= +   (6)

Then, the terms of the sequence Vn" , are given by

{ , , , , , , ...}V m m m m m2 1 5 7 3 17 5 31 11n = + + + + +" , .

2. Preliminary results of Generalized Jacobsthal-
Like sequence
The first, we introduce some basic results of generalized Ja-
cobsthal-Like sequence and Jacobsthal sequence.

The corresponding characteristic equation of relation (1) is 

x x 2 02 - - =  and its roots are 2a =  and 1b =- .        (7)

Using these two roots, we obtain Binet’s formula of recur-
rence relation (5) 
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Generating function of Vn" ,  is defined as
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3. Properties of Generalized Jacobsthal-Like 
sequence
Of the generalized Jacobsthal-Like sequence Vn" ,, like 
generalized Fibonacci-Like sequences have many interest-
ing properties (Benjamin and Quinn 1999, Lee and Z. Lee 
1987, Badshah et al. 2012, Harne et al. 2014, Singh et al. 
2010, Soykan et al. 2018, Soykan and Göcen 2022). 

Sums of generalized Jacobsthal-Like terms can be given in 
the following theorems.

Theorem 1. Sum of the first terms of the generalized Ja-
cobsthal-Like sequence Vn" , is

.V V V V V
V V
2n k

n
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n
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g+ + + + = =
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/   (9)

This identity becomes
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Proof. We know that the following relations hold:
,

,
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Term wise addition of all above equations, we obtain
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Theorem 2. Sum of the first  terms of the generalized Ja-
cobsthal-Like sequence Vn" , is

.V V V V V Vn n1 2 3 2 2 1 1g+ + + = -+

Proof.
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Term wise addition of all above equations, we obtain
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Adding odd indices to the both sides of the equation,we 
have 

.V V V V V Vn n1 2 3 2 2 1 1g+ + + + = -+

Theorem 3. Sum of the first n2 1-  terms of the generalized 
Jacobsthal-Like sequence Vn" , is

.V V V V V V Vn n0 1 2 3 2 1 2 0g+ + + + + = --   (13)

Proof.
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Term wise addition of all above equations, we obtain
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We state and prove the following identity for the general-
ized Jacobsthal-Like sequence Vn" ,
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Lemma 4. For every positive integer , we have 

.V V m2 3n n2 2 1- = -+   (14)

Proof. Combining (10) and (11) and putting 
,V m V m1 51 2= + = + , we obtain
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Theorem 5. Sum of the first ( )n 1+  terms of the gener-
alized Jacobsthal-Like sequence Vn" , with odd and even 
indices are 
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Proof. 

Using (13),
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Using (14),
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Using (17) and (18) we get 
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From the above theorem we can calculate the alternating 
sum of the first n numbers.

Corollary 6. The alternating sum of the first n numbers 
of the of the generalized Jacobsthal-Like sequence Vn" , 
yazılabilir.
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Proof.  If we subtract equation (15) term wise from equation 
(16), we get alternating sum of the first 2n+1 numbers:
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If we want to calculate the alternating sum of the first n 
numbers from the above equation, substituting 2n+1 by n  
we get the following result
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Now, some identities for the generalized Jacobsthal-Like 
sequence Vn" , are stated and proven below.

Theorem 7. For every integer ,n 0$  for each real coefficient 
m,

.mV mV mV2n n n2 1- =+ +   (20)

Proof.

( ) ( ) .m V V m V mV2 2n n n n2 1- = =+ +

Theorem 8.  For every integer n 1$ , we have

.V V V V V2n n n n n
2

1 1= -+ -  (21)

Proof.

( ) .V V V V V V V V2 2n n n n n n n n1 1 1 1
2- = - =+ - + -

Theorem 9.  (Simson formula) For every integer n 1$  we 
have

( ) ( ) .V V V m1 2 9n n n
n n
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+ -   (22)

Proof. 

We shall use mathematical induction over n.

It is easy to see that for n = 1,
( ) ( )

( ) ( ) ( ),
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which is true.

Assume that the result is true for n = k. Then
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k k
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4. Conclusion
In this article, generalized Jacobsthal-Like sequences are 
defined and their algebraic properties like Binet’s formula, 
generating functions, Simson formula and the summation 
formula are investigated. Some other summation formulas 
like sum of even and odd indices and alternating sum of 
generalized Jacobsthal-Like sequences are presented. 

We believe that the generalized Jacobsthal-Like sequences 
considered in this article can be extended to generalize oth-
er sequences like Pell and Narayana and the results given in 
this article could be useful for further research on this topic. 
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Proof. We use the Binet’s formula of generalized Ja-
cobsthal-Like,
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