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Abstract

For a Lorentzian para-Kenmotsu manifold of dimension m (briefly, (LPK)m) admitting
Bach almost soliton (g,ζ ,λ ), we explored the characteristics of the norm of Ricci operator.
Besides, we gave the necessary condition for (LPK)m (m≥ 4) admitting Bach almost soliton
to be an η-Einstein manifold. Afterwards, we proved that Bach almost solitons are always
steady when a Lorentzian para-Kenmotsu manifold of dimension three has Bach almost
soliton.

1. Introduction

In 1976, the concept of almost paracontact manifolds was proposed by Sato [1]. An almost paracontact structure on a semi-Riemannian
manifold M was established by Kaneyuki and Kozai in [2]. They created almost paracomplex shape on M ×R. According to Kaneyuki et
al. [3], the key variation among an almost paracontact manifold is the signature of metric. In 1995, the authors Sinha and Prasad described
para-Kenmotsu as well as special para-Kenmotsu manifolds and found significant properties of para-Kenmotsu manifolds [4]. Afterwards,
para-Kenmotsu manifolds drew huge attention and a number of mathematicians brought forward the significant characteristics of such
manifolds [5–9].
Semi-Riemannian geometry, used in the relativity theory, was studied in [10]. About four decades ago, Kaigorodov has explored the curvature
structure of the spacetime [11]. Raychaudhuri et al. [12] extended the above concepts of the general theory of spacetime. Recently, Haseeb
and Rajendra introduced and studied the Lorentzian para-Kenmotsu manifolds [13, 14].
1921 was the year, when Bach initiated Bach tensor [15] to explore conformal geometry. He proved that the Bach tensor is a rank 2 trace-free
tensor and is conformally invariant in dimension 4. So, in lieu of Hilbert-Einstein functional, the functional is taken in the following way

W (g) =
∫
M
‖C ‖2

gdνg,

where, M is a manifold of dimension-four and C repersents the Weyl tensor of type (1,3) given by

C (U,V )W = R(U,V )W +
1

m−2
[S (U,W )V −S (V ,W )U +g(U,W )QV −g(V ,W )QU ]

− r
(m−1)(m−2)

[g(U,W )V −g(V ,W )U ],
(1.1)

here, R represents the Riemannian curvature tensor, Q is the Ricci operator and S denotes the Ricci tensor, such that, g(QU,V )=S (U,V ),
∀ differentiable vector fields U,V ,W . Bach tensor of type (0,2) on a semi-Riemannian manifold (M m,g) of dimension m(≥ 3) is given by

B(U,V ) =
1

(m−3) ∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε j(∇Ei ∇E j C
′
)(U,Ei,E j,V )

+
1

(m−2) ∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε jS (Ei,E j)C
′
(U,Ei,E j,V ),

(1.2)
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here, g(Ei,Ei) = εi, g(C (U,V )W ,Y ) = C
′
(U,V ,W ,Y ) and {{Ei}m−1

i=1 ,Em = ζ} is a local orthonormal frame at each point p of TpM .
Relation (1.1), together with contracting Bianchi second identity, we obtain

divC =
(m−3)
(m−2)

C0, (1.3)

where, C0 is Cotton tensor [16] given by

C0(U,V )W =−(∇V S )(U,W )+(∇US )(V ,W )+
1

2(m−1)
[(V r)g(U,W )− (Ur)g(V ,W )]. (1.4)

In view of equation (1.3), together with equation (1.2), the Bach tensor takes the form,

B(U,V ) =
1

(m−2)
[ ∑
i∈{1,...,m}

εi(∇EiC0)(Ei,U)V + ∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε jS (Ei,E j)C
′
(U,Ei,E j,V )], (1.5)

∀ differentiable vector fields U,V . For dimension three, the Weyl tensor vanishes. Therefore, Bach tensor given in equation (1.5) reduces to

B(U,V ) = ∑
i∈{1,2,3}

εi(∇EiC0)(Ei,U)V . (1.6)

For further study, the references [17–24] may be seen.
In 2012, Das and Kar [25] studied different characteristics of Bach flow on product manifolds and analysed their outcomes with the Ricci
flow. Bach flow is suggested in [26] to specify the Harava-Lifschitz gravity in general relativity. In 2011, Bahuaud and Helliwell in [27]
studied the presence of Bach flow for short time. Cao and Chen, in the year 2013, explored Bach flat Ricci solitons [28]. Subsequently,
Ho [29] worked comprehensively on the solitons of Bach flow. He also studied the Bach flows on Lie group of dimension 4. In 2020,
Helliwell specified Bach flow of dimension 4 on locally homogeneous product manifolds [30]. In recent times, Ghosh [31] investigated the
Bach almost solitons (g,ζ ,λ ) in semi-Riemannian geometry and is given by

(£X g+2B−2λg)(U,V ) = 0, (1.7)

here, £X is the Lie derivative operator along X ; X is a potential vector field and λ ∈C∞(M m). The Bach almost solitons (g,ζ ,λ ) is said
to be expanding, steady and shrinking according to λ < 0, λ = 0 and λ > 0, respectively.
This article is organized in the following manner: Section 1 contains introduction, based on development of almost paracontact manifold and
other concepts. Preliminaries are given in Section 2, based on (LPK)m. Section 3 contains the work on (g,ζ ,λ ) in (LPK)m. In Section 4, we
examine (LPK)m of dimension 3, which admits Bach almost solitons.

2. Preliminaries

An m-dimensional smooth manifold M m is called Lorentzian almost paracontact manifold, if it is equipped with a (1,1)-tensor field φ , a
contravariant vector field ζ , a 1-form η and a Lorentzian metric g of type (0, 2). The following relations for an m-dimensional Lorentzian
metric manifold hold [32],

φ
2(U) =U +η(U)ζ , η(ζ )+1 = 0, (2.1)

g(U,ζ ) = η(U), g(φU,φV ) = η(U)η(V )+g(U,V ), (2.2)

∀U,V on M m, and the structure (φ ,ζ ,η ,g) is named the Lorentzian almost paracontact structure. An M m endowed with (φ ,ζ ,η ,g) is
known as Lorentzian almost paracontact manifold and holding the following results:

φζ = 0, η(φU) = 0, Ω(U,V ) = Ω(V ,U), (2.3)

here, Ω(U,V ) = g(U,ϕV ).

Definition 2.1. A Lorentzian almost paracontact manifold M m is known as (LPK)m if

(∇U φ)(V ) =−η(V )φU−g(φU,V )ζ ,

∀U and V on M m.

Further, for (LPK)m, following results hold good:

∇U ζ +U +η(U)ζ = 0, (2.4)

(∇U η)(V )+g(U,V )+η(U)η(V ) = 0, (2.5)

R(U,V )ζ = η(V )U−η(U)V , (2.6)
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R(ζ ,V )U = g(U,V )ζ −η(U)V , (2.7)

R(ζ ,U)ζ =U +η(U)ζ , (2.8)

S (U,ζ ) = (m−1)η(U), (2.9)

Qζ = (m−1)ζ , (2.10)

S (φV ,φU) = S (V ,U)+(m−1)η(V )η(U), (2.11)

∀ U,V ,W on (LPK)m [33, 34]. In the above results, ∇ represents the covariant differentiation operator w.r.t. g in semi-Riemannian
manifolds.

Proposition 2.2. We assume M to be an (LPK)m. Subsequently, we have

S (φU,V ) = S (U,φV ), (2.12)

∀U, V on (LPK)m.

Proof. Setting φU for U in (2.11), we get,

S (φ 2U,φV ) = S (φU,V )+(m−1)η(φU)η(V ).

Using equations (2.1) and (2.3) in the foregoing equation, we yield

S (U +η(U)ζ ,φV ) = S (φU,V ). (2.13)

From equation (2.13), the Proposition 2.2 follows.

3. Bach Almost Solitons and (LPK)m

Definition 3.1. A semi-Riemannnian manifold is called Bach perfect fluid if Bach almost tensor is given by

B(U,V ) = βη(U)η(V )+αg(U,V ), ∀V ,U,

where, α and β are scalars.

Let (LPK)m admit (g,ζ ,λ ). Then (1.7) holds and thus, we have

(£ζ g)(U,V )+2B(U,V ) = 2λg(U,V ). (3.1)

As we have

(£ζ g)(U,V ) = g(∇U ζ ,V )+g(U,∇V ζ ). (3.2)

The result (2.4), together with (3.2) yields

(£ζ g)(U,V )+2[g(U,V )+η(U)η(V )] = 0. (3.3)

Putting the preceding result (3.3) in (3.1), we lead to

B(V ,U) = (1+λ )g(V ,U)+η(V )η(U). (3.4)

Result (3.4) shows the succeeding proposition:

Proposition 3.2. An (LPK)m admitting a Bach almost soliton (g,ζ ,λ ) is Bach perfect fluid.

Replacing W by ζ in (1.1), we have

C (U,V )ζ = R(U,V )ζ +
1

(m−2)
[S (U,ζ )V −S (V ,ζ )U +g(U,ζ )QV −g(V ,ζ )QU ]

− r
(m−1)(m−2)

[g(U,ζ )V −g(V ,ζ )U ],
(3.5)

∀ differentiable vector fields U,V . Operating Q in (3.5) and using relations (2.2), (2.6), (2.7) and (2.10), we get

Q(C (U,V )ζ ) =
(r−m+1)

(m−1)(m−2)
[−η(U)QV +η(V )QU ]− 1

(m−2)
[η(V )Q2U−η(U)Q2V ]. (3.6)
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The inner product of (3.6) with X leads to

g(Q(C (U,V )ζ ),X ) =
(r−m+1)

(m−1)(m−2)
[η(V )g(QU,X )−η(U)g(QV ,X )]

− 1
(m−2)

[η(V )g(Q2U,X )−η(U)g(Q2V ,X )].

(3.7)

Let {{Ei}m−1
i=1 ,Em = ζ} be an orthonormal frame at each point p of TpM . Now, setting V = X = Ei in (3.7) with summation i = 1 to m

and on evaluation, we get

∑
i∈{1,..,m}

εig(Q(C (U,Ei)ζ ),Ei) =−
(r−m+1)2

(m−1)(m−2)
η(U)+

1
(m−2)

[|Q|2− (m−1)2]η(U). (3.8)

Setting ζ in place of W in relation (1.4) gives

C0(U,V )ζ = g((∇UQ)V ,ζ )−g((∇V Q)U,ζ )− 1
2(m−1)

[U(r)η(V )−V (r)η(U)]. (3.9)

From equation (2.12), we have the relation

φQU = QφU. (3.10)

From the equation (3.10), we also have

g((∇UQ)V ,ζ ) = g(QU,V )− (m−1)g(U,V ). (3.11)

Applying above equation (3.11) in (3.9), it gives

C0(U,V )ζ =− 1
2(m−1)

[U(r)η(V )−V (r)η(U)]. (3.12)

After differentiating covariantly the above relation w.r.t. W and using the relation (2.5), we obtain

(∇W C0)(U,V )ζ =−(∇V S )(U,W )+(∇US )(V ,W )

− 1
2(m−1)

[g(∇W Dr,U)η(V )−g(∇W Dr,V )η(U)],
(3.13)

here D represents the gradient operator. Let {{Ei}m−1
i=1 ,Em = ζ} be the orthonormal frame at each point p of TpM . Replacing U = W = Ei

with summation over i = 1 to m in equation (3.13), this gives

∑
i∈{1,...,m}

εi(∇EiC0)(Ei,V )ζ =− 1
2(m−1)

[(divDr)η(V )−g(∇ζ Dr,V )]− V (r)
2

. (3.14)

Now, by rewriting the equation (1.5), we have

B(U,V ) =
1

(m−2)
[ ∑
i∈{1,...,m}

εi(∇EiC0)(Ei,U)V + ∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε jS (Ei,E j)C
′
(U,Ei,E j,V )]. (3.15)

After evaluation, the second term of the above equation takes the form

∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε jS (Ei,E j)C
′
(U,Ei,E j,V ) =− ∑

i∈{1,...,m}
∑

j∈{1,...,m}
εiε jg(QEi,E j)g(C (U,Ei)V ,E j),

=− ∑
i∈{1,...,m}

εig(Q(C (U,Ei)V ),Ei).

Taking the above equation and equation (3.15) together, we obtain

B(U,V ) =
1

(m−2)
[ ∑
i∈{1,...,m}

εi(∇EiC0)(Ei,U)V − ∑
i∈{1,...,m}

εig(Q(C (U,Ei)V ),Ei)]. (3.16)

Replacing V for ζ in the above relation (3.16), it gives

B(U,ζ ) =
1

(m−2)
[ ∑
i∈{1,...,m}

εi(∇EiC0)(Ei,U)ζ − ∑
i∈{1,...,m}

εig(Q(C (U,Ei)ζ ),Ei)]. (3.17)

Equations (3.8), (3.14) and (3.17) taken together give

B(U,ζ ) =
1

(m−2)
[−U(r)

2
− 1

2(m−1)
{(divDr)η(U)−g(∇ζ Dr,U)}

+
(r−m+1)2

(m−1)(m−2)
η(U)− 1

(m−2)
{|Q|2− (m−1)2}η(U)].

(3.18)
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Setting V for ζ in equation (3.4), we get

B(U,ζ ) = λη(U). (3.19)

Relation (3.18) and (3.19), taken together give

λη(U) =
1

(m−2)
[−U(r)

2
− 1

2(m−1)
{(divDr)η(U)−g(∇ζ Dr,U)}

+
(r−m+1)2

(m−1)(m−2)
η(U)− 1

(m−2)
{|Q|2− (m−1)2}η(U)].

(3.20)

Setting U for φU in relation (3.20), we obtain

1
(m−2)

[−φU(r)
2

+
1

2(m−1)
g(∇ζ Dr,φU)] = 0.

This implies that

g(∇ζ Dr,φU) = (m−1)g(Dr,φU).

This gives

φ∇ζ Dr = (m−1)φDr. (3.21)

Taking covariant differentiation of equation (2.10) w.r.t. U and using the relations (2.3) and (2.4), we get

(∇UQ)ζ = QU− (m−1)U. (3.22)

Contracting the preceding equation w.r.t. U , we have

∑
i∈{1,...,m}

εig(∇EiQ)ζ ,Ei) =
m

∑
i=1

εi[g(QEi,Ei)− (m−1)g(Ei,Ei)].

or,

(divQ)ζ = r− (m−1)m,

or,

ζ (r) = 2[r−m(m−1)], (3.23)

which can be written as

£ζ r = 2r−2m(m−1).

Applying the exterior derivative in the above relation, we have

d£ζ r = 2dr.

Since, d and the Lie derivative commutes, therefore, we have

£ζ dr = 2dr.

Writing the above relation in the form of gradient operator, we have

£ζ Dr = 2Dr,

or,

∇ζ Dr−∇Drζ = 2Dr.

Using the relation (2.4) in the above relation, we lead to

∇ζ Dr = Dr−ζ (r)ζ . (3.24)

Applying φ in the above relation (3.24) and using the relations in (2.3) and (3.21), we get

φDr = 0.

This implies

Dr =−ζ (r)ζ . (3.25)

Differentiating (3.25) covariantly w.r.t. X , it yields

∇X Dr =−[g(∇X Dr,ζ )ζ −g(Dr,X )ζ −g(Dr,ζ )X −2g(Dr,ζ )η(X )ζ ], (3.26)
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which by contracting over X gives

(divDr) = (m−3)ζ (r). (3.27)

Relations (3.24) and (3.25) give

∇ζ Dr =−2ζ (r)ζ . (3.28)

Using relations (3.25), (3.27) and (3.28) in (3.20), we obtain

λη(U) =
1

(m−2)
[
ζ (r)

2
η(U)− 1

2(m−1)
{(m−3)ζ (r)η(U)+2ζ (r)η(U)}

+
(r+1−m)2

(m−1)(m−2)
η(U)− 1

(m−2)
{|Q|2− (m−1)2}η(U)].

(3.29)

On simplification, relation (3.29) gives

λ =
1

(m−2)2 [
(r+1−m)2

(m−1)
+(m−1)2−|Q|2]. (3.30)

In the light of the relation (3.30), succeeding theorem holds:

Theorem 3.3. The Bach almost solitons (g,ζ ,λ ) on an (LPK)m are expanding, steady and shrinking according as

[
(r+1−m)2

(m−1)
+(m−1)2]> |Q|2, [

(r+1−m)2

(m−1)
+(m−1)2] = |Q|2 and [

(r+1−m)2

(m−1)
+(m−1)2]< |Q|2.

Consider a Lorentzian para-Kenmotsu space form of m-dimension. Then by relation (3.23), we have r = m(m−1). Hence,

λ =
1

(m−2)2 [m(m−1)2−|Q|2].

The above relation leads the following corollary:

Corollary 3.4. The Bach almost solitons (g,ζ ,λ ) on an LP-Kenmotsu space form of dimension m is expanding, steady and shrinking
according as m(m−1)2 > |Q|2, m(m−1)2 = |Q|2 and m(m−1)2 < |Q|2.

Definition 3.5. An (LPK)m is named η-Einstein if its S satisfies [35]

S (V ,U) = ag(V ,U)+bη(V )η(U),

∀ V ,U, where, a and b are scalars.

Now, replacing U = ζ in relation (3.13), we have

(∇W C0)(ζ ,V )ζ =−(∇V S )(ζ ,W )+(∇ζ S )(V ,W )− 1
2(m−1)

[g(∇W Dr,ζ )η(V )−g(∇W Dr,V )η(ζ )]. (3.31)

Taking the inner product of relation (3.26) with V and replacing X by W , we obtain

g(∇W Dr,V ) =−[g(∇W Dr,ζ )η(V )−g(Dr,W )η(V )−g(Dr,ζ )g(V ,W )−2g(Dr,ζ )η(V )η(W )]. (3.32)

The relations (3.22), (3.31) and (3.32) give

(∇W C0)(ζ ,V )ζ = g((∇ζ Q)V ,W )−g((∇V Q)ζ ,W )− ζ (r)
2(m−1)

[g(V ,W )+η(V )η(W )]. (3.33)

In an (LPK)m, the following result holds (for perusal, see [36])

(∇ζ Q)V = 2QV −2(m−1)V . (3.34)

Applying relations (3.22) and (3.34) into (3.33), it yields

(∇W C0)(ζ ,V )ζ = g(QV ,W )− (m−1)g(V ,W )− ζ (r)
2(m−1)

[g(V ,W )+η(V )η(W )]. (3.35)

If (∇W C0)(ζ ,V )ζ = 0 and (3.23), then (3.35) leads to

S (V ,W ) = (
r

m−1
−1)g(V ,W )+(

r
m−1

−m)η(V )η(W ). (3.36)

The relation (3.36) leads the following theorem:

Theorem 3.6. An (LPK)m (m≥ 4) admitting (g,ζ ,λ ) is an η-Einstein manifold provided (∇W C0)(ζ ,V )ζ = 0, ∀ V ,W .
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4. 3-Dimensional Bach Perfect Fluid Lorentzian Para-Kenmotsu Manifold

We consider an (LPK)3 admitting (g,ζ ,λ ). Curvature tensor of Riemannian manifold in dimension 3 states

R(U,V )W =−S (U,W )V +S (V ,W )U−g(U,W )QV +g(V ,W )QU− r
2
[g(U,W )V −g(V ,W )U ], (4.1)

∀ differentiable vector fields U , V and W .
Replacing U = W = ζ in (4.1) and using (2.1), (2.8), (2.9) and (2.10), we obtain

QV = (
r
2
−3)η(V )ζ +(

r
2
−1)V . (4.2)

The preceding result gives

Qφ = φQ.

The equation (4.2), together with (2.4), gives

(∇UQ)ζ = QU−2U. (4.3)

Equation (3.12), together with (4.3) leads to

C0(U,V )ζ =
1
4
[V (r)η(U)−U(r)η(V )].

The covariant differentiation of above result w.r.t. W yields

(∇W C0)(U,V )ζ =−(∇V S )(U,W )− (∇US )(V ,W )− 1
4
[g(∇W Dr,U)η(V )−g(∇W Dr,V )η(U)].

Putting W =U = Ei and taking sum over i = 1,2,3 in above relation, where {E1,E2,E3 = ζ} is orthonormal frame at each point p of TpM ,
we have

∑
i∈{1,2,3}

εi(∇EiCo)(Ei,V )ζ =−V (r)
2
− 1

4
[(divDr)η(V )−g(∇ζ Dr,V )]. (4.4)

Taking V = ζ in (1.6), we have

B(U,ζ ) = ∑
i∈{1,2,3}

εi(∇EiC0)(Ei,U)ζ . (4.5)

Equations (3.4), (4.4) and (4.5) taken together give

λη(U) =−1
2

g(Dr,U)− 1
4
[(divDr)η(U)−g(∇ζ Dr,U)]. (4.6)

Replacing φU for U in (4.6), we get

φ∇ζ Dr = 2φDr. (4.7)

We have the relation (3.23) and (3.24), for m = 3, which yields

∇ζ Dr = Dr−2(r−6)ζ . (4.8)

The relations (4.7) and (4.8) provide

Dr =−2(r−6)ζ . (4.9)

By the covariant diffentiation of (4.9) w.r.t. X yields

∇X Dr =−2g(Dr,X )ζ +2(r−6)X +2(r−6)η(X )ζ . (4.10)

By contracting the relation (4.10) over X , we get

(divDr) = 0. (4.11)

Using relations (4.8), (4.9) and (4.11) in (4.6), it yields

λ = 0. (4.12)

With the help of (4.12), the relation (3.4) reduces to

B(U,V ) = η(U)η(V )+g(U,V ).

The above results imply the succeeding theorem:

Theorem 4.1. Let (LPK)3 admit a (g,ζ ,λ ), then the manifold is a Bach perfect fluid and (g,ζ ,λ ) is always steady.
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5. Example

We assume a manifold M 3 = {(u1,v1,w1) ∈ R3 : w1 > 0}, here (u1,v1,w1) are the general coordinates in R3. Consider Ê1, Ê2, Ê3, the vector
fields on M 3 given as

Ê1 = w1
∂

∂u1
, Ê2 = w1

∂

∂v1
, Ê3 = w1

∂

∂w1
= ζ

and are linearly independent at each point of M 3. This implies

g(Êi, Ê j) =


0, 1≤ i 6= j ≤ 3,
−1, i = j = 1,2,
0, otherwise.

Suppose that η is 1-form on M 3 given by η(U) = g(U, Ê3) = g(U,ζ ), ∀ U ∈ χ(M 3). Again, assume that φ is (1,1) tensor field on M 3

given below:

φ Ê1 =−Ê2, φ Ê2 =−Ê1, φ Ê3 = 0.

The linear property of g and φ give the following relations

η(ζ ) = g(ζ ,ζ ) =−1,φ 2 =U +η(U)ζ , g(U,ζ ) = η(U), η(φU) = 0, g(φU,φV ) = η(U)η(V )+g(U,V ).

Assuming ∇ to be Levi-Civita connection w.r.t. Lorentzian metric g, then

[Ê2, Ê1] = 0, [Ê3, Ê1] = Ê1, [Ê3, Ê2] = Ê2.

Applying Koszul’s formula, we can comfortably obtain

∇Êi
Ê j =


−Ê3, i = j = 1,2,
−Êi, i = 1,2, j = 3,
0, otherwise

(5.1)

Let U ∈ χ(M 3), then the following relations can also be verified

∇U ζ +U +η(U)ζ = 0, (∇U φ)V =−g(φU,V )ζ −η(V )φ(U).

For U,V ,W ∈ χ(M 3).
Equation (5.1) helps to get the following non-vanishing values:{

R(Ê1, Ê2)Ê1 =−Ê2, R(Ê1, Ê3)Ê1 =−Ê3, R(Ê1, Ê2)Ê2 = Ê1,

R(Ê2, Ê3)Ê2 =−Ê3,R(Ê2, Ê3)Ê3 =−Ê2.

The above results help to verify

R(U,V )W =−g(U,W )V +g(V ,W )U. (5.2)

Hence, M 3 is a Lorentzian para-Kenmotsu manifold of constant curvature. By contracting (5.2) over W , we obtain

S (U,V ) = 2g(V ,W ).

This implies

r = 6.

Then, (4.6) provides λ = 0. Hence, in this manifold, the Bach almost solitons are steady.
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