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Abstract  Keywords 

This study presents all solutions to the Diophantine equations 𝐹𝑘 = 𝐿𝑚𝐿𝑛 and 𝐿𝑘 =
𝐹𝑚𝐹𝑛. To be clear, the Fibonacci numbers that are the product of two arbitrary Lucas 

numbers and the Lucas numbers that are the product of two arbitrary Fibonacci 

numbers are determined herein. The results under consideration are proven by using 

the Dujella-Pethő lemma in coordination with Matveev's theorem. All common terms 

of the Fibonacci and Lucas numbers are determined. Further, the Lucas-square 

Fibonacci and Fibonacci-square Lucas numbers are given. 
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1. INTRODUCTION 
 

Let (𝐹𝑛)𝑛≥0 and (𝐿𝑛)𝑛≥0 be the nth terms of the Fibonacci and Lucas numbers, which can be produced 

by utilizing the recurrence relation 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 and 𝐿𝑛+1 = 𝐿𝑛 + 𝐿𝑛−1 for all integers 𝑛 ≥ 1 with 

the initial conditions (𝐹0, 𝐹1) = (0, 1) and (𝐿0, 𝐿1) = (2, 1), respectively. It can be observed that the 

Fibonacci and Lucas numbers are a second-order integer sequence that satisfies the algebraic equation 

𝑥2 − 𝑥 − 1 = 0. By considering this algebraic equation with the mentioned initial conditions, one can 

develop their Binet's formulae for all 𝑛 ∈ ℕ:  

𝐹𝑛 =
𝛼𝑛−𝛽𝑛

𝛼−𝛽
  and 𝐿𝑛 = 𝛼𝑛 + 𝛽𝑛  (1) 

where 𝛼 =
1+√5

2
 and 𝛽 =

1−√5

2
. More detail can be referenced to [1-3].  

 

It can be stated immediately that the above integer sequences are the most beloved subject of 

mathematics and are paid great attention by almost all branches of modern sciences. Today, the 

respective results and discussions are expanding to an exciting aspect: finding all possible solutions to 

Diophantine equations, including special integer sequences, i.e., Fibonacci, Lucas, Pell, or Jacobsthal 

numbers, etc. In [4], Marques investigated the Fibonacci numbers that can be expressible in terms of the 

generalized Cullen and Woodall numbers. In [5], Chaves and Marques determined all terms of 

generalized Fibonacci numbers, which are the sum of the powers of the consecutive generalized 

mailto:ahmetemin@karabuk.edu.
mailto:ahmetdasdemir37@gmail.com
https://orcid.org/0000-0001-8352-2020
https://orcid.org/0000-0001-7791-7181


Daşdemir and Emin / Estuscience – Se , 25 [3] – 2024 

 

408 

Fibonacci sequence. In [6], Bravo and Gómez considered k-generalized Fibonacci numbers that are the 

Mersenne numbers. In [7], Pongsriiam found all the Fibonacci and Lucas numbers, which are one away 

from the product of an arbitrary number of the Fibonacci or Lucas numbers. In [8], Ddamulira et al. 

solved the Pillai-type problem with k–generalized Fibonacci numbers and powers of 2 for k > 3. In [9], 

Kafle et al. dealt with finding all solutions to the Pell equations related to the product of two Fibonacci 

numbers. In [10], Qu and Zeng investigated all Lucas numbers that are concatenations of two repdigits. 

In [11], Şiar et al. found all Fibonacci or Lucas numbers that are products of two repdigits in base b. In 

[12], Alan and Alan discovered the Mersenne numbers that can be written in terms of the products of 

two Pell numbers. In [13], Rihane and Togbé obtained terms of k-Fibonacci numbers in the arrays of 

the Padovan or Perrin numbers.  

 

In the open literature, there are a few more specific papers that study the Diophantine-type equations 

concerning the Fibonacci numbers or other integer sequences. However, both the above brief literature 

survey and other source works show that integer sequences in the right-hand side and the left-hand side 

of problems under consideration are of different characteristic algebraic equations. For example, 

Fibonacci or Lucas number vs. Pell number by Alekseyev [14], Fibonacci number vs. Pell number by 

Ddamulira et al. [15], generalized Fibonacci number vs. generalized Pell number by Bravo et al. [16], 

Fibonacci number vs. Jacobsthal number by Erduvan and Keskin [17], and Leonardo number vs. 

Jacobsthal number by Bensella and Behloul [18]. Motivated by the results of the current literature, in 

this paper, we address finding problem of all possible solutions to the following Diophantine equations 

for positive integers k, m, and n according to the famous Matveev's theorem and the Dujella-Pethő 

lemma: 

 

𝐹𝑘 = 𝐿𝑚𝐿𝑛  (2) 

and 

𝐿𝑘 = 𝐹𝑚𝐹𝑛  (3) 

 

Here, due to multiplicative symmetry, it is sufficient that the case where 𝑘 ≥ 1 and 1 ≤ 𝑚 ≤ 𝑛 is 

considered. However, our equations consist of the Fibonacci and Lucas numbers that have the same 

characteristic equation. This makes the application of the Dujella-Pethő lemma impossible because some 

parameters disappear unlike the solution processes in the current literature. One of the novelties of the 

paper is to display a new approach to this issue. 

 

It should be noted that in [19], Carlitz considered the same problems the first time by employing 

divisibility properties and some elementary identities. However, the author's results are either incorrect 

or incomplete. More precisely, the author asserted that while the unique solution of equation (2) is 
(𝑘, 𝑚, 𝑛) = (8,4,2) for 1 < 𝑛 ≤ 𝑚, Equation (3) has no solution for 2 < 𝑛 ≤ 𝑚. Further, in [20], based 

on the elementary properties and inequalities, Wang et al. stated that while Equation (3) has no solution, 

the triple (𝑘, 𝑚, 𝑛) = (4,2,1) is one solution to Equation (2). As can be seen, the results of both studies 

are also contradictory to each other. The results of our paper will both eliminate this deficiency and will 

end this debate. 

 

2. BASIC TOOLS 

 

This section introduces essential tools and definitions, lemmas, and theorems required in the rest of the 

paper. Our proof process is based on the Matveev's theorem, which uses the linear forms in logarithms 

to limit the variables of the problem, and the Dujella-Pethő lemma, which allows us to reduce the bounds. 

 

Let 𝜂 be an algebraic number of degree d with the minimal polynomial 
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𝑓(𝑥): = ∑ 𝑎𝑗𝑥𝑑−𝑗 = 𝑎0𝑥𝑑 + 𝑎1𝑥𝑑−1 + ⋯ + 𝑎𝑑 = 𝑎0 ∏(𝑥 − 𝜂(𝑖))

𝑑

𝑖=1

𝑑

𝑗=0

∈ ℤ[𝑥] 

 

where 𝑎0 > 0 is the leading coefficient, 𝑎𝑗’s are integers, and 𝜂(𝑖) is the ith conjugate of 𝜂. The 

logarithmic height, denoted by ℎ(𝜂) of 𝜂 is defined by  

 

ℎ(𝜂) =
1

𝑑
(𝑙𝑜𝑔 𝑎0 + ∑ 𝑙𝑜𝑔(𝑚𝑎𝑥{|𝜂(𝑖)|, 1})

𝑑

𝑖=1

). 

 

Let 𝜂1, 𝜂2, ⋯ , 𝜂𝑠 be positive algebraic numbers in the real number field ℱ of degree D and let 𝑏1, 𝑏2, 

⋯ , 𝑏𝑠  be nonzero rational numbers. Introduce the notations 

 

Λ ≔ 𝜂1
𝑏1𝜂2

𝑏2 ⋯ 𝜂𝑠
𝑏𝑠 − 1 and B ≔ 𝑚𝑎𝑥{|𝑏1|, |𝑏2|, ⋯ |𝑏𝑠|}. 

 

Let 𝐴1, 𝐴2, ⋯ , 𝐴𝑠 be the positive real numbers such as 

 

𝐴𝑗 ≥ 𝑚𝑎𝑥{𝐷ℎ(𝜂𝑗), |𝑙𝑜𝑔𝜂𝑗|, 0.16} for all 𝑗 = 1,2, ⋯ 𝑠. 

 

In this case, we can give the famous Matveev's theorem [21] and the Dujella-Pethő lemma [22]. 

 

Theorem 1 (Matveev [21]) The following inequality holds for non-zero 𝛬 over real field ℱ: 

  

 𝑙𝑜𝑔𝛬 > −1.4 × 30𝑠+3 × 𝐷2 × (1 + 𝑙𝑜𝑔𝐷) × (1 + 𝑙𝑜𝑔 𝐵) × 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑠. 
 

Lemma 2 (Dujella and Pethő [22]) Let 𝑀 be a positive integer, 
𝑝

𝑞
 be a convergent of the continued 

fraction of the irrational 𝜏 such that 𝑞 > 6𝑀, and let 𝐴, 𝐵, 𝜇 be some real numbers with 𝐴 > 0 and 𝐵 >
1. Let 𝜀 ≔ ‖𝜇𝑞‖ − 𝑀‖𝜏𝑞‖, where ‖. ‖ is the distance from the nearest integer. If 𝜀 > 0, then there is 

no integer solution (𝑥, 𝑦, 𝑧) of inequality 

 

0 < 𝑥𝜏 − 𝑦 + 𝜇 < 𝐴𝐵−𝑧 

with 

𝑥 ≤ 𝑀 and 𝑧 ≥
𝑙𝑜𝑔(𝐴𝑞/𝜀)

𝑙𝑜𝑔𝐵
. 

 

The following lemmas will be used later.  

 

Lemma 3 Let 𝑛 be a positive integer. Then, 

 

𝛼𝑛−2 ≤ 𝐹𝑛 ≤ 𝛼𝑛−1 , (4) 

𝛼𝑛−1 ≤ 𝐿𝑛 ≤ 2𝛼𝑛 , (5) 

|𝛽|−(𝑛−2) ≤ 𝐹𝑛 ≤ |𝛽|−(𝑛−1) , (6) 

and 

|𝛽|−(𝑛−1) ≤ 𝐿𝑛 ≤ |𝛽|−(𝑛+1) . (7) 

 

Proof. The proof can be made by using the induction method on 𝑛.  
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Lemma 4 (Ddamulira et al. [15]) For all 𝑥 ∈ (−
1

2
,

1

2
) , |𝑥| < 2|𝑒𝑥 − 1| is satisfied.  

 

3. MAIN RESULTS 

 

In this section, we will present all solutions to Equations (2) and (3) and will prove our results. 

 

Theorem 5 Let k, m, and n be a positive integer. Then, 

 

• Equation (2) is satisfied only for the triples of 

(𝑘, 𝑚, 𝑛) ∈ {(1,1,1), (2,1,1), (4,1,2), (8,2,4)} . (8) 

• Equation (3) holds only for the triples of 

(𝑘, 𝑚, 𝑛) ∈ {(1,1,1), (1,1,2), (1,2,2), (2,1,4), (2,2,4), (3,3,3)} . (9) 

 

Proof. Here, to reduce the size of the paper, we will only share a detailed proof for Equation (2), 

neglecting that of Equation (3).  

 

From Equation (2) and Lemma 3, we can write  

 

𝛼𝑘−2 ≤ 𝐹𝑘 = 𝐿𝑚𝐿𝑛 ≤ |𝛽|−𝑛−𝑚−2 

 

and naturally 

(𝑘 − 2)𝑙𝑜𝑔𝛼 ≤ −(𝑛 + 𝑚 + 2)𝑙𝑜𝑔|𝛽| ⇒ 2 − (𝑛 + 𝑚 + 2)
𝑙𝑜𝑔|𝛽|

𝑙𝑜𝑔𝛼
⇒ 𝑘 < 4𝑛. 

 

Considering Binet's formulas in Equation (1) and the fact that 𝛼 = −𝛽−1, we can arrange Equation (2) 

as follows: 

 

Λ1 ≔ |𝛼−𝑘|𝛽|𝑛+𝑚√5 − 1| <
8

𝛼2𝑚
 . (10) 

In this case, we can consider the case 𝑠 = 3, 𝜂1 = 𝛼, 𝜂2 = |𝛽|, 𝜂3 = √5, 𝑏1 = −𝑘, 𝑏2 = 𝑛 + 𝑚 and 

𝑏3 = 1 in Theorem 1. To be clear, 𝜂1, 𝜂2, 𝜂3 ∈ ℚ(√5) and ℱ = ℚ(√5) of degree 𝐷 = 2. Here, since 

𝛼𝑘 |𝛽|−𝑛−𝑚 = √5 is not satisfied when computing the square of its both sides, Λ1 ≠ 0. In addition, 

 

ℎ(𝜂1) = ℎ(𝜂2) =
1

2
𝑙𝑜𝑔𝛼, ℎ(𝜂3) = 𝑙𝑜𝑔√5, 𝐴1 = 𝐴2 = 𝑙𝑜𝑔𝛼, and 𝐴3 = 2𝑙𝑜𝑔√5. 

 

Further, for 𝐵 =  4𝑛, 𝐵 ≥ 𝑚𝑎𝑥{|−𝑘|, 𝑛 + 𝑚, 1}. Then, with these values, Theorem 1 implies that 

 

𝑙𝑜𝑔(Λ1) > −3.62 × 1011 × (1 + 𝑙𝑜𝑔4𝑛) . (11) 

 

Also, with Equation (10), we obtain 

 

𝑙𝑜𝑔(Λ1) < 𝑙𝑜𝑔8 − 2𝑚 𝑙𝑜𝑔𝛼 . (12) 

 

As a result, we get 
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𝑚 < 3.77 × 1011 × (1 + 𝑙𝑜𝑔4𝑛) . (13) 

 

Further, coming back to Equation (2), after some mathematical arrangements, we can write 

 

Λ2 ≔ |𝛼−𝑘|𝛽|𝑛(√5𝐿𝑚) − 1| <
33

𝛼𝑛
  (14) 

 

which implies that 𝑠 = 3, 𝜂1 = 𝛼, 𝜂2 = |𝛽|, 𝜂3 = √5𝐿𝑚, 𝑏1 = −𝑘, 𝑏2 = 𝑛 and 𝑏3 = 1. Here, 

𝜂1, 𝜂2, 𝜂3 ∈ ℚ(√5) and ℱ = ℚ(√5) of degree 𝐷 = 2. On the other hand, one can prove that Λ2 ≠ 0 by 

applying the same procedure above. As a result,  

 

ℎ(𝜂1) = ℎ(𝜂2) =
1

2
𝑙𝑜𝑔𝛼, and 𝐴1 = 𝐴2 = 𝑙𝑜𝑔𝛼. 

 

Further, since 𝜂3 is the root of the polynomial 𝑥2 − 5𝐿𝑚
2 , ℎ(𝜂3) = 𝑙𝑜𝑔(√5𝐿𝑚)  and 𝐴3 = 6𝑚𝑙𝑜𝑔𝛼. In 

addition, 𝐵 ≥ 𝑚𝑎𝑥{|−𝑘|, 𝑛, 1} for 𝐵 =  4𝑛. From Theorem 1, we can write  

 

𝑙𝑜𝑔(Λ2) > −6.49 × 1011 × 𝑚 × (1 + 𝑙𝑜𝑔4𝑛) . (15) 

 

Solving Equations (13) and (15) together, we get 

 

𝑙𝑜𝑔(Λ2) > −2.45 × 1023 × 𝑚 × (1 + 𝑙𝑜𝑔4𝑛)2 . (16) 

 

Also, from Equation (14), we obtain 

 

𝑙𝑜𝑔(Λ2) < 𝑙𝑜𝑔33 − 𝑛 𝑙𝑜𝑔𝛼 . (17) 

 

Considering Equations (13), (16) and (17), we find  

 

𝑛 < 2.18 × 1027 . (18) 

 

After applying a similar process into Equation (3), we determine the bounds 

 

𝑚 < 7.52 × 1011 × (1 + 𝑙𝑜𝑔4𝑛) and 𝑛 < 2.25 × 1027. (19) 

 

Summing up, it is sufficient that we consider the following lemma in order to complete the proof. 

 

Lemma 6 Both Equations (2) and (3) are satisfied for all the ordered triples of (𝑘, 𝑚, 𝑛) over the ranges 

𝑘 < 4𝑛, 1 ≤ 𝑚 ≤ 𝑛, and 𝑛 < 2.25 × 1027. 

 

According to Lemma 6, there is a finite number of solutions. But, the bounds are huge, and thereby, we 

must obtain a more favorable condition. To do this, we will use Dujella-Pethő lemma for two different 

cases. 

 

Case I: Introducing the notation 
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Γ1 ≔ −𝑘𝑙𝑜𝑔𝛼 + (𝑛 + 𝑚)𝑙𝑜𝑔|𝛽| + 𝑙𝑜𝑔√5. 
 

we can write 

Λ1 = |𝑒𝑥𝑝(Γ1) − 1| <
8

𝛼2𝑚
. 

 

From Lemma 4, we obtain 

 

0 < |𝑘
𝑙𝑜𝑔𝛼

𝑙𝑜𝑔|𝛽|
− (𝑛 + 𝑚) +

𝑙𝑜𝑔(1/√5)

𝑙𝑜𝑔|𝛽|
| < |

16

𝛼2𝑚𝑙𝑜𝑔|𝛽|
| <

34

𝛼2𝑚
. 

 

When applying Dujella-Pethő lemma into the last inequality by considering 𝑀 = 9.1 × 1027 (𝑀 >

4𝑛 > 𝑘) and 𝜏 =
𝑙𝑜𝑔𝛼

𝑙𝑜𝑔|𝛽|
, computing the continued fraction expansions of 𝜏 yields. 

 
𝑝47

𝑞47
=

13949911361108065346183311454

92134223612043233793615516979
. 

 

This means that 6𝑀 < 𝑞47 = 92134223612043233793615516979. As a result, we obtain 

 

𝜀: = ‖𝜇𝑞47‖ − 𝑀‖𝜏𝑞47‖, 𝜀 > 0.486, and 𝜇 =
𝑙𝑜𝑔(1/√5)

𝑙𝑜𝑔|𝛽|
.  

 

In this case, taking 𝐴: = 34, 𝐵: = 𝛼2, and 𝑧: = 𝑚 in Lemma 2, we conclude that 𝑚 ≤ 73.  
 

Case II: Assume that 5 < 𝑚 ≤ 73. Considering 

 

Γ2 ≔ −𝑘𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔|𝛽| − 𝑙𝑜𝑔 (
1

√5𝐿𝑚

), 

 

we have 

Λ2 = |𝑒𝑥𝑝(Γ2) − 1| <
33

𝛼𝑛
. 

From Lemma 4, we can write 

 

0 < |𝑘
𝑙𝑜𝑔𝛼

𝑙𝑜𝑔|𝛽|
− 𝑛 +

𝑙𝑜𝑔(√5𝐿𝑚)

𝑙𝑜𝑔|𝛽|
| < |

66

𝛼𝑛𝑙𝑜𝑔|𝛽|
| <

138

𝛼𝑛
. 

 

For the case where 𝑀 = 9.1 × 1027 (𝑀 > 4𝑛 > 𝑘) and 𝜏 =
𝑙𝑜𝑔𝛼

𝑙𝑜𝑔|𝛽|
, computing the continued fraction 

expansions of 𝜏 gives. 

 
𝑝47

𝑞47
=

13949911361108065346183311454

92134223612043233793615516979
. 

 

This means that 6𝑀 < 𝑞47 = 92134223612043233793615516979. In this case 

 

𝜀𝑚: = ‖𝜇𝑚𝑞47‖ − 𝑀‖𝜏𝑚𝑞47‖, 𝜀 > 0.034, and 𝜇𝑚 =
𝑙𝑜𝑔(√5𝐿𝑚)

𝑙𝑜𝑔|𝛽|
, 
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As a result, taking where 𝐴: = 138, 𝐵 ≔ 𝛼, and 𝑧: = 𝑛 in Lemma 2, we obtain that 𝑛 ≤ 156. 
 

It should be noted that applying a similar investigation into Equation (3), we obtain the bounds in which 

𝑚 ≤ 75 and 𝑛 ≤ 153. Then, we can compose a unique looping in Mathematica© over the range 𝑚 ≤
75 and 𝑛 ≤ 156 to determine all possible solutions to both Equations (2) and (3). So, running our Pc 

algorithm validates Theorem 5. This exhausts the proof. 

 

A simple observation of the outcomes of Theorem 5 reveals the following inferences. 

 

Corollary 7 All common terms of the Fibonacci and Lucas numbers are 1 and 3. 

 

Proof. For the case where 𝑚 = 1, Equation (2) is reduced to 𝐹𝑘 = 𝐿𝑛. In this case, the result follows 

from Theorem 5. 

 

Corollary 8 The only Lucas-square Fibonacci numbers are 𝐹1 = 𝐿1
2 = 1 and 𝐹2 = 𝐿1

2 = 1. 
 

Proof. When 𝑚 = 𝑛, Equation (2) is reduced to 𝐹𝑘 = 𝐿𝑛
2 . From Theorem 2, the result can be drawn. 

 

Corollary 9 The only Fibonacci-square Lucas numbers are 𝐿1 = 𝐹1
2 = 1,  𝐿1 = 𝐹2

2 = 1  and 𝐿3 =
𝐹3

2 = 4. 
 

Proof. Taking 𝑚 = 𝑛 in Equation (3) into account, the proof is easily obtained. 
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