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I. INTRODUCTION 

Over the last several decades, many attempts have been made in automotive industry to develop new Advanced 

High Strength Steel (AHSS) grades to meet the rising demands of both increasing passenger safety and decreasing 

fuel consumption by reducing vehicle’s weight. Previous works showed the successful applications of low carbon 

AHSS grades to satisfy these needs with their combination of high strength and toughness properties [1-3]. 

Recently, in addition to new material developments studies, steel producers deal with reducing carbon emissions 

arising from production steps to cope with climate changes. Continuous cooling process is one of the promising 

candidates to reduce carbon emissions with eliminating the need of additional heat treatments [4-6]. Therefore, 

research and development studies in steelmaking field focus on developing alternative new continuously cooled 

low carbon AHSS grades in order to fulfill these tasks in common. 

Chemical composition and heat treatment conditions are the main parameters that effect mechanical properties of 

steel through arranging its microstructure. It is possible to obtain various strength and toughness values for the 

same steel by applying combinations of different alloy designs and heat treatment routes. Generally, laboratory 

scaled productions are performed for determining optimum parameters before scaling up to industrial productions. 

However, a large number of trials usually needs to be done to obtain satisfying results. Even for the laboratory 
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 In this study, mechanical properties of continuously cooled low carbon steels were predicted via Artificial 
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data. The prediction performances of the models were compared by applying new data set extracted from 
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in the range of training data set. Unlike ANN model, MLR model shows a significant decrease in prediction 
accuracy when input data has non-uniform distribution or target data takes place in relatively narrow range. 
In general, it was shown that ANN model trained with self-generated data can be used as an efficient tool to 
estimate mechanical properties of continuously cooled low carbon steels that are produced with various 
conditions, even for the phenomena between input and output is complex and data distribution is non-uniform. 
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scaled productions, this requirement brings along time consuming and high cost operations. On the other hand, 

increasing the number of trials provides the researchers generating a database consists of varying production 

parameters and test results. In such a case, statistical, mathematical or computational modelling comprise effective 

solutions on deciding the best option available before physical trials.  

Multiple Linear Regression (MLR) is one of the simplest and the most frequently used statistical-based models to 

predict the changes of a dependent outcome in accordance with at least two independent variables. It is being 

extensively applied to find the relationships between the properties of steel material and its mechanical 

performance in service conditions. Estimating the strength or hardness of steel based on its chemical composition 

is the most studied case on this subject [7-9]. In addition to chemical composition, the process parameters of hot 

rolling and heat treatment have also been used in some other MLR based studies as predictor variables [10, 11]. 

In general, traditional statistical regression models have some limitations when calculated phenomena is complex 

and non-linear [12, 13]. In such cases, Artificial Neural Network (ANN) is a quite useful approach for solving 

non-linear problems and has a wide usage in steelmaking processes such as estimating the properties of liquid steel 

and slag [14], optimizing continuous casting [15] and rolling process parameters [16]. ANN is also an effective 

technique for predicting material properties like critical transformation temperatures [17], continuous cooling 

transformation (CCT) diagrams [18] and microstructural classifications [19].  

The successful applications of ANN for estimating mechanical properties of steel via using various material 

properties as input data have also been reported in previous studies. Lee et al. [20] designed an ANN model to 

predict tensile properties of steels based on the fraction of microstructural constituents such as polygonal ferrite, 

granular bainite, and bainitic ferrite. Yemelyanov et al. [21] developed an ANN model with multi-layered structure 

to determine mechanical properties of steel. The neurons of input layer were consisted of the amount of different 

non-metallic inclusions in addition to phase fractions. High performance of model was confirmed with calculated 

low error values. Saravanakumar et al. [22] proposed an ANN-based model to predict mechanical properties of 

IS1079 grade low carbon steel by applying hot rolling process parameters and model results were found to be 

almost same as the measured values. Somkuvar [23] developed an ANN that effectively predicts the hardness of 

low carbon steel by introducing austenitization temperature and holding time. Fujita et al. [24] used chemical 

compositions and forging process parameters for training an ANN model in order to estimate hardness distributions 

and results were compared with finite element method (FEM) calculations. They have reported that ANN approach 

is more suitable in situations where several phenomena such as metallurgical ones are involved. 

In neither of these cases discussed above, the prediction model was developed by using self-generated data nor the  

performance of models were analyzed by using external data which were extracted from other sources like 

experimental studies in previous works, data provided from another facilities, etc. Unlike the previous studies 

related with estimation of mechanical properties of steels, in this study, the self-generated data derived from 

laboratory scaled productions were used. These data were collected from several R&D projects related with 

development of continuously cooled low carbon AHSS grades conducted in a steelmaking company. Firstly, MLR 

model proposed to predict mechanical properties of steels depending on the changes in chemical composition and 

cooling rates. It is found that MLR method provides faster and accurate solutions when the relationships between 

predictor and response variables are linear and distribution of data is uniform. However, MLR model falls short 

of desired performance when the phenomena is complex and needs to be evaluated by taking into consideration of 
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all dependent parameters. Then, the studies were carried out with ANN based model approach by using the same 

variables and it is seen that a better correlation can be obtained between predicted and actual values, even the 

distribution of data is non-uniform and there are non-linear relations between the predictor variables. Moreover, a 

comparative assessment of MLR and ANN models with external data set has been performed. Performance results 

showed that the response of ANN model to new external data have a better agreement with actual values compared 

to MLR model. It is accepted as a common knowledge that a small sized data set in training stage of ANN model 

results in a poor approximation (14, 25). In this study, it is shown that compared to MLR model, ANN model has 

not only better performance on predicting mechanical properties of continuously cooled low carbon steels but also 

its prediction accuracy can be enhanced by increasing the number of data with introducing external data set. It is 

thought that improved prediction capabilities offers a good opportunity for reducing the production costs and the 

required time by minimizing the need of plant trials for new material development studies. 

 

II. MATERIALS AND METHODS 

2.1 Experimental Alloys 

Laboratory scaled vacuum induction melting unit was used for producing experimental heats with various chemical 

compositions. Industrially produced special steel products were used as raw material for laboratory scaled melting 

process. Since the raw materials used in this study have already been produced by degassing while their industrial 

production, the purpose of using vacuum cabinet in laboratory scaled productions was to ensure prevention of re-

oxidation during re-melting and casting stages. Therefore, all the melting and casting processes were performed 

under a vacuum pressure of 20 mbar.  Together with the steel raw material, required amount of ferro additions 

were added to meet the desired chemical compositions. Sectional dimensions of 80x80 mm ingots were cast and 

homogenization heat treatment was applied at 1200 °C for 2 h. The chemical compositions of steel ingots were 

analyzed via optical emission spectroscopy (OES) method. The ingots were re-heated at 1150 °C for 45 mins., and 

then hot deformed into 45x45 mm by using 120-ton capacity hydraulic press. The deformation process consisted 

of sequenced three steps and 32% of reduction ratio was applied within each step. The final temperature of 

deformed samples was measured between 914 – 920 °C. After deformation stage, the deformed samples were 

continuously cooled to room temperature. In order to obtain various cooling rates, fan controlled air cooling unit 

was used with applying different cooling fan speeds. Cooling regime of each sample was measured and recorded 

by using a K-type thermocouple with data logger. The production route for this study is shown in Figure 1. 

Mechanical properties of continuously cooled productions were obtained via uniaxial tensile test. Yield strength 

(YS), ultimate tensile strength (UTS) and total elongation (TE) of each specimen were evaluated according to 

tensile test results. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) techniques were applied in order to investigate the microstructural properties of selected 

specimens. Metallographic sample preparation procedure that covers grinding, polishing and etching steps were 

carried out for OM and SEM examinations. After grinding by using water-cooled silicon carbide papers with 

different grit-sizes, 9 µm and 1 µm diamond pastes were used for coarse and fine polishing. Then samples were 

etched with 4% Nital solution. For TEM examinations, continuously cooled samples were cut into small pieces, 

then grinding was performed until achieving a thickness about 100 µm. Then, jet polishing technique was applied 

by using a solution consists of 2% picric acid, 5% hydrochloric acid and ethanol. Additionally, extraction 
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replication, which is a commonly used sample preparation technique for TEM examinations that provides an 

opportunity to characterize nano-sized particles, was performed to analyze possible carbide precipitations in 

samples containing 1,4% silicon [26-28]. X-ray diffraction (XRD) technique was also applied to high silicon 

contented samples in order to verify the carbide-free structure. XRD samples were prepared as following the same 

metallographic sample preparation procedure applied to OM and SEM samples. XRD analyses were performed 

with Cu-K radiation at a scan rate of 1 °C/min. 

 

 

Figure 1. Production route of laboratory scaled experimental heats 

 

2.2 Artificial Neural Network [ANN] Model 

2.2.1. Network selection 

MATLAB r2020b software was used for the construction and calculation of ANN model. The effectiveness of 

network-based prediction models relies on its network architecture and selected parameters. A Multi-Layer 

Perceptron (MLP) based feed forwarded ANN structure was proposed for the estimation of mechanical properties 

in this study. The MLP is one of the most common type of ANN and its topology consists of one or more hidden 

layer between input and output layers. The signals are received by input layer is transferred in forward direction 

to the nodes in hidden layers. Then each nodes performs a computation on received signal by using an activation 

function, and produces an output signal [29]. The purpose of using more than one hidden layer is generally related 

with decreasing the need of total number of nodes [30]. Depending on input parameters and complexity of the 

problem, it was decided that one hidden layer is a suitable selection for this study. The number of nodes in the 

hidden layer has a great influence on accuracy of training. It is known that, choosing too many nodes may cause 

an overfitting that means even a high performance acquired in training, insufficient response of network might be 
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observed in testing stage. On the contrary, if the hidden node number is selected fewer than the necessary, the 

training of network might be insufficient for learning. Although, there is no generalized approach or rule of thumb 

for selecting the number of hidden nodes, some suggestions were made in previous studies [31, 32]. These 

suggestions cover different calculation criteria such as “(𝑛𝑛 + 𝑜𝑜)/2”, “2𝑛𝑛” or “2𝑛𝑛 + 1” where “𝑛𝑛” and “𝑜𝑜” are the 

size of input and output variables, respectively. In this study, optimum hidden node number was determined by 

comparing results of trials in the range of “1” to “2𝑛𝑛 + 1”. 

Performance of each training, validation and test stages were calculated with Mean Squared Error (MSE) and 

Correlation Coefficient (R) according to Eq. 1 and Eq. 2, respectively; 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ (𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1               (1) 

 

𝑅𝑅 =  ∑ (𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓(𝑥𝑥)������(𝑦𝑦𝑖𝑖−𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓(𝑥𝑥)������)2𝑛𝑛
𝑖𝑖=1  �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

               (2) 

 

where 𝑛𝑛, 𝑦𝑦𝑖𝑖  and 𝑓𝑓(𝑥𝑥𝑖𝑖) are the total number of data, corresponding output and predicted data, respectively. A total 

number of 10 tests were performed with each hidden neuron trials and average performance results were compared. 

 

2.2.2. Data selection and pre-processing of data 

The chemical compositions and cooling rates (CR) of each experimental conditions were served as input data while 

YS, UTS and TE were used as output data.  A total of 174 sets of data were collected under varying conditions. 

The ranges of the data are given in Table 1. 

 

Table 1. The variables in input and output data sets 
Variable Description Unit Mean Std. Dev. Min. Max. 

Input      
Carbon (C) w% 0,2150 0,0382 0,1300 0,3304 
Silicon (Si) w% 0,6320 0,4407 0,2223 1,5650 

Manganese (Mn) w% 1,6987 0,2612 0,5680 2,2552 
Chromium (Cr) w% 1,0640 0,2121 0,2603 1,8986 

Molybdenum (Mo) w% 0,1418 0,0745 0,0100 0,3094 
Vanadium (V) w% 0,0121 0,0098 0,0019 0,0960 
Titanium (Ti) w% 0,0158 0,0095 0,0002 0,0572 
Niobium (Nb) w% 0,0126 0,0148 0,0038 0,0510 

Nitrogen (N) w% 0,0083 0,0016 0,0038 0,0129 
Boron (B) w% 0,0018 0,0011 0,0001 0,0038 

Cooling Rate (CR) °C⋅s-1 1,18 2,68 0,74 4,11 
Output      

Yield Strength (YS) MPa 678 79 344 959 
Tensile Strength (UTS) MPa 1080 124 611 1386 

Elongation (TE) % 13,9 1,9 10,1 25,5 
 

Randomly selected 70% of input data set were used for training the network while other pair of 15% were used 

for validation and test stages. Generally, slower learning rate and weak convergence are observed when processing 
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data have more than one dimension and if the size ranges of variables are different. As shown in Table 1, the input 

and output data have variables with different size ranges. For example, the average content of Mn (1,6987%) is 

approximately one thousand times larger than the average content of B (0,0018%) in steel compositions. Likewise, 

there is a large numerical difference between strength and elongation values in the output variables. In order to 

reducing the impact of difference in magnitudes and improving the training stability, the used data were normalized 

within the range of 0 and 1 by using Eq. 3; 

 

𝑥𝑥𝑛𝑛 = 𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

                 (3) 

 

where 𝑥𝑥𝑛𝑛 is the normalized value of the corresponding 𝑥𝑥; 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 and 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and minimum values 

of processing data, respectively. 

 

2.2.3. Training and testing of network 

The network was trained with Bayesian regularization backpropagation algorithm. The backpropagation performs 

an adjustment in model parameters after each forward pass by minimizing error of the network. Even though 

backpropagation is an effective method on minimizing of error, it may suffer from overfitting problem as explained 

before.  In such a case, regularization can help to overcome this issue by decreasing or removing the requirement 

of extensive cross-validation [33]. As one of the most common regularization algorithm, Bayesian regularization 

enables to avoid overfitting and improves the generalization of back-propagated network structure [34]. A 

schematic view of network structure is given in Figure 2. 

 

 

Figure 2. A schematic example of multi layered feed forwarded ANN 
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2.3 Multiple Linear Regression [MLR] Model 

The input data used in training stage of ANN model was also selected for regression model calculations as the 

independent predictors for estimating mechanical test results. The predicted values of YS, UTS and TE were 

calculated separately for each dependent outcome and results were given in an equation format as shown Eq. 4; 

 

𝑌𝑌 =  𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3 … + 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛              (4) 

 

where 𝑌𝑌 is the predicted or expected value of the dependent variable, 𝑥𝑥𝑖𝑖 is the independent variable or predictor 

and 𝑎𝑎𝑖𝑖  is the calculated regression coefficient for each variable. Data normalization was also applied to MLR 

model to have comparable regression coefficients for each independent predictor. 

 

2.4 Validating ANN and MLR Model with External Data Set 

In order to verify the accuracy of the developed ANN and MLR model, a new data set consisting of chemical 

composition of low carbon steel and corresponding cooling rates extracted from experimental results of previous 

studies [35-37] and served to each model as input or independent predictor. The predicted results were compared 

with mechanical test results shared by authors in their research papers. Input and target variables of 27 new external 

data set are given in Table 2. 

 

Table 2. The variables in input and target of external data sets 
Variable Description Unit Mean Std. Dev. Min. Max. 

Input      
Carbon (C) w% 0,2266 0,0254 0,1900 0,2800 
Silicon (Si) w% 1,3471 0,1941 1,1100 1,8310 

Manganese (Mn) w% 1,8331 0,3111 1,4800 2,4800 
Chromium (Cr) w% 0,6486 0,3791 0,0100 1,2000 

Molybdenum (Mo) w% 0,1096 0,0765 0,0060 0,2500 
Vanadium (V) w% 0,0084 0,0085 0,0030 0,0500 
Titanium (Ti) w% 0,0237 0,0095 0,0010 0,0330 
Niobium (Nb) w% 0,0250 0,0148 0,0021 0,0500 

Nitrogen (N) w% 0,0057 0,0020 0,0012 0,0080 
Boron (B) w% 0,0022 0,0011 0,0001 0,0033 

Cooling Rate (CR) °C⋅s-1 1,90 1,81 0,50 12,5 
Output      

Yield Strength (YS) MPa 906 129 662 1089 
Tensile Strength (UTS) MPa 1321 125 1054 1552 

Elongation (TE) % 10,9 3,3 5,0 16,2 
 

III. RESULTS AND DISCUSSION 

The ANN performances of various hidden neuron numbers are compared in Figure 3. It was seen that R results 

show a rising trend depending on the increment in the number of hidden nodes for the first eight trials, however 

all the correlation coefficients were resulted below 0,95 in this region. Even though relatively low significant 

differences were calculated, the overall performances became stable in trials with the number of hidden nodes nine 

and above. Based on the lowest MSE and the highest R results, eighteen hidden node was found as the best option 
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available as the overall performances compared. Therefore, a [11-1-3] network architecture with eighteen nodes 

in the hidden layer was purposed for the further study. 

 

 

Figure 3. Performance results of ANN with various hidden nodes 

 

The MLR analysis of the same selected variables used in the ANN model for YS, UTS and TE were resulted as 

follows; 

 

𝒀𝒀𝒀𝒀 =  −0,584 + 0,334[𝐶𝐶] + 0,018[𝑀𝑀𝑆𝑆] + 0,640[𝑀𝑀𝑛𝑛] + 0,748[𝐶𝐶𝐶𝐶] + 0,061[𝑀𝑀𝑜𝑜] +  0,131[𝑉𝑉] + 0,215[𝑇𝑇𝑆𝑆]−

0,107[𝑁𝑁] + 0,064[𝑁𝑁𝑁𝑁]− 0,012[𝐵𝐵] + 0,321[𝐶𝐶𝑅𝑅]              (5) 

 

𝑼𝑼𝑼𝑼𝒀𝒀 =  −0,644 + 0,376[𝐶𝐶] + 0,011[𝑀𝑀𝑆𝑆] + 0,714[𝑀𝑀𝑛𝑛] + 0,777[𝐶𝐶𝐶𝐶] + 0,109[𝑀𝑀𝑜𝑜] + 0,124[𝑉𝑉] + 0,259[𝑇𝑇𝑆𝑆] −

0,150[𝑁𝑁] + 0,080[𝑁𝑁𝑁𝑁] − 0,06[𝐵𝐵] + 0,208[𝐶𝐶𝑅𝑅]              (6) 

 

𝑼𝑼𝑻𝑻 =  1,11 − 0,215[𝐶𝐶] + 0,003[𝑀𝑀𝑆𝑆] − 0,539[𝑀𝑀𝑛𝑛] − 0,643[𝐶𝐶𝐶𝐶] + 0,110[𝑀𝑀𝑜𝑜] − 0,208[𝑉𝑉] − 0,293[𝑇𝑇𝑆𝑆] +

0,142[𝑁𝑁] − 0,187[𝑁𝑁𝑁𝑁] + 0,127[𝐵𝐵] − 0,273[𝐶𝐶𝑅𝑅]              (7) 

 

C is the main alloying element in steel and generally with the increasing C content; the hardness and the strength 

proportionally increase while the toughness decreases [38]. The correlation coefficient of C calculated positive for 

YS and UTS while negative for TE as its expected contribution explained above. Mn and Cr are commonly added 

to low carbon steel in order to retrieve the reduced strength due to lack of C content without compromising the 
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toughness. Additionally, the microstructural contribution of Mn and Cr in continuously cooled low carbon steels 

is to improve mechanical properties by promoting transformation of bainitic microstructure, which is relatively 

harder than ferrite and pearlite [39, 40]. The microstructural changes depending on the amount of Mn and Cr in 

the composition of laboratory scaled productions are shown in Figure 4. The increase of these elements provides 

a bainite dominant microstructure by suppressing ferrite and pearlite transformations as the steel cooled down from 

high temperature austenite region to room temperature, and helps to improve YS and UTS. This mechanism 

confirms the correlation coefficient calculation results of Mn and Cr for MLR model as the most effective input 

parameters enhancing YS and UTS. 

 

 

 

 

Figure 4. Optical microscope (OM) images of continuously cooled low carbon steel samples (a) lower Mn+Cr content (b) higher Mn+Cr 

content (F: ferrite, P: pearlite and B: bainite) 

 

 

 

The major purpose of the addition of Si into continuously cooled steels is to retard the precipitation of carbides 

and provide a carbide-free microstructure, which is beneficial for mechanical properties of steel. The previous 

studies showed that carbide-free microstructure obtained with high Si addition helps to improve both strength and 

elongation properties of steel (41-43). TEM images of samples that have over 1,40% of Si confirm the absence of 

any carbide formations as shown in Figure 5. The dark field TEM image points out the presence of retained 

austenite on the edges of bainite plate while there is no sign of cementite or any other carbide formation around 

the bainitic microstructure. Additionally, X-ray diffraction (XRD) patterns shown in Figure 6 further confirm that 

only body-centered cubic () and face-centered cubic () structured phases are present, without diffraction peaks 

of carbides detectable. According to MLR results, Si addition has a positive effect on both YS, UTS and TE, which 

supports the phenomena explained above. However, the magnitudes of the correlation coefficients of Si are 

calculated lower than its expected microstructural contribution. The bimodal shaped distribution of Si in data set 

is thought as to be the main reason for the lower correlation coefficients as shown in Figure 7. 
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Figure 5. TEM images of sample with 1.44% silicon content (a) bright field image (b) dark field image 

 

 
Figure 6. XRD patterns of sample with 1.44% silicon content 

 

 
Figure 7. The bimodal distribution of Si contents of experimental heats 
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Similar to Si, MLR results showed that Mo addition also helps to improve both YS, UTS and TE. Previous studies 

indicated that a proper amount of Mo addition in continuously cooled low carbon steels provides an enhancement 

in strength by changing the microstructure from granular bainite to lath like upper bainite. Moreover, it was also 

reported that martensite/austenite (M/A) islands becomes finer with the addition of Mo which assists to improve 

elongation [44]. The effect of Mo to bainite morphology is confirmed with the SEM images as shown in Figure 8. 

 

 

Figure 8. SEM images of continuously cooled low carbon steel (a) without Mo addition (b) with Mo addition (GB: granular bainite, LL-B: 

lath like bainite, M/A: martensite/austenite) 

 

The significant positive contributions of micro-alloying elements such as Ti, Nb and V were also observed in MLR 

results. These elements are strong carbide, nitride and/or carbo-nitride formers and their influence on mechanical 

properties of continuously cooled low carbon steels by precipitation hardening and grain size refinement 

mechanism have been reported [45]. The prior austenite grain boundary (PAGB) sizes of trial heats with same 

cooling regime and chemical composition except Nb addition are compared in Figure 9. It is seen that the average 

grain size is decreased from 32,2 µm to 13,4 µm by adding 447 ppm Nb while YS and UTS increase 31,2% and 

15,0%, respectively. As shown in Figure 10, Energy Dispersive Spectroscopy (EDX-SEM) results also confirmed 

the effective role of Nb precipitates in pinning mechanism of austenite grain boundaries and inhibiting the grain 

growth. 

 

 

Figure 9. The comparison of PAGB sizes (a) without Nb addition (b) with Nb addition 
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Figure 10. EDX-SEM results of Nb precipitates found in continuously cooled low carbon steel with 447 ppm Nb addition 

 

The cooling rate (CR) has a strong effect on the transformation of austenite to different microstructural constituents 

resulting with the changes in mechanical properties [46]. It is possible to generate martensitic and/or bainitic 

microstructure instead of polygonal ferrite and pearlite by accelerating the CR which provides higher YS and UTS. 

Figure 11 shows the effect of CR on the microstructural changes for continuously cooled low carbon steel. It is 

seen that accelerating the CR from 0,74 °C/s to 2,40 °C/s enables bainite dominant microstructure by suppressing 

ferrite and pearlite for the same steel. The microstructural changes contribute an increment in both YS and UTS 

while TE decreases from 18,9% to 13,6%. The MLR result confirms the expected contribution of CR for both YS, 

UTS and TE. 

 

 

Figure 11. The microstructures of continuously cooled low carbon steel (a) lower cooling rate (b) higher cooling rate 
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In continuously cooled low carbon steels, the hardenability is increased by suppressing the nucleation of ferrite 

with even small amounts of B addition [47]. However, in order to benefit from its advantages on mechanical 

properties, B should be available as soluble atoms instead of precipitates at the grain boundaries [48]. For this 

purpose, a proper amount of Ti is generally added to molten steel in order to stabilize N and prevent B to precipitate 

as BN. Moreover, Mo and Nb additions are preferred to avoid grain boundary segregations of B element [49]. 

Nevertheless, in contrast to the explained phenomena, the correlation coefficient of B is calculated as negative for 

both YS and UTS while positive for TE in MLR model predictions. 

In general, MLR performs a good correlation with expected microstructural effects on mechanical properties in 

case of significant differences for predominant predictors such as C, Mn, Cr and CR. However, when the 

phenomena is complex and needs to be evaluated by taking into consideration of all dependent parameters, as in 

the example of the effect of B addition in continuously cooled low carbon steels, MLR falls short of desired 

performance. Additionally, the individual indicators of each predictor strongly depends on the distribution of data, 

therefore any disordered shapes except uniform distribution as in the example of Si in this study might conduct to 

a misleading result. 

 

Table 3. MSE and R performance results of ANN and MLR models 

Performance 
Indicator 

ANN Model 
[Overall] 

ANN Model MLR 
Model 

[Overall] 

MLR Model 

YS UTS TE YS UTS TE 

MSE 0,0030 0,0027 0,0027 0,0037 0,0090 0,0071 0,0062 0,0138 
R 0,974 0,951 0,967 0,935 0,921 0,865 0,920 0,728 

 

 

The overall MSE and R performance results of each output variable for the developed ANN and MLR models are 

given in Table 3. The ANN model shows a better prediction accuracy with lower MSE and higher R results 

compared to MLR model. The performance difference is more significant in TE prediction in which MLR model 

has the lowest R-value. Figure 11 also indicates a comparison of the data fitting both models to predict YS, UTS 

and TE. A better correlation was found between predicted and actual values for the ANN model compared to MLR 

model. 

 

 

 

Figure 11. The prediction performance comparison of ANN and MLR models via data fitting (a) YS (b) UTS and (c) TE 
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The accuracy of the developed ANN and MLR models were also tested with 27 external data set extracted from 

previous studies. In order to compare the individual performance of each new data, Absolute Errors (AE) of each 

output and Mean Absolute Percentage Error (MAPE) of overall data were also calculated according to Eq. 8 and 

Eq. 9. 

 

𝐴𝐴𝑀𝑀 =  �𝐴𝐴𝑖𝑖−𝑃𝑃𝑖𝑖
𝐴𝐴𝑖𝑖

�                  (8) 

 

𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ �𝐴𝐴𝑖𝑖−𝑃𝑃𝑖𝑖

𝐴𝐴𝑖𝑖
�𝑛𝑛

𝑖𝑖=1                 (9) 

 

where n is the number of total data set, A and P values are the actual and predicted results, respectively. The 

predicted YS, UTS and TE values of ANN and MLR models with AE results for each new data set are given in 

Figure 12. 
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Figure 12. AE Performance results of ANN and MLR models with external data set (a) YS (b) UTS and (c) TE 

 

The MAPE results of the models are given in Table 4. According to AE and MAPE results, better prediction 

accuracy with lower errors were calculated for YS and UTS compared to TE in both models. The possible reason 

behind of the poor prediction performance of TE for external new data is contributed with the limited distribution 

of values in a narrow range. Additionally, the chemical composition and cooling rates of new data set have some 

incompatible values with the input of experimental data set used in the developed ANN and MLR models. For 

example, Si and Mn contents of some new data are slightly higher than maximum value of experimental data while 

there are some other data that have lower Cr, Mo and CR than of those used for developing the models. Therefore, 

it is thought that the lower prediction capabilities might be arise from out-of-range data in the new data set. This 

assumption is also confirmed with the previous studies [50, 51] that report the outliers in test data may cause a 

significant decrease in prediction accuracy as the percentage and magnitude of the differences increase. 

 

 

 

Table 4. MAPE results of ANN and MLR models with external data set 

Performance Indicator ANN Model MLR Model 
YS UTS TE YS UTS TE 

MAPE 8,6% 6,4% 14,9% 28,6% 20,3% 52,3% 
 

 

 

 

 

In order to evaluate the prediction performance of models in detail, the external data was divided into two sub-

groups. The first group was composed by selecting data that are completely included in experimental data set. The 

other group was consists of “unseen” data which have one or more out-of-range input value compared to data used 

for the training section. The newly categorized data sets are given in Table 5. 
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Table 5. The input and output variables of divided new data sets 

Variable Description Unit Experimental Data In-range Data Out-of-range Data 
Min. Max. Min. Max. Min. Max. 

Input        
Carbon w% 0,1300 0,3300 0,2000 0,2600 0,1900 0,2800 
Silicon w% 0,2223 1,5650 1,1800 1,5400 1,1100 1,8310 

Manganese w% 0,5680 2,2552 1,4900 2,0200 1,4800 2,4800 
Chromium w% 0,2600 1,8986 0,3000 1,2000 0,0100 1,0020 

Molybdenum w% 0,0100 0,3094 0,0710 0,2500 0,0020 0,2290 
Vanadium w% 0,0019 0,0960 0,0048 0,0080 0,0010 0,0500 

Titanium w% 0,0002 0,0571 0,0100 0,0330 0,0010 0,0330 
Niobium w% 0,0038 0,0910 0,0150 0,0500 0,0010 0,0350 
Nitrogen w% 0,0037 0,0110 0,0059 0,0080 0,0012 0,0080 

Boron w% 0,0001 0,0038 0,0010 0,0033 0,0001 0,0033 
Cooling Rate °C⋅s-1 0,74 4,09 0,89 4,00 0,50 12,50 

 

The MAPE results of new sub-divided data are shown in Table 6. Although a remarkably decrease especially in 

TE output was calculated, the MAPE results of MLR are still higher than of those error results of the developed 

ANN model. The MAPE results also indicate that the respond of the ANN model to new external test data remains 

stable even so the presented data includes one or more values that do not take part in the range of training data. 

 

Table 6. MAPE results of ANN and MLR models with divided new data set 

Model 
All New Data Set 

[27 Data] 
In-range Data Set 

[11 Data] 
Out-of-range Data Set 

[16 Data] 
YS UTS TE YS UTS TE YS UTS TE 

ANN [MAPE] 8,6% 6,4% 14,9% 7,9% 7,2% 14,3% 9,2% 5,9% 15,3% 
MLR [MAPE] 28,6% 20,3% 52,3% 22,0% 17,7% 32,9% 33,2% 22,2% 65,7% 

 

IV. CONCLUSIONS 

Based on the investigations of the present study, the following conclusions can be drawn; 

 Depending on the magnitude and direction of the correlation coefficients, MLR model successfully 

predicted the effects of major predictor inputs such as C, Mn, Cr, Mo and CR on mechanical properties 

of steel in accordance with metallurgical aspects. However, the correlation coefficients of Si and B was 

calculated in conflict with their expected impacts by means of their microstructural contributions. This 

result indicates that the prediction capability of MLR model has a high dependency on uniform 

distribution of data. Furthermore, MLR model has a relatively low precision ratio when phenomena is 

complex and needs to be considered with more than one independent predictor. 

 The MAPE results showed that the response of ANN model to new external data was found in better 

agreement with actual values compared to MLR model. In particular, the calculated errors in MLR model 

distinctively rises if the predicted data takes place in a narrow range. 

 It was seen that even though the performance of MLR can be increased significantly by excluding out-

of-range data from input predictors, the prediction accuracy remains lower than the developed ANN 

model results. However, the performance of ANN model resulted in a better accuracy with considerable 

stability even the newly tested input values are not included in training data set. 

 In general, compared to MLR model, ANN model has not only better performance on predicting 

mechanical properties of continuously cooled low carbon steels but also its prediction accuracy can be 

enhanced by increasing the number of data with introducing external data set. It is thought that improved 
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prediction capabilities offers a good opportunity for reducing the production costs and the required time 

by minimizing the need of plant trials for new material development studies. 
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