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Abstract                                                 

Ensuring atmospheric and radiometric consistency among the frameworks of satellite data used in regional 
studies is a critical requirement for change detection studies employed in regional planning monitoring. The 
purpose of this article is to provide a guide for the necessary atmospheric correction and radiometric 
normalization processes required in generating environmental data at the landscape level for physical planning. 
In this context, adjustments were made to remove atmospheric effects before merging multiple ASTER satellite 
image frames used in a project supported by TÜBİTAK, covering landscape-level environmental inventory and 
monitoring. The Dark Object Subtraction method with the Cos(t) model was utilized in the atmospheric correction 
process. Subsequently, separate regression relationships were computed for each band by considering 
overlapping areas on adjacent tracks of ASTER data, and radiometric normalization was performed based on 
these regression equations. Thus, differences between satellite images used in monitoring land changes and 
affecting multiple frames were minimized.  

Keywords: Radiometric normalization, land cover mapping, change detection, ASTER. 

Peyzaj Düzeyinde Çevresel İzleme İçin Uydu Verilerindeki 
Atmosferik ve Radyometrik Etkilerin Normalleştirilmesi: Akdeniz 

Bölgesi Örneği 
Öz                                 

Günümüzde onlarca faklı platform ve aygıttan çok bantlı ve yüksek yersel çözünürlüğe sahip uydu verileri 
sağlanmaktadır. Bölgesel çalışmalarda kullanılan uydu verilerinin çerçeveleri arasında atmosferik ve radyometrik 
uyumun sağlanması, bölgesel planlama çalışmalarının izlemede kullanılan değişim çalışmaları için önemli bir 
gereksinimdir. Bu makalenin amacı, fiziksel planlamaya peyzaj düzeyinde çevresel veri üretilmesi sürecinde gerekli 
olan atmosferik düzeltme ve radyometrik normalizasyon çalışması için bir rehber sunulmasıdır. Bu kapsamda 
TÜBİTAK tarafından desteklenen, peyzaj düzeyinde çevresel envanter ve izlemeyi kapsayan projede kullanılan 
birden fazla ASTER uydu görüntü çerçevesinin birleştirilmesi öncesinde, atmosferik etkilerin ortadan kaldırılması 
için düzeltmeler yapılmıştır. Atmosferik düzeltme işleminde Cos(t) modeli ile Koyu Obje Çıkarma (DOS) yöntemi 
kullanılmıştır. Daha sonra ASTER verilerinin komşu izleri üzerindeki çakışan bölgeler dikkate alınarak her bant için 
ayrı ayrı regresyon ilişkileri hesaplanmış, söz konusu regresyon eşitlikleri dikkate alınarak radyometrik 
normalizasyon yapılmıştır. Böylece arazi değişimlerinin izlemede kullanılan ve birçok çerçeveyi ilgilendiren uydu 
görüntüleri arasındaki farklılıklar minimuma indirilmiştir.  

Anahtar kelimeler: Radyometrik normalizasyon, arazi değişim haritalama, değişim tespiti, ASTER. 
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1. Introduction 

Studies related to landscape planning and management require consistent, georeferenced, regularly 
obtained data covering large areas. Nowadays, information technologies comprising remote sensing 
and geographic information systems (GIS) offer opportunities to enhance the processes of collecting, 
organizing, correlating, and analyzing data pertaining to rural (Purwanto et al., 2023; Ruiz et al., 2022; 
Lelong & Herimandimby, 2022; Garcia-Pardo et al., 2022; El Mortaji et al., 2022; Asam et al., 2022; 
Gasparovic & Dobrinic, 2021; Akın & Gül, 2020; Tassri et al., 2019; Khorrami et al., 2019) and urban (Ul 
& Mak, 2021; Ghaseminik et al., 2021; Luo et al., 2020; Chetia et al., 2020; Tavares et al., 2019) 
landscapes, thus presenting significant potential for landscape planning and management processes. 
Consequently, these technologies facilitate the generation of numerical predictions concerning habitat 
conditions and changes in natural and cultural ecosystems at the level of landscape units. This enables 
more effective monitoring and analysis of landscape dynamics, supporting informed decision-making 
in various fields such as environmental management, urban planning, agriculture, forestry, and 
biodiversity conservation. Thus, the integration of remote sensing and GIS technologies holds promise 
for advancing landscape research and management practices. 

Changes occurring in land cover, coastal lines, or wetland systems are among the key indicators of 
landscape-level changes (Rostami & Fathizad, 2022; Getachew & Manjunatha, 2022; Islam et al., 2019) 

Identifying landscape-level environmental indicators and assessing them with auxiliary data layers are 
crucial aspects of landscape monitoring. In this context, satellite remote sensing, which has undergone 
significant evolution over the past approximately 50 years since its inception for civilian purposes, 
provides advantages such as low data and labor costs per unit area, as well as speed, repeatability, and 
high monitoring frequency. Presently, studies utilizing remotely sensed data are conducted in various 
application areas, ranging from determining temporal and spatial variability of vegetation cover (İşler 
& Aslan, 2021) to detecting forest fires (Karaca & Güllü, 2019). These applications demonstrate the 
versatility and effectiveness of remote sensing in monitoring and managing landscapes, contributing 
to informed decision-making and sustainable resource management practices. 

Geospatially referenced resource inventories (e.g., land cover and land use maps) covering large areas 
and landscape-level environmental monitoring enabling change detection provide significant 
contributions to decision-making in planning from global to local scales (Rauf et al., 2022; Aghababaei 
et al., 2022; Bujan et al., 2021; Boussadia-Omari et al., 2021; Khatami et al., 2020). As evident from this 
description of landscape-level environmental monitoring, satellite imagery is primarily used in studies 
ranging from mapping land cover, detecting changes, or both, conducted at various scales from global 
to local. These applications underscore the importance of remotely sensed data in informing decision-
making processes related to environmental management, land use planning, and sustainable 
development initiatives. By leveraging satellite imagery and advanced geospatial technologies, 
stakeholders can better understand landscape dynamics, assess environmental changes over time, and 
formulate evidence-based policies and strategies for effective resource management and conservation 
efforts. 

The diversity and abundance of current satellite data does not diminish the importance of past 
datasets. Past data can be of critical importance as the need for information on past land cover 
increases in monitoring programs. In regional studies, an area of interest is generally covered by 
multiple scenes. Therefore, radiometric consistency between image scenes must be ensured for 
mapping and change detection. Inconsistencies may exist between paths and/or rows. They may also 
be due to different environmental conditions or sensor calibration between imaging data. 
Normalization of these inconsistencies is a prerequisite for many mapping and change detection 
studies. The objective of this paper is to provide a guide to radiometric normalization, which is essential 
in the production of landscape-level environmental data for spatial planning. 
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2. Material and Method 

2.1. Material 

2.1.1. Study area 

The research area covers the districts of Mersin province, namely Mersin Center, Tarsus, and Erdemli, 
located on the Mediterranean coast of Turkey. Considering the sizes of Mersin Center, Tarsus, and 
Erdemli districts, the research area has a total area of 5874 km². The southern boundary of the research 
area is formed by the Mediterranean Sea, while the area is separated from the interior of Anatolia by 
the Taurus Mountains to the north. The annual average temperature of the research area is 18.7°C, 
while the average temperature during the winter months ranges from 9 to 15°C. The annual total 
precipitation amount in the area is approximately 594 mm. Characterized by a typical summer drought, 
December is the rainiest month, whereas August is the driest. Rainfall values measured on the coast 
are lower than those in the higher elevations (MGM, 2022). 

The Taurus Mountains, surrounding the research area from the north, extend in an east-west direction 
as a high ridge between the Konya Plain of Central Anatolia and the Mediterranean. This mountain 
range gradually recedes from the sea towards the east of the research area, creating extensive plains 
between the mountains and the sea. The central districts of Mersin and Tarsus are situated in these 
plains. The section of the Central Taurus Mountains within the borders of Mersin province is referred 
to as the Bolkar Mountains. The Bolkar Mountains, with the highest peak being Mount Medetsiz (3524 
m), separate the Mersin territory from the Anatolian plateau. The main characteristic of the Western 
and Central Taurus Mountains is their formation of high and continuous ridges, interspersed with vast 
plateau plains. 

One of the significant geomorphological units within the research area is valleys. Rivers are deeply 
entrenched within these valleys. The Mediterranean climate characteristics extend from south to 
north along these valleys deep into the Taurus Mountains. Terraces, harboring fertile agricultural soils, 
are found on the slopes of these valleys. Among these valleys and plains, notable ones include the 
Tarsus Valley and the Tarsus and Berdan Plains. 

2.1.2. Terra ASTER data 

The satellite data set used in the research is derived from the Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) obtained through the American-Japanese joint venture TERRA 
satellite. In order to conduct land cover mapping for the current state of the area, seven ASTER Level 
3A frames covering the entire area were utilized (Abrams et al., 2008). The ASTER data consists of 9 
bands obtained at visible and near-infrared energy levels and 5 bands obtained at thermal infrared. 
While the visible and near-infrared bands have a spatial resolution of 15 meters, the mid-infrared data 
has a spatial resolution of 30 meters, and the thermal infrared data has a spatial resolution of 90 
meters (Table 1) (Abrams et al., 2008). 

Table 1. Band values in ASTER datasets (Abrams et al., 2008)  

Band Wavelength(µm) Resolution (m) Definition 

VNIR_Band1 0.520 - 0.60 15 Visible-green band 

VNIR_Band2 0.630 - 0.690 15 Visible-red band 

VNIR_Band3N 0.760–0.860 15 near infrared band 

VNIR_Band3B 0.760–0.860 15 near infrared band 

SWIR_Band4 1.600–1.700 30 shortwave infrared band 

SWIR_Band5 2.145–2.185 30 shortwave infrared band 

SWIR_Band6 2.185–2.225 30 shortwave infrared band 

SWIR_Band7 2.235–2.285 30 shortwave infrared band 

SWIR_Band8 2.295–2.365 30 shortwave infrared band 

https://en.wikipedia.org/wiki/Micrometre
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ASTER data has been preferred due to its high spatial and spectral resolution. The general statistics of 
the data sets are provided in Table 2. 

Table 2. Statistics of visible and near infrared data bands of ASTER datasets used 

Data set Date  Band Min Max Ort () SD* () 

AST3A1_060529_0525vnir 29.05.2006  1 0 255 77,909 61,394 

   2 0 255 57,159 49,909 

   3N 0 255 62,984 52,828 

   3B 0 255 57,359 49,048 

AST3A1_060529_0526vnir 29.05.2006  1 0 255 47,383 37,329 

   2 0 255 25,123 24,676 

   3N 0 255 18,215 26,444 

   3B 0 226 15,635 23,631 

AST3A1_051109_0527vnir 09.11.2005  1 0 255 36,495 29,786 

   2 0 255 20,887 21,997 

   3N 0 255 15,398 19,442 

   3B 0 255 17,976 23,012 

AST3A1_050517_0574vnir 17.05.2005  1 0 255 96,902 74,610 

   2 0 255 81,815 66,594 

   3N 0 255 72,205 53,551 

   3B 0 255 70,388 52,263 

AST3A1_050517_0575vnir 17.05.2005  1 0 255 83,466 64,860 

   2 0 255 65,682 55,848 

   3N 0 255 67,287 52,155 

   3B 0 228 63,668 50,510 

AST3A1_060529_0576vnir 29.05.2006  1 0 255 87,838 68,422 

   2 0 255 69,905 58,275 

   3N 0 255 68,740 50,724 

   3B 0 255 63,754 47,331 

AST3A1_060824_0577vnir 24.08.2006  1 0 255 73,935 54,831 

   2 0 255 55,217 44,100 

   3N 0 255 52,753 39,023 

   3B 0 255 54,534 40,259 

*SD: Standard Deviation 

 

2.2. Method 

Regional land cover and land use mapping are increasingly being conducted with data of higher spatial 
resolution. However, the increase in spatial resolution leads to an increase in the amount of input data 
used and consequently in the number of frames used, as well as in the amount of work and time 
required for data processing. One of the significant stages in studies containing multiple image frames 
is the production of normalized image mosaics. This approach, which involves classifying a single 

Continued from Table1 

SWIR_Band9 2.360–2.430 30 shortwave infrared band 

TIR_Band10 8.125–8.475 90 Longwave/thermal infrared band 

TIR_Band11 8.475–8.825 90 Longwave/thermal infrared band 

TIR_Band12 8.925–9.275 90 Longwave/thermal infrared band 

TIR_Band13 10.250–10.950 90 Longwave/thermal infrared band 

TIR_Band14 10.950–11.650 90 Longwave/thermal infrared band 
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merged image instead of individually classifying image frames, may lead to the generation of land 
cover information with higher accuracy. 

Image preprocessing is applied to minimize potential errors that may arise from spatial and radiometric 
discrepancies in satellite data before the stages of image preprocessing, classification, and change 
detection. In regional mapping and change detection applications where numerous datasets are 
processed, georegistration and radiometric correction are two critical stages of preprocessing. 
Georegistration involves resampling satellite data from image to image and/or entering point 
coordinates from the field-collected reference data and other images. Thus, the spatial coordinates in 
satellite data can be expressed in any projection system such as geographic latitude/longitude or 
Universal Transverse Mercator (UTM). 

The ground coordinates collected for the georeferencing of the images were determined by 
considering easily identifiable features such as intersections of main roads, port/jetty facilities, and 
surrounding human-made objects that contrast with the environment. This information was gathered 
with the assistance of GARMIN GPSmap 276C. The data collected in the field with GPS were 
georeferenced by combining them, if necessary, with data from topographic maps.Change detection 
studies conducted using the radiometric properties of images generally require the use of 
radiometrically normalized/corrected images. 

Considering the challenges of correction, relative radiometric correction is used as an alternative (Tan 
et al., 2012; Biday & Bhosle, 2012; Sadeghi et al., 2017) 

In this approach, unlike absolute methods, simultaneous in situ measurements during satellite passage 
are not required. The fundamental approach in relative correction methods involves using a reference 
image. The radiometric properties of other images are adjusted to fit the reference dataset (Liu et al., 
2022; El Hajj et al., 2008). 

The Dark Object Subtraction (DOS) method is a widely used atmospheric correction technique. In this 
method, it is assumed that any brightness value recorded by the sensor for a pixel corresponding to a 
dark object or feature on the Earth's surface is due to atmospheric path radiance. The Cos(t) model 
incorporating the cosine of solar zenith angle (Chavez, 1996; Chavez, 1988), and an extended DOS 
method estimating the effects of absorption by atmospheric gases and Rayleigh scattering, are 
commonly employed in atmospheric correction (Chavez, 1996). 

The utilization of Pseudo-Invariant Features (PIF) or Dark and Bright Pixel Clusters (DB) are among 
other normalization methods (Schroeder et al., 2006). 

The reflection of PIFs in multiple images can be employed without the need for absolute correction of 
surface reflectance, ensuring that these images appear to have been acquired under the same sensor, 
calibration, and atmospheric conditions (Kiage et al., 2007; Liu et al., 2012). 

PIF-based normalization, which involves calculating image-based linear regressions to compare 
images, requires the selection of target features whose reflectance values are assumed to remain 
constant over time. PIFs can be selected manually or automatically (Sadeghi et al., 2017; Barazzetti et 
al., 2016). Targets such as asphalt/concrete roads, roofs, parking lots, airports, deep lakes, dense and 
closed pine forests, beaches, concrete surfaces, and both new and old asphalt surfaces can be used as 
PIFs (Rahman et al., 2015; Yuan & Elvidge 1996; Yang & Lo, 2000). 

Image-based normalization processes typically rely on linear regression models. The accuracy of 
georegistration is crucial when using all pixels in both images to calculate normalization coefficients. 
As mentioned above, customizing the comparison reflectance dataset through PIFs or "dark and bright 
pixel clusters" can contribute to producing more accurate results (Schott et al., 1988). 

In cases where multiple images obtained at different dates are used to create a mosaic, a dataset of 
unchanged objects can be selected from the overlapping areas. In this study, among the 7 images from 
3 adjacent paths, the images from the first path were acquired on May 17 2005, the images from the 
second path on May 29 2005 and the images from the third path on August 24 2006 and November 9 
2005. Accordingly, the second path was considered as the reference; the images from the first and 
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third paths were normalized accordingly. Regression used for radiometric normalization was applied 
between the visible and near-infrared wavelengths of the 1st, 2nd, and 3rd bands of the ASTER data 
on the neighboring paths, resulting in corrected images ready for classification. 

3. Research Findings and Discussion 

3.1. Atmospheric Correction and Normalization Design 

Since the launch of the first Landsat satellite in 1972, numerous normalization methods have been 
developed. A significant portion of these methods involves using a reference frame within a dataset 
containing multiple frames that are minimally affected by atmospheric conditions and normalizing 
other frames to this reference frame. These radiometric matching methods mentioned are divided into 
two main categories. The first category relies on generating a function that relates radiance values of 
the same features in the overlapping areas of two adjacent frames, while the second category is based 
on matching targets with a specific surface reflectance regardless of their locations. 

In the first category, methods utilize different regression forms to correlate unchanged objects in 
overlapping areas, while in the second category, there is no requirement for the unchanged targets to 
be the same objects within two different frames. Regression applied to overlapping areas for the 
radiometric normalization of frames to be used in mosaic formation has been widely used in regional 
projects. 

Atmospheric correction and radiometric normalization are preprocessing methods commonly required 
in monitoring studies with multispectral and multi-temporal coverage. These processes constitute a 
significant stage in monitoring studies of various geographical scopes and scales, ranging from urban 
change detection and monitoring (Jenerowicz et al., 2019) to detecting changes in tropical rainforests  
(Lobo et al., 2015), monitoring bioproductivity in grassland areas  (Prieto-Amparan et al., 2018) and 
predicting biomass and succession in forest ecosystems (Janzen et al., 2006; Schroeder et al., 2006; 
Lopez-Serrano et al., 2016). Additionally, these processes are often necessary for change detection 
requiring time-series analyses (Gu et al., 2011). 

In the study, atmospheric correction was initially performed by combining data acquired from the 
same paths and on the same dates for radiometric normalization of ASTER data. Subsequently, 
regression functions between adjacent paths were calculated, taking into account these steps, and 
using these regression functions, mosaics were obtained from the corrected images in the final stage 
(Figure 1). 

The atmospheric correction process utilized a image-based method known as the Cos(t) method. This 
approach relies on normalizing atmospheric transmittance by accounting for the effects caused by 
varying solar zenith angles seasonally. Based on the calculation of the cosine of solar zenith angle, this 
method incorporates the advantages of the Dark Object Subtraction (DOS) method. The DOS method 
assumes that observed reflectance values differing from zero in satellite data for areas known to have 
reflectance values close to zero are due to atmospheric effects. For atmospheric correction, ASTER 
reflectance values were first converted to radiance values. This conversion is performed as described 
in Equation 1 (Pudale & Bhosle, 2007). 

Radyans = (Reflectance value– 1) x Unit Conversion Coefficient (1) 

The transformation coefficients for ASTER data are provided in Table 3, while the maximum radiance 
values are given in Table 4. 

The highest and lowest reflectance values calculated for ASTER data frames, taking into account the 
values mentioned above, are presented in Table 5 along with the reflection values (DN pus) observed 
in the satellite data in areas where a zero value is expected. These values are compiled from the header 
files of ASTER data, which contain information such as solar elevation, date and time of data 
acquisition, and viewing angle. 
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Figure 1. Reference (2) and neighboring (1, 3a, 3b) frames in radiometric normalization of aster data 

Table 3. Transformation coefficients for each band in ASTER data (Pudale & Bhosle, 2007) 

 Conversion Coefficient (W/(m2*sr*μm)/DN) 

Band High gain Normal gain Low gain 1 Low gain 2 

1  

2  

3N  

3B  

0,676  

0,708  

0,423  

0,423  

1,688  

1,415  

0,862  

0,862  

2,25  

1,89  

1,15  

1,15  

N/A  

 

Table 4. Highest radiance values for different gain values of the ASTER data bands 

 Highest reflectance value (W/(m2*sr*μm) 

Band High gain Normal gain Low gain 1 Low gain 2 

1  

2  

3N  

3B  

170,8  

179,0  

106,8  

106,8  

427  

358  

218  

218  

569  

477  

290  

290  

N/A  

Table 5. Parameters used in atmospheric correction of ASTER data 

Band Min. reflectance 

(Lmin)  

Max. reflectance 

(Lmax)                                                         

DN  

Pus 

Solar 

Elevation (o) 

Time Date Angel 

(o) 1_1 -0,676 171,7 53 67,801853 08:36:55 17.05.2005 2,837 

1_2  -0,708 179,8 22 67,801853 08:36:54 17.05.2005 2,829 

1_3  -0,862 218,95 11 67,801853 08:36:54 17.05.2005 2,863 

2_1 -0,676 171,7 56 69,388783 08:31:38 29.05.2006 -5,677 

2_2 -0,708 179,8 24 69,388783 08:31:37 29.05.2006 -5,669 

2_3 -0,862 218,95 11 69,388783 08:31:36 29.05.2006 -5,7 

3a_1 -0,676 171,7 78 60,525251 08:37:16 24.08.2006 8,588 

3a_2 -0,708 179,8 37 60,525251 08:37:15 24.08.2006 8,503 

3a_3 -0,862 218,95 24 60,525251 08:37:14 24.08.2006 8,567 

3b_1 -0,676 171,7 37 35,475225 08:34:58 09.11.2005 8,588 

3b_2 -0,708 175,58 16 35,475225 08:34:57 09.11.2005 8,487 

3b_3 -0,862 140,15 8 35,475225 08:34:57 09.11.2005 8,567 
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3.2. Testing phase 

The appearance of the test area, where two different paths were merged with mosaic operations 
before and after this stage, is illustrated in Figure 2. 

 

Figure 2. Mosaic images of the test area before and after normalization (the difference between neighboring 
traces before normalization is clearly visible) 

3.3. Calculation and Merging of Corrected İmages 

The regression functions used for radiometric normalization of neighboring paths of ASTER data are 
provided in Figure 3. 

 

Figure 3. The regression relationship between the green (left), red (middle) and infrared (right) bands of the 
images in tracks 1 and 2 covering the research area 

Regression functions were calculated for the neighboring frames (3a, 3b) using frame 2 as a reference, 
as shown in Figure 1, and after this stage, the normalized images were merged with a mosaic 
operation. The mosaic images before and after the regression application are presented in Figure 4. 

Following radiometric normalization, the mosaic image obtained in the previous step was clipped 
based on the boundaries of the study area. The prepared image for classification is presented in Figure 
5.  
This image was obtained by displaying the 1st, 2nd, and 3rd bands (corresponding to green, red, and 
infrared wavelengths) as blue, green, and red (BGR), respectively, known as false color composition. In 
this type of visualization, areas with high reflectance due to vegetation appear with a dominant red 
color, highlighting vegetative features. 
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Figure 4. Mosaic images before (left) and after (right) radiometric normalization 

 

Figure 5. Radiometrically corrected aster data based on research area boundaries 
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In this study, seasonal effects were observed only in the southeastern part of the study area. The 
corresponding region comprised harvested bare agricultural fields, while the adjacent upper frame 
consisted of cultivated agricultural lands. 
As seen in Figure 5, the reflectance values differ in the upper right and lower frames of the merged 
image. The image frame corresponding to the upper right corner belongs to August, while the one 
corresponding to the lower corner belongs to November. In the image frame from August, where 
agricultural fields are present, the infrared reflectance is high, hence the dominance of red color. In 
contrast, in the image from November covering the southern part of the same plain, where there are 
no crops in the agricultural fields, similar areas appear gray instead of red as observed in the upper 
frame. 

4. Discussion and Conclusion  

The potential issue with using multiple image frames in image classification lies in the high 
susceptibility of automatic, manual, or hybrid image classification methods applied to image mosaics 
created without preprocessing to errors, resulting in low thematic accuracy maps. Without correction 
processes applied, during the classification of merged frames, areas with similar land cover/land use 
(LC/LU)  characteristics may be assigned different classes due to varying illumination effects and/or 
atmospheric conditions.  

Despite the various advantages of using ASTER data in large-scale landscape mapping studies, 
leveraging these advantages depends on the proper preprocessing of the data frames. The primary 
advantage provided by the ASTER dataset, compared to LANDSAT data, is its relatively high spatial 
resolution and the large area coverage provided by a single image frame. The ASTER scanner, operating 
since the year 2000 via the EOS-Terra platform, particularly in its initial years, offered superior spatial 
resolution compared to other operational platform data. This superiority in spatial resolution positions 
ASTER data as significant for retrospective mapping and change detection studies. 

Yuan & Elvidge (1996) employed Relative Radiometric Normalization (RRN), a procedure used to 
prepare multitemporal image datasets for detecting spectral changes associated with events such as 
land cover changes. This procedure reduces differences arising from unequal imaging conditions rather 
than changes in surface reflectance, as stated in this study. In this study utilizing Landsat data, it was 
noted that the linear regression technique yielded the best results (Yuan & Elvidge, 1996).  

Du et al. (2002) emphasized the necessity of radiometric correction for multitemporal land cover 
change studies. They provided information about a new procedure for radiometric normalization in 
their study. They statistically selected Pseudo-Invariant Features, PIFs and utilized Principal 
Component Analysis, PCA for this purpose. The new procedure was applied to Landsat-5 TM images 
from three different years. They noted a reduction in errors in radiometric consistency among 
multitemporal images with this procedure (Du et al., 2002).  

In their study, Scheidt et al. (2008) created an image mosaic of the study area using atmospherically 
corrected and radiometrically accurate ASTER data with Thermal Infrared, ASTER TIR bands for their 
analysis. They utilized a test site for the radiometric normalization technique. They selected Pseudo-
Invariant Features, PIFs  by using a correlation threshold between brightness values. They noted the 
advantages of this approach for TIR band data, including analyzing data obtained at different dates as 
a single continuous compositional dataset and separating brightness temperature from surface 
emission for quantitative surface composition analysis, thereby reducing errors in the intersection line 
in the emission mosaic (Scheidt et al., 2008).  

This study presents a process for normalizing ASTER data frames for use in large-scale landscape 
mapping studies with a 60 km swath width. In the study, atmospheric correction was performed by 
combining data acquired from the same paths and on the similar dates for radiometric normalization 
of ASTER data. Subsequently, regression functions between adjacent paths were calculated, taking into 
account these steps, and using these regression functions, mosaics were obtained from the corrected 
images in the final stage.  
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In addition, the presence of seasonal variations between frames/strips and the phenological 
differences in vegetation cover within frames can complicate the generation of high-quality data 
suitable for processing. To address this issue, it may be preferable to select frames from the same 
seasons in such studies. In cases where this is not feasible, as mentioned in this study, it is advisable to 
classify separately the same land cover types exhibiting phenological differences due to seasonal 
effects (e.g., cultivated areas versus harvested agricultural lands).  

Additionally One of the most crucial aspects in change detection studies is achieving the highest 
possible accuracy in geographic registration. This is because the accuracy of geographic registration 
directly affects the quality of intermediate products (e.g., binary masks) and final output products (e.g., 
change maps) generated during the change detection procedure. Failure in achieving accurate 
geographic registration diminishes the statistical accuracy of the study. 

In summary, the correction processes presented in this study are crucial for various applications that 
utilize Land Cover/Land Use maps, such as environmental planning, conservation, urbanization, 
industrial development, tourism, transportation, and others.  

Furthermore, when dealing with multiple frames/strips, seasonal variations and phenological 
differences within frames can pose challenges to data processing, emphasizing the importance of 
selecting frames from the same seasons or classifying land cover types separately based on 
phenological differences. 
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