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Abstract 

This study investigates the advantages and disadvantages of complex coordinates formulation for internal damping stability of 
rotordynamic systems. Damping mechanisms inherent to the rotor structure have different effects on vibrations when compared to 
stationary damping sources. The internal and external damping sources experience different vibration frequencies with respect  to 
the stationary reference frame. Thus, in contrast to external damping, internal damping does not always stabilize vibrations. 
Therefore, the correct incorporation of damping forces into the model is investigated to predict vibration characteristics accurately. 
A unified finite element model is developed to study rotordynamic stability due to internal damping caused by frictional joints 
between rotor parts and structural damping. Rotating bearing elements are used to model internal frictional joints and the governing 
equation with hysteresis damping is provided using complex vector notation for rotors on isotropic and anisotropic mounts. Complex 
coordinates formulation provides mathematical advantages in transformation of vectors between rotating and stationary reference 
frames. In the case of isotropic supports, the use of complex coordinates formulation yields a low-dimensional model and increases 
the efficiency of the model. However, in the case of anisotropic supports, reduction in the order of the model is not possible and the 
equation of motion is nonlinear due to kinematics of the system. This requires an iterative method to solve the eigenvalue problem. 
For verifications, the results of the developed models are compared to those of a commercial finite element software. Consequently, 
the effect of different internal damping sources on the overall rotordynamic stability is demonstrated. 

Keywords: Rotordynamics, internal damping stability, complex coordinates formulation, frictional joints, structural damping  

 

Öz 

Bu çalışma, rotordinamik sistemlerin iç sönümleme kararlılığı için kompleks koordinat formülasyonunun avantaj ve dezavantajlarını 
araştırmaktadır. Rotor yapısına özgü sönümleme mekanizmaları, sabit sönümleme kaynaklarına kıyasla titreşimler üzerinde farklı 
etkilere sahiptir. İç ve dış sönümleme kaynakları, sabit referans çerçevesine göre farklı titreşim frekanslarına sahiptir. Bu nedenle, 
harici sönümlemenin aksine, dahili sönümleme titreşimleri her zaman kararlı hale getirmez. Bu nedenle, titreşim özelliklerini  doğru 
bir şekilde tahmin etmek için sönümleme kuvvetlerinin modele doğru bir şekilde dahil edilmesi araştırılmıştır. Rotor parçaları 
arasındaki sürtünme bağlantılarının ve yapısal sönümlemenin neden olduğu iç sönümleme nedeniyle rotordinamik kararlılığı 
incelemek için birleşik bir sonlu eleman modeli geliştirilmiştir. İç sürtünme bağlantılarını modellemek için döner yatak elemanları 
kullanılmış ve histerezis sönümlemeli dinamik denklemi, izotropik ve anizotropik bağlantılar üzerindeki rotorlar için karmaşık vektör 
gösterimi kullanılarak sağlanmıştır. Kompleks koordinat formülasyonu, dönen ve sabit referans çerçeveleri arasındaki vektörlerin 
dönüşümünde matematiksel avantajlar sağlamaktadır. İzotropik mesnetler söz konusu olduğunda, kompleks koordinat 
formülasyonunun kullanılması düşük boyutlu bir model ortaya çıkarmakta ve modelin verimliliğini artırmaktadır. Ancak, anizotropik 
mesnetler söz konusu olduğunda, modelin mertebesinin azaltılması mümkün olmamakta ve sistemin kinematiği nedeniyle hareket 
denklemi doğrusal değildir. Bu durum, özdeğer problemini çözmek için iteratif bir yöntem gerektirmektedir. Doğrulama için, 
geliştirilen modellerin sonuçları ticari bir sonlu elemanlar yazılımının sonuçları ile karşılaştırılmıştır. Sonuç olarak, farklı iç 
sönümleme kaynaklarının genel rotordinamik kararlılık üzerindeki etkisi gösterilmiştir. 

Anahtar Kelimeler: Rotordinamik, iç sönüm kararlılığı, kompleks koordinat formülasyonu, sürtünmeli mafsallar, yapısal sönümleme  

 

1. Introduction 

Rotating machines have been widely studied theoretically and 
experimentally in the past decades as the most common 
mechanical system. There are many aspects to this research 
content, including modal analysis [1], fault detection [2], stability 
[3], blade dynamics [4], and nonlinear vibrations [5] to name a 
few. Despite the abundant number of studies carried out in this 
area, developing precise models to evaluate the stability 

characteristics retains this research area as one of the important 
ongoing research topics. 

Gyroscopic and circulatory effects are the two most important 
differences between the lateral vibrations of a rotordynamic 
system and a generic vibration problem [6]. Gyroscopic effects 
appear due to Coriolis reactions within a vibratory mode shape 
[7], causing a frequency separation between forward and 
backward modes with rotor speed. On the other hand, circulatory 
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terms arise during the transformation of the rotating damping 
forces to stationary reference frame. Circulatory terms are the 
reason for the difference between the effect of internal and 
external damping on the vibration behavior of the rotordynamic 
system. Internal damping does not always have a stabilizing 
effect on vibrations, unlike external damping. Vibration problems 
arise when circulatory terms dominate the external damping 
forces in super-critical operations. This phenomenon is also 
known as internal rotordynamic instability.  

 The first family of internal instability sources involves frictional 
joints between rotor parts [8]. Certain design characteristics of 
turbomachinery rotors result in a relative slip between rotor 
surfaces. Most notable design features that will lead to 
rotordynamic instability are axial splines, interference fits and 
curvic couplings. Built-up rotors, where different rotating parts 
are connected via shrink fits and pretensioned tie-shafts, are 
particularly susceptible to stability issues. As pioneer studies in 
this field, Lund [9] and Walton et.al. [10] studied the impact of 
these features on the internal rotordynamic stability. In their 
studies, these features are modelled as angular stiffness and 
damping coefficients. It is assumed that stiffness of joints 
contributes to elastic forces, while frictional forces due to relative 
slip act as rotating damping force. A rotordynamic model should 
have the capability of modelling the stiffness and damping 
between two mating rotor surfaces to accurately capture 
circulatory effects. Recently, nonlinear transient analysis is 
performed by Wang et.al [11] to show the effect of internal 
damping on the stability threshold of a built-up rotors on 
nonlinear journal bearings. Dai et.al. [12] experimentally studied 
the effect of different spline characteristics on rotor stability. 
Experiments are performed for different lubrication, external 
damping, load, teeth profile and fit type conditions. They 
concluded that well lubricated and properly loaded splines 
provide better stability performance. 

The second major source of internal instability is hysteresis 
damping of rotor material, which is generally modelled as 
proportional to stiffness with a structural damping coefficient, 
normalized with frequency to achieve a damping force 
independent of frequency. This normalization is a controversial 
topic in rotordynamic literature. Analytical solution for the 
internally damped rotating Timoshenko shaft is presented by 
Melanson and Zu [13]. Their results showed that internal viscous 
damping is destabilizing at super-critical speeds while hysteretic 
damping is destabilizing at all speeds. Many authors employed 
numerical techniques with similar mathematical foundations to 
demonstrate the impact of internal viscous and hysteretic 
damping [14, 15]; several of which concluded the destabilizing 
effect of hysteretic damping at all speeds [16, 17]. On the other 
hand, Genta explained the misunderstanding on internal 
instability due to hysteretic damping [18]. He stated that 
hysteretic and viscous damping play the same role from a 
stability perspective. Like viscous damping, hysteretic damping 
does not induce instability in the sub-critical regime as well. 
Neglecting the difference between the frequencies of the 
hysteretic and vibration cycles, which are not coincident for 
rotating systems, was the main source of erroneous result in the 
previous literature. Genta later provided a more detailed 
explanation, accompanied by example case studies featuring 
advanced hysteresis damping models [19]. Then, he covered the 
stability of rotors on asymmetric mounts as well [20]. 
D'Alessandro et al. [21] utilized Genta’s approach [18] later to 
compare the effect of viscous and hysteresis damping on 
rotordynamic stability. Despite the extensive literature 
background, even the most widely used commercial finite 
element software still lacks the accurate implementation of 

hysteretic damping in rotordynamic modelling. To achieve a 
unified modelling method to study internal rotordynamic study, 
accurate modelling of hysteretic damping plays a crucial role. 

Most of the studies in the literature on the internal damping 
instability problem of rotordynamic systems are based on real 
coordinates systems [11, 22-25]. However, as an alternative 
approach, one can utilize complex coordinates formulation to 
model the problem. In this approach, real and imaginary parts of 
a complex degree of freedom (DoF) represent vibration in each 
lateral plane, which imply a rotating vector. This assumption 
provides a mathematical advantage in the modelling of rotating 
bodies while transforming vectors between stationary and 
rotating reference frames. When eigenvalues are calculated by 
employing complex coordinates, the sign of the eigenvalues show 
the whirl direction. This information makes the identification of 
forward and backward modes easier and enables the 
computation of relative frequency between rotating and 
stationary forces, which is the main source of the erroneous 
modeling of the structural damping in the literature. This 
formulation is introduced to model rotors on isotropic supports 
[26] and has been used in a few number of research works to 
study the internal and external damping in rotor systems [27, 28]. 
The primary motivation for this study arises from the limited 
number of investigations employing the complex coordinates 
formulation for rotors with isotropic supports. Furthermore, 
there is a notable scarcity of research focused on utilizing the 
complex coordinates formulation for rotors with anisotropic 
supports. 

In this work, a finite element model which can accurately predict 
the internal stability of rotordynamic systems is developed. 
Timoshenko shaft elements are used to model rotor parts. 
Rotating bearing elements are used to model the circulatory 
terms due to internal damping of the frictional joints between 
rotor parts. The developed method is also capable of modelling 
hysteretic damping due to rotor and stator materials separately. 
The equation of motion is provided for rotors on isotropic 
supports by using complex coordinates showing all these various 
damping and circulatory terms explicitly.  Mass, damping, 
gyroscopic, stiffness and circulatory matrices are provided for 
shaft elements. Equation of the motion is then extended to rotors 
on anisotropic supports, which requires special care when 
working with complex coordinates. Capabilities of the developed 
finite element method are demonstrated through example 
problems. Natural frequencies, critical speeds and decay rates are 
calculated based on the developed methodology. Consequently, 
the effect of different internal damping sources on the overall 
rotordynamic stability is illustrated through the comparison of 
decay rate plots for rotors featuring various internal damping 
configurations. A unified modelling method, utilizing a complex 
coordinates formulation, is presented to encompass various 
internal damping configurations. 

2. Model Development of Rotors on Isotropic Supports 

The developed finite element model is based on Timoshenko 
shaft elements with uniform cross-sections which has two 
translational and two rotational DoF at each station. Shaft 
element supports shear, rotary inertia, and gyroscopic effects. 
Shape functions are provided for shaft elements in the literature 
[29-31] and used successfully throughout the years. A shaft 
element has one station at each end as shown in Figure 1. 
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Figure 1. Timoshenko shaft element of length l [30]. 

The displacement vector of a shaft element in complex vector 
notation has the form of Equation (1). A minus sign is added to 
account opposite directions of the rotational DoF of right-handed 
coordinates system, to use same shape functions in both lateral 
planes. 

qshaft = {𝑢1 + î 𝑣1 ;  𝜓1 − î 𝜃1 ; 𝑢2 + î 𝑣2 ;  𝜓2 − î 𝜃2} (1) 

Here ı ̂represents the imaginary numbers, u is displacement in the 
x direction, v denotes displacement in the y direction. Moreover, 
ψ and θ are rotations about y and x directions, respectively. Shape 
functions provide the nondimensional relation between the 
internal deformation of a finite element and the deformations of 
end stations. The computation of kinetic and potential energies 
for an element yields stiffness and mass matrices, forming the 
foundation of finite element discretization. These shape functions 
incorporate shear deformation which prevents shear-locking 
problems that may otherwise lead to an overestimation of the 
shaft stiffness. For a more detailed understanding of these shape 
functions, readers are kindly referred to [31], with the details not 
reiterated here for the sake of brevity. Accordingly, one can 
express the deformations in the shaft element as: 

{
𝑢
𝜓} = [ 

𝑁11 𝑁12

𝑁21 𝑁22
    

𝑁13 𝑁14

𝑁23 𝑁24
 ] {

𝑢1

𝜓1

𝑢2

𝜓2

} (2a) 

{
𝑣

−𝜃
} = [ 

𝑁11 𝑁12

𝑁21 𝑁22
    

𝑁13 𝑁14

𝑁23 𝑁24
 ] {

𝑣1

−𝜃1

𝑣2

−𝜃2

} (2b) 

Here in-plane deformations, (u, ψ), are considered in Equation 
(2a), and out-of-plane deformations, (v, θ), are given in Equation 
(2b). The deformation vectors for these cases are respectively, 
shown by qx and qy in the following sections. As a result, potential 
energy, which eventually yields stiffness matrix can be expressed 
as: 

𝑈 =
1

2
qx

TKShaftqx + 
1

2
qy

TKShaftqy (3a) 

𝑈 =  
𝐸𝐼

2𝐿
(  ∫ qx

T
dN2

T

d𝑧

dN2

d𝑧

l

0

qxd𝑧

+ ∫ qy
T

dN2
T

d𝑧

dN2

d𝑧

l

0

qyd𝑧  ) 

        + 
6EI

ΦL
(  ∫ qx

TN3
TN3

𝑙

0

qxd𝑧 + ∫ qy
TN3

TN3

𝑙

0

qyd𝑧  ) 

 

 

(3b) 

 

 

Here, N1 and N2 denote the first and second rows of the shape 
function matrix in Equation (2), and N3 represents only the shear 
component of the deformation, calculated as: 

N3 = N2 − 
dN1

d𝑧
 (4) 

Moreover, in Equation (3b), Φ is slenderness ratio defined by 

Φ =
𝐸𝐼𝜒

𝐺𝐴𝑙2
 (5) 

Where χ is the shear factor of a shaft with circular cross-section 
with inner radius ri and outer radius ro: 

1

𝜒
=

7𝑟𝑖
4 + 34𝑟𝑖

2𝑟𝑜
2 + 7𝑟𝑜

4 + 𝜈(12𝑟𝑖
4 + 48𝑟𝑖

2𝑟𝑜
2 + 12𝑟𝑜

4)

6(𝑟𝑖
2 + 𝑟𝑜

2)
2

(1 + 𝜈2)2
 

      +
𝜈2(4𝑟𝑖

4 + 16𝑟𝑖
2𝑟𝑜

2 + 4𝑟𝑜
4)

6(𝑟𝑖
2 + 𝑟𝑜

2)
2

(1 + 𝜈2)2
 

(6) 

With ν being the Poisson ratio of the shaft. Similarly, kinetic 
energy of the shaft element can be written as: 

T =
1

2
q̇x

T MT q̇x + 
1

2
q̇y

T MT q̇y +
1

2
q̇x

T MR q̇x 

           + 
1

2
q̇y

T MR q̇y +  𝜌𝐽𝑦𝑙Ω2 − 2Ωq̇y
T MR q̇x 

(7a) 

T =
1

2
𝜌𝐴𝑙 ∫ (q̇x

T N1
T N1 q̇x +  q̇y

T N1
T N1 q̇y)

𝑙

0

d𝑧  

    + 
1

2
𝜌𝐼𝑙 ∫ (q̇x

T N2
T N2 q̇x + q̇y

T N2
T N2 q̇y)

𝑙

0

d𝑧 

     + 𝜌𝐽𝑦𝑙Ω2 − 2𝜌𝐽𝑦𝑙Ω ∫ (q̇y
T N2

T N2 q̇x)
𝑙

0

d𝑧 

(7b) 

Here, MT and MR are mass matrices associated with translational 
and rotational inertia, respectively. Kinetic energy incorporates a 
term related to the Coriolis effect, which is proportional to the 
rotor speed and eventually becomes gyroscopic matrix in the 
final equation of the motion. It is noteworthy that despite a shaft 
element having eight DoF, all element matrices are presented 
below as 4x4 due to the utilization of complex vector notation 
leading to identical matrices in in-plane and out-of-plane 
directions. 

K𝑠ℎ𝑎𝑓𝑡 =
𝐸𝐼

(1 + 𝛷)𝑙3
 [

12 6𝑙
6𝑙 (4 + 𝜒)𝑙2

−12 6𝑙
−6𝑙 (2 − 𝜒)𝑙2

−12 −6𝑙
6𝑙 (2 − 𝜒)𝑙2

12 −6𝑙
−6𝑙 (4 + 𝜒)𝑙2

 ] (8) 

M𝑇 =
𝜌𝐴𝑙

840(1 + Φ)2
 [

𝑚1 𝑚2

𝑚2 𝑚5

𝑚3 𝑚4

−𝑚4 𝑚6
𝑚3 −𝑚4

𝑚4 𝑚6

𝑚1 −𝑚2

−𝑚2 𝑚5

 ] (9) 

M𝑅 =
𝜌𝐼

30𝑙(1 + Φ)2
 [

𝑚7 𝑚8

𝑚8 𝑚9

−𝑚7 𝑚8

−𝑚8 𝑚10
−𝑚7 −𝑚8

𝑚8 𝑚10

𝑚7 −𝑚8

−𝑚8 𝑚9

 ] (10) 

Mass parameters in the translational mass matrix are given by: 

𝑚1 = 312 + 588Φ + 280Φ2 

𝑚2 = (44 + 77Φ + 35Φ2)𝑙 

𝑚3 = 108 + 252Φ + 140Φ2 

𝑚4 = −(26 + 63Φ + 35Φ2)𝑙 

𝑚5 = (8 + 14Φ + 7Φ2)𝑙2 
𝑚6 = −(6 + 14Φ + 7Φ2)𝑙2 

(11) 

Moreover, mass parameters in the rotational mass matrix are 
defined by: 

𝑚7 = 36 
𝑚8 = (3 − 15Φ)𝑙 

𝑚9 = (4 + 5Φ + 10Φ2)𝑙2 

𝑚10 = (−1 − 5Φ + 5Φ2)𝑙2 

(12) 

Accordingly, mass matrix of the shaft element can be expressed 
as: 
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Mshaft = M𝑇 + M𝑅 (13) 

Moreover, based on the kinetic energy the gyroscopic matrix is 
defined by: 

𝐺𝑠ℎ𝑎𝑓𝑡 = 2M𝑅 (14) 

Now, one can assemble the element matrices to form the global 
mass, damping and stiffness matrices to construct the 
mathematical model of the system. In the process of calculating 
the global matrices, shaft matrix is integrated with additional 
concentrated mass, stiffness, and dampers, which are models of 
disks and bearings in the rotor system. Accordingly, the general 
equation of motion of an isotropic system can be obtained as: 

Mq̈ + (C𝑏𝑠 + C𝑏𝑟 +
𝜂𝑠

|𝜔|
K𝑏𝑠 +

𝜂𝑟

|𝜔 − Ω|
(K + K𝑏𝑟)

− îΩG) q̇

+ (K + K𝑏𝑠 + K𝑏𝑟

− îΩ
𝜂𝑟

|𝜔 − Ω|
(K + K𝑏𝑟) − îΩC𝑏𝑟) q

= (f𝑥 + îf𝑦) (Ω2 − î Ω̇)𝑒 îΩ𝑡 

(15) 

In which the characteristics of rotating and stationary bearings 
are distinguished with “r” and “s” subscripts. The subscript "b" is 
employed to differentiate bearing-related matrices from rotor-
related matrices. Structural damping coefficients, η, are defined 
for rotor and stator parts separately. An unbalance force is also 
introduced to the right-hand side to account rotor speed- and 
acceleration-dependent excitation terms. Speed-dependent 
terms incorporated into the stiffness matrices represent 
circulatory effects induced by internal damping sources. A critical 
aspect of this equation lies in the definition of structural damping. 
The structural damping terms are normalized with frequency 
because structural damping remains nearly constant over a wide 
frequency range. However, it is essential to consider rotor speed 
in the transformation of rotating structural damping into the 
stationary reference frame. Complex coordinates become 
mandatory at this point since the sign of the eigenvalues 
represent the whirl direction in this equation. This directional 
information is lost when equation of motion is constructed with 
real coordinates. It should also be mentioned that as discussed in 
the introduction, neglecting the relative frequency of rotating 
damping has been a primary reason for erroneous results in the 
literature [18]. Moreover, structural damping ratios of rotor and 
stators are handled separately in Equation (15), which allows 
inclusion of corresponding circulatory terms in stiffness matrix 
accurately. 

Furthermore, the equation of motion incorporates a rotating 
viscous damping matrix, denoted as Cbr. Coefficients due to 
concentrated damping forces between two stations are defined 
between related DoF’s in this matrix. This matrix also contributes 
to the speed-dependent circulatory terms in the stiffness matrix. 
It is crucial to note that both viscous and structural forms of 
rotating damping exert a destabilizing effect. Therefore, accurate 
formulation of these damping terms in the system matrices is 
critical for the proper detection and analysis of rotordynamic 
instability. Stability of the system is determined by solving for the 
eigenvalues of the homogeneous form of Equation (15), with the 
assumption of the solution in the following form: 

q(𝑡) = q0𝑒îΩ𝑡 (16) 

Here Ω is a complex eigenvalue, the real part of which represents 
the natural frequencies, and the imaginary part denotes decay 
rate of the free response [32-34]. 

3. Model Development of Rotors on Anisotropic Supports 

As seen in the previous section, the use of complex coordinates 
systems for isotropic supports results in lower matrix 
dimensions, and whirl directions are obtained automatically with 
eigenvalue problem solution. In the case of anisotropic supports, 
the use of the complex coordinates formulation becomes 
complicated. The complex coordinates defined in Equation (1) 
automatically assumes that deflections in lateral planes are 
symmetric, in other words rotor whirls in circular orbits. This 
provides a computational advantage in isotropic systems since it 
halves the matrix sizes due to symmetry. Although the rotor is 
assumed to be isotropic here, anisotropy can be introduced to the 
system with asymmetrical rotor supports, which will result in 
elliptical whirl orbits. The difficulty with complex coordinates 
can be overcome by defining the elliptical motion as a summation 
of two counter-rotating circles. 

q(𝑡) = q1(𝑡) + q2(𝑡) = q10
𝑒 îΩ𝑡 + q20

𝑒−îΩ𝑡 (17) 

The introduction of anisotropic stiffness, damping, and mass 
characteristics of mounts in in-plane and out-of-plane directions 
is accomplished by defining mean and deviatoric matrices as 
[31]: 

K𝑚 =
1

2
(K𝑥 + K𝑦) +

1

2
î(K𝑦𝑥 − K𝑥𝑦) (18a) 

K𝑑 =
1

2
(K𝑥 − K𝑦) +

1

2
î(K𝑦𝑥 + K𝑥𝑦) (18b) 

Although only stiffness matrices are presented here, the same 
definitions apply to mass and damping matrices. Despite the 
utilization of complex coordinates, there is no necessity to work 
with complex matrices for isotropic systems. However, when 
anisotropic supports are introduced, computations involving 
complex numbers become necessary due to imaginary terms in 
mean and deviatoric matrices. When general solution in the form 
of Equation (17) and new matrices of Equation (18) are 
introduced into the system, system size is doubled, and the 
equation of motion can be written as Equation (19).  

([
𝑀 0
0 𝑀

] + [
𝑀𝑏𝑚

𝑀𝑏𝑑

�̅�𝑏𝑑
�̅�𝑏𝑚

] ) {
�̈�1

�̅̈�2
} + ([

𝐶𝑏𝑠𝑚
𝐶𝑏𝑠𝑑

𝐶�̅�𝑠𝑑
𝐶�̅�𝑠𝑚

]

+
𝜂𝑠

|𝜔|
[
𝐾𝑏𝑠𝑚

𝐾𝑏𝑠𝑑

𝐾𝑏𝑠𝑑
𝐾𝑏𝑠𝑚

] − �̂�𝛺 [
𝐺 0
0 −𝐺

]

+ [
𝐶𝑏𝑟

0

0 𝐶𝑏𝑟

] +𝜂𝑟 ([
𝛼𝐾 0
0 𝛽𝐾

]

+ [
𝛼𝐾𝑏𝑟

0

0 𝛽𝐾𝑏𝑟

])) {
�̇�1

�̅̇�2
}

+ ([
𝐾 0
0 𝐾

] + [
𝐾𝑏𝑠𝑚

𝐾𝑏𝑠𝑑
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0
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]
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𝐶𝑏𝑟

0
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𝛼𝐾 0
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]

+ [
𝛼𝐾𝑏𝑟

0

0 𝛽𝐾𝑏𝑟

])) {
𝑞1

�̅�2
}

= {
𝑓𝑥 + �̂�𝑓𝑦

0
}  (𝛺2 − �̂��̇�)𝑒�̂�𝛺𝑡  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(19) 
 

Here α and β are scalar values defined by 

𝛼 =
1

|𝜔 − Ω|
,                𝛽 =

1

|−𝜔 − Ω|
  (20) 

In Equation (19), overbar represents the complex conjugate 
terms. The obtained equation provides a mathematical 
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explanation for some of the key features of rotating systems, with 
the help of complex coordinates approach and is represented for 
the first time in this study. The total vibratory response of the 
system now forms an ellipse. The upper half of the matrices 
represent forward whirl and lower half represent backward 
whirl. Note that although only forward modes are excited in the 
upper half of the system matrices, there will be a response in the 
lower half of the system due to couplings. This explains the 
excitation of the backward modes under forward rotating 
unbalance loads when asymmetric supports are used. Moreover, 
rotor matrices, including rotating bearing stiffness and damping, 
do not have mean and deviatoric terms since rotor itself is 
isotropic. In the second row of the equation, the complex 
conjugate of mean and deviatoric matrices is included to account 
for backward rotating terms. Different sign notations based on 
absolute value function are used in both rows to calculate relative 
frequency of the structural damping, since each row represents 
opposite whirl directions. These absolute value functions 
associated with the structural damping terms introduce 
kinematic nonlinearity to the system, which is not suitable for 
eigenvalue calculation. Therefore, the homogeneous equation is 
repeatedly solved for all possible sign configurations to 
overcome this situation, which causes a significant increase in 
computational time when structural damping is employed. 
Furthermore, despite the publication of some results with 
structural damping and anisotropic supports [20], the equation 
of the motion is not clearly explained in the literature until now. 
Equation (19) provides a framework allowing the incorporation 
of structural damping, anisotropic supports, bearings with cross-
coupling stiffness, and rotor-rotor bearings into a unified model 
which contributes to a more comprehensive understanding of the 
dynamic behavior of the system. 

4. The Case Study 

The stability of the rotor shown in Figure 2 is studied for various 
configurations with different support and internal damping 
characteristics. The rotor system consists of a 3 m hollow shaft 
mounted on two ends. There are five disks connected to the shaft 
with interference fit. The rotor operates up to 6000 RPM, and 
material properties of the disks and shaft are provided in Table 
1. 

 
Figure 2. The schematic of rotor with five disks and two bearings. 

Table 1. Material properties of the rotor. 

Modulus of Elasticity, (MPa) 211000 

Shear Modulus, (MPa) 81200 

Density, (kg/m3) 7810 

Structural Damping Coefficient 0.001 

The considered rotor is modelled with 30 shaft elements in the 
developed model. The schematic of the model used to study the 
stability of the system is shown in Figure 3. The corresponding 
geometric properties of the shaft elements are also provided in 
Table 2.  

 

Figure 3. Schematic of the finite element model of the rotor with 
five disks and a bearing at each end. 

Table 2. Geometric properties of shaft elements. 

Element # Length, m Outer Diameter, m Inner Diameter, m 

1 and 2 0.1 0.075 0.025 

3 0.1 0.1 0.025 

4 to 27 0.1 0.1 0.05 

28 0.1 0.1 0.025 

29 and 30 0.1 0.075 0.025 

Moreover, disks on the rotor are considered as rigid concentrated 
masses in the developed model with geometric properties 
provided in Table 3. 

Table 3. Geometric properties of disk elements. 

Disk # 
Axial 

Positions, m 
Inner 

Diameter, m 
Outer 

Diameter, m 
Thickness, 

m 

1 0.5 0.1 0.35 0.07 

2 0.9 0.1 0.3 0.07 

3 1.3 0.1 0.25 0.07 

4 2.1 0.1 0.25 0.07 

5 2.5 0.1 0.3 0.07 

The analysis will be repeated for different cases of support 
bearing stiffness, type of disk connection, and structural 
damping. Accordingly, four different configurations with 
corresponding details are provided in Table 4. Analysis will show 
the effect of support stiffness, internal damping due to 
interference fits and structural damping, on both computational 
time and vibrational stability.

Table 4. Mount and Internal Damping Characteristics. 

Case # Mount Stiffness Mount Damping Disk Connection Structural Damping 

1 
Isotropic 

k = 5e6 N/m 
5 N-s/m Rigid 0 

2 
Anisotropic 

kx = 4e6 N/m, ky= 5e6 N/m 
5 N-s/m Rigid 0 

3 
Anisotropic 

kx = 4e6 N/m, ky = 5e6 N/m 
5 N-s/m 

k = 1e8 N/m, kr =6e5 N-m/rad 
cr = 200 N-m-s/rad 

0 

4 
Anisotropic 

kx = 4e6 N/m, ky = 5e6 N/m 
5 N-s/m 

k = 1e8 N/m, kr =6e5 N-m/rad 
cr = 200 N-m-s/rad 

0.001 
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Furthermore, the same model is also created in commercial finite 
element software, Ansys 2024R1, as shown in Figure 4. General 
axisymmetric Solid272 elements with four nodal planes are used 
to model the rotor parts, as shown in Figure 5. This element type 
supports both gyroscopic and circulatory matrices and provides 
accuracy similar to 3D solid elements with less computation time. 
There are 573 elements and 2904 nodes in the model. Combi250 
bushing elements are used to define the stiffness and damping 
characteristics of the mounts. MPC184 general joint elements are 
used to define the flexible connection between the disks to the 
shafts. Rotating viscous damping representing the interference fit 
is defined with a Beta Damping Coefficient, which will result in 
the same viscous damping provided in Table 4. Full Damped 
solver is used for modal solution. The Coriolis effect is activated 
to include gyroscopic effects and rotating damping matrix is 
activated to include circulatory effects. 

 
Figure 4. 3D finite element model of the rotor with five disks in 
Ansys. 

 
Figure 5. Nodal planes of solid272 elements used in ANSYS 
model. 

5. Results and Dicussion 

At the first step, to verify the model, obtained natural frequencies 
based on the developed models are compared to those of the 
ANSYS model. The results of the first six modes are reported in 
Table 5 for different values of rotor speed and case studies. It can 
be seen that there is acceptable agreement between the results. 
The maximum relative differences between the results for cases 
#1 to #4 are respectively, 3.95%, 3.64%, 2.52%, and 2.51%. The 
average relative differences between the results for cases #1 to 
#4 are also 2.60%, 2.52%, 1.41%, and 1.42%, respectively.

Table 5. Comparison of the first six natural frequencies of the rotor to the ANSYS results for different rotor speeds and case studies. 

Rotor speed (RPM) Case study # Models 
 Natural Frequencies (Hz) for mode # 
 1 2 3 4 5 6 

1000 

1 
Present  16.679 16.779 42.326 42.431 78.758 79.648 
ANSYS  17.321 17.403 43.176 43.274 80.539 81.425 

2 
Present  16.123 16.733 39.116 42.380 74.320 79.255 
ANSYS  16.685 17.364 39.762 43.226 76.094 81.024 

3 
Present  16.108 16.720 38.867 42.061 72.974 77.638 
ANSYS  16.247 16.871 39.241 42.543 74.567 79.506 

4 
Present  16.108 16.716 38.867 42.061 72.974 77.637 
ANSYS  16.247 16.871 39.241 42.543 74.567 79.506 

3000 

1 
Present  16.579 16.878 42.218 42.539 77.721 80.697 

ANSYS  17.239 17.484 43.077 43.371 79.660 82.319 

2 
Present  16.096 16.758 39.108 42.389 73.950 79.652 

ANSYS  16.669 17.379 39.755 43.231 75.793 81.340 

3 
Present  16.078 16.738 38.851 42.061 72.244 77.969 

ANSYS  16.224 16.887 39.229 42.543 73.933 79.798 

4 
Present  16.077 16.738 38.851 42.061 72.244 77.968 

ANSYS  16.224 16.887 39.229 42.543 73.933 79.798 

5000 

1 
Present  16.478 16.975 42.109 42.645 76.758 81.704 

ANSYS  17.156 17.564 42.978 43.469 78.789 83.219 

2 
Present  16.047 16.805 39.092 42.400 73.335 80.302 

ANSYS  16.637 17.408 39.743 43.241 75.278 81.886 

3 
Present  16.019 16.777 38.821 42.063 71.023 78.458 

ANSYS  16.181 16.916 39.204 42.545 72.855 80.251 

4 
Present  16.020 16.776 38.821 42.063 71.024 78.457 

ANSYS  16.181 16.916 39.204 42.545 72.855 80.251 

After verifying the model, the detailed modal results are provided 
for the rotor of case #1. This configuration has isotropic mounts 
and there is no internal instability source defined. Accordingly, 
Campbell diagram and decay rates for this rotor are shown in 
Figure 6. In Figure 6a, the forward whirls are shown by red solid 
lines, backward whirls are depicted by blue dash-dotted lines, 
and the 1X is shown by purple dashed line. It can be seen that the 
first backward and forward critical speeds of the rotor are 
predicted to be around 1001 and 1007 RPM, respectively, and 
decay rates predict stable operation up to 6000 RPM. However, 
decay rate values imply that the system is lightly damped and 
may experience high vibrations during operation.  

Moreover, the first three mode shape couples of case #1 based on 
the current method and Ansys are provided in Figure 7 and 
Figure 8, respectively, to show that each method predicts similar 
vibration patterns. The number of nodal points in each results set 
are the same for corresponding mode shapes. Deflection of rotor 
axis in these deformed shapes is the main reason for emergence 

of gyroscopic moments in lateral vibrational mode shapes. These 
mode shapes are observed in backward and forward couples due 
to the presence of gyroscopic moments. Accurate prediction of 
mode shapes and nodal points are critical in the selection of 
excitation locations. It can be also seen that mode shapes are 
circular since case #1 has mount stiffness in both lateral planes. 
Whirl orbits will become elliptical when mount stiffness becomes 
asymmetric. 

Case #2 introduces support anisotropy to the system. Similarly, 
modal results based on Campbell diagram and stability map are 
provided in Figure 9. Natural frequencies of the system are not 
paired in pure forward and backward mode couples anymore. In 
Figure 9a, the forward whirls are shown by red solid lines, 
backward whirls are depicted by blue dash-dotted lines, mixed 
whirls are shown by black dotted lines, and the 1X is shown by 
purple dashed line. Comparison of the decay rate plots shown in 
Figures 6 and 9 shows the improvement in the stability of the 
system due to the support anisotropy. The first backward and 
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forward critical speed of the system are predicted as 967, and 
1004 RPM, respectively, which is slightly below case #1 due to 
the reduction in the support stiffness in one of the lateral 
directions. 

In cases #1 and #2, disks are assumed to be connected rigidly to 
the shaft. Since there is no relative motion in mating surfaces, no 
internal damping is produced. Case #3 however, introduces 
internal damping due to interference fit joints. Campbell diagram 
and stability map of this configuration are provided in Figures 
10a and 10b, respectively. Note that there is negligible change in 
the Campbell diagram of the system when compared to Case #2 
and the critical speed is again around 966 and 1003 RPM. On the 
other hand, there is a significant difference in the stability 
characteristics of the system. When internal damping terms are 
introduced to the system as viscous rotational damping of 
rotating bearings between disks and shaft, system becomes 
unstable after 5280 RPM. This is the stability threshold of the 
system. Any initial vibrations beyond this speed will be amplified 
and will result in catastrophic failure in the rotor. 

 

 
Figure 6. (a) Campbell diagram, and (b) decay rates of the first 
forward and backward whirls (stability map) for the rotor of case 
#1. 

 

 

 

 

 

 

 

 

 

 

  

Figure 7. (a) First, (b) Second, and (c) Third mode shape couples 
for the rotor of case #1 based on the present method. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 8. (a) First, (b) Second, and (c) Third mode shape couples 
of the rotor of case #1 based on model in Ansys. 
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Figure 9. (a) Campbell diagram, and (b) decay rates of the first 
forward and backward whirls (stability map) for the rotor of case 
#2. 

 

 
Figure 10. (a) Campbell diagram, and (b) decay rates of the first 
forward and backward whirls (stability map) for the rotor of case 
#3, (Gray area: unstable region). 

Finally, structural damping is introduced to the system in case #4. 
The structural damping coefficient of both rotor and stator is 
assumed as 0.001. Again, no difference is observed in the 
Campbell diagram of the system, as shown in Figure 11a. The first 
critical speeds of case #4 are also 966 and 1003 RPM, for first 

backward and forward modes, respectively. However, there are 
sudden changes in the stability of the system when critical speeds 
are exceeded, which is expected for rotors with internal 
structural damping [19]. It is important to note that in Figure 11b, 
the stability threshold of the system decreases to 4370 RPM 
when internal structural damping is introduced in addition to the 
internal damping of interference fit regions. 

In order to analyze the efficiency of the developed model, 
computational times for all four cases based on the current model 
are provided in Table 6 and compared to those of the classical 
finite element model developed by Friswell [26]. According to 
this table, isotropic systems yield the quickest solutions as matrix 
sizes are halved using the complex coordinates approach. 
However, this advantage is lost in case #2 when anisotropic 
supports are introduced to the system. In case #3, the addition of 
rotating bearing elements between disks and shafts causes a 
further slight increase in computational time. Case #4 requires 
the longest computational time since eigenvalue calculation is 
repeated for different sign configurations because of nonlinearity 
induced by structural damping. 

 
Figure 11. (a) Campbell diagram, and (b) decay rates of the first 
forward and backward whirls (stability map) for the rotor of case 
#4 (Gray area: unstable region). 

Table 6. Computational Times. 

Case # 
Complex coordinates 

formulation 
Real coordinates formulation 

[26] 

1 5.6 sec 25.8 sec 

2 24.9 sec 25.5 sec 

3 36.3 sec - 

4 146.7 sec - 

6. Conclusions 

A finite element model based on Timoshenko shaft elements with 
complex coordinates formulation was developed to accurately 
predict the internal stability of rotordynamic systems. The 
equations of motion for rotors on isotropic and anisotropic 
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supports are provided, with a focus on the complexities 
introduced by circulatory terms induced by internal damping. 
Internal damping does not always have a stabilizing impact on 
vibrations like external damping, since the two experience 
different vibration frequencies with respect to stationary 
reference frame. The study considered two primary sources of 
internal instability. The first involves frictional joints between 
rotor parts, such as axial splines, interference fits, and curvic 
couplings. The second major source is hysteresis damping of the 
rotor material. The former is defined by rotating viscous 
damping, while the latter is characterized by a structural 
damping coefficient. The paper discussed the challenges and 
controversies surrounding the normalization of structural 
damping in rotordynamic literature and emphasizes the need for 
accurate modeling to achieve a unified approach in studying 
internal rotordynamic stability. A case study to demonstrate the 
application of the developed method is presented. Four different 
configurations were analyzed, considering isotropic and 
anisotropic supports, internal damping due to interference fits, 
and structural damping. Natural frequencies, critical speeds and 
decay rates are obtained by solving the developed model. The 
results showed varying stability thresholds and computational 
times for each configuration. In summary, this study contributes 
to the understanding of internal rotordynamic stability, 
providing a robust methodology for accurate modeling and 
analysis. 

Nomenclature 

s   Stationary (Subscript) 
r   Rotating (Subscript) 
b   Bearing (Subscript) 
η   Loss Factor 
ceq   Equivalent Damping Ratio 
ω   Vibration Frequency 
Ω   Rotor Speed 
u, v         Translational Deformations 
ψ, θ  Angular Deformations 
U   Potential Energy 
T   Kinetic Energy 
E   Modulus of Elasticity 
ρ   Density 
ν     Poisson Coefficient 
A   Area of Shaft Cross Section 
I   Second Moment of Shaft Cross Section 
l   Shaft Element Length 
ri   Shaft Inner Radius 
ro   Shaft Outer Radius 

χ      Shear Factor 
Φ   Slenderness Ratio 
J   Mass Moment of Inertia 
q   Deformation Vector 
f   Force Vector 
M   Mass Matrix 
C   Damping Matrix 
G   Gyroscopic Matrix 
K   Stiffness Matrix 
N   Shape Function Matrix 
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